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1 | INTRODUCTION

On December 31, 2019, novel severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), causing coronavirus disease 2019
(COVID-19), was first identified in China, which has spread worldwide
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Abstract

The World Health Organization has reported approximately 430 million confirmed
cases of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), worldwide, including nearly é million deaths,
since its initial appearance in China in 2019. While the number of diagnosed cases
continues to increase, the need for technologies that can accurately and rapidly
detect SARS-CoV-2 virus infection at early phases continues to grow, and the Fed-
eral Drug Administration (FDA) has licensed emergency use authorizations (EUAs) for
virtually hundreds of diagnostic tests based on nucleic acid molecules and antigen-
antibody serology assays. Among them, the quantitative real-time reverse transcrip-
tion PCR (gRT-PCR) assay is considered the gold standard for early phase virus
detection. Unfortunately, gRT-PCR still suffers from disadvantages such as the com-
plex test process and the occurrence of false negatives; therefore, new nucleic acid
detection devices and serological testing technologies are being developed. How-
ever, because of the emergence of strongly infectious mutants of the new coronavi-
rus, such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), the need for
the specific detection of mutant strains is also increasing. Therefore, this article
reviews nucleic acid- and antigen-antibody-based serological assays, and compares
the performance of some of the most recent FDA-approved and literature-reported

assays and associated kits for the specific testing of new coronavirus variants.

KEYWORDS
nucleic acid molecular test, SARS-CoV-2, serological test, test kit evaluation, viral variants,
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and caused a serious outbreak in a short period.? The World Health
Organization (WHO) officially declared COVID-19 as a public health
emergency of international concern on January 30, 2020. WHO reports
that there are currently nearly 430 million confirmed cases, approxi-
mately 6 million deaths, as well as nearly 10.4 billion vaccinations.
Coronaviruses belong to the coronaviridae family of the order

Nidoviridae, comprising a set of enveloped viruses with a single-
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stranded RNA genome (26-32 kb).2 There are four genera of cor-
onaviruses, a, f, v, and 8, and both SARS-CoV-2 and SARS-CoV are
members of the beta coronavirus family, while Middle East respiratory
syndrome coronavirus (MERS-CoV) belongs to family C of the genus
coronavirus. SARS-CoV-2 and SARS-CoV share 79.6% sequence simi-
larity, and research has revealed that these two viruses share the
same vascular angiotensin-converting enzyme 2 (ACE2) receptor for
infection of human cells.* SARS-CoV-2 is circulated primarily through
breathing or contact with droplets from an infected person, with a
latency period of about 2-14 days.” The patient's clinical presentation
after infection varies from asymptomatic to severe, with most infec-
tions not being severe.® The leading causes of death commonly asso-
ciated with COVID-19 are respiratory failure, followed by septic
shock, renal failure, hemorrhage, and cardiac failure.”

Thousands of cumulative mutations of the SARS-CoV-2 have
occurred since its emergence, which often occurs naturally during rep-
lication. Many mutant strains such as Alpha (B.1.1.7), Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have
emerged, and the S protein, an important protein that facilitates virus
transmission and entry into cells, has probably undergone more than
4000 mutations in its gene.® Mutations in the receptor-binding
domain (RBD) region on the S proteins have also been shown recently
to make the mutant strains more infectious,” thus requiring tech-
niques and devices that can detect mutant strains to control the
development of outbreaks (Figure 1b).

With the sequencing of the virus genome and serological analysis
of neutralizing antibodies (NAbs) among virus-positive patients and
recuperating patients, several kits based on nucleic acid molecular
biology and antigen-antibody serology have been developed to assay
the virus in swabs and blood specimens. Nucleic acid-based assays
include reverse transcription-polymerase chain reaction (RT-PCR),
loop-mediated isothermal amplification (LAMP), and clustered regu-
larly interspaced short palindromic repeats (CRISPR)/CRISPR associ-
ated protein (Cas) systems; and serological immunoassays include
(ELISAS),
immunoluminescence, and lateral flow immunoassays. However,
RT-PCR and ELISA, although considered the gold standards for molec-

ular and serological assays of SARS-CoV-2, still have many problems,

enzyme-linked immunosorbent  assays chemical

such as high cost and high time-consumption, rendering them unable
to implement rapid and highly sensitive testing in the face of a pan-
demic of SARS-CoV-2 and its variants, especially when the occurrence
of viral mutations can affect primer or antibody binding.'® Therefore,
rapid point-of-care (POC) detection techniques with high detection
rates are being developed, such as the easier-to-operate loop-
mediated isothermal amplification (LAMP) and specific high-sensitivity
enzymatic reporter unlocking (SHERLOCK), based on recombinase
polymerase amplification (RPA) and CRISPR/Cas, which requires only
0.5-1 h for highly specific detection and can detect mutant strains by
designing primers that target their mutation sites. In addition, with the
development of identifiable conserved protein tag tails, the detection
rate of POC-based immunoassay assays is also increasing. The devel-
opment of POC assays is expected to be applied in the future in com-

munities, rural areas, and other relatively poorly resourced areas for

.12 Moreover, the optimization of samples

effective epidemic contro
and swabs and other sampling tools, as well as the combination of
artificial intelligence and deep learning networks, are also worth con-
sidering in the development of POC assays.

Herein, we comprehensively review the practical techniques
designed to detect SARS-CoV-2, evaluate the results of relevant tech-
nologies (Table 1), and enumerate the relevant FDA-approved test kits

and the latest mutant detection devices.

2 | STRUCTURE AND DETECTION OF
SARS-COV-2

21 | The structure and biology of SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in
the genus beta coronavirus and is the seventh coronavirus to infect
humankind and cause acute respiratory disease.'? SARS-CoV-2 is 60-
140 nm in diameter and comprises a single-stranded positive-sense
RNA genome, capsid protein, and outer membrane assembly. Its
genome size is from 29.8 to 29.9 kb and it includes 14 open reading
frames (ORFs), which encode 27 proteins.*® Its genome is almost 80%
homologous to SARS-CoV and is similar to bat coronavirus (bat CoV),
with 96% sequence similarity. Among the ORFs, ORF1ab, located in
the 5'-untranslated region (UTR), is the largest gene, encoding a vari-
ety of proteins required for viral transcription and replication, includ-
ing multiple nonstructural proteins (NSP). The gene located in the
3’-UTR encodes four predominant structural proteins, including the
spike (S) protein, the membrane (M) protein, the envelope (E) protein,
and the nucleocapsid (N) protein, and also encodes many non-
structural proteins.2* Among the four structural proteins, the S protein
serves as a transmembrane protein that can mediate coronavirus
entrance into the host cell by interacting with angiotensin-converting
enzyme 2 (ACE2).*> The M protein plays a role in determining the
configuration of the viral envelope and the assembly of viral particles,
and also counteracts the innate antiviral immune response triggered
by viral RNA.2® The N proteins can combine with the RNA genome of
viruses to constitute N protein-RNA complexes that participate in the
replication cycle of the virus, the host response to viral infection, and
genomic signaling. Meanwhile, the E protein, as the minimal major
structural protein, can interact with host cell membrane proteins to
participate in the viral production and the maturation process.'”

22 |
CoV-2

Infection and sample collection of SARS-

The S protein is a trimeric class | viral fusion protein that has a critical
function in mediating the adhesion, fusion, and entry of SARS-CoV-2
into the human body.*8-2° S protein has two subunits, S1 and S2. The
S1 subunit can bind to the ACE2 receptor on the host cell and con-
tains both an N-terminal domain (NTD) and a receptor-binding domain
(RBD). The RBD of the S1 subunit carries out a hinge-like motion
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FIGURE 1 Biology and
serology of SARS-CoV-2
infection (a) Structure and
infection: SARS-CoV-2 is an
RNA virus that consists of four
structural proteins, the Spike
(S) protein, Nucleocapsid

(N) protein, Membrane

(M) protein, and Envelope (e),
together with many non-
structural proteins to maintain
the biological traits of the virus.
Step 1-3: S protein allows the
virus to bind and enter human
cells and consists of S1 and S2
subunits. S1 can bind the
angiotensin-converting enzyme
2 (ACE2) receptor. After S1
binds to ACE2, S protein is
hydrolyzed by the action of
TMPRSS2 protease. The
activated S2 subunit can then
further mediate the fusion of
membranes between the host
cell and the virus, allowing the
virus to enter the host cell.

(b) SARS-CoV-2 variants: S
protein of the first Wuhan-Hu-1
strain consisted of 1273 amino
acid residues, in which the S1
and S2 fragments are linked by
amino acid bridges, S1 includes
the N-terminal domain (NTD)
and receptor-binding domain
(RBD), and S2 includes the
fusion peptide (FP), heptad
repeat 1 (HR1), heptad repeat
2 (HR2), and other structures.
Since the start of the outbreak,
many strongly infectious SARS-
CoV-2 mutant strains have
emerged, such as B.1.1.7
(Alpha), B.1.351 (Beta), P.1
(Gamma), B.1.617.2 (Delta), and
B.1.1.529 (Omicron), among
which mutations are particularly
common in the S protein and
have a substantial effect on the
infectivity of the virus. (PDB
ID:7DDD) (c) Immunity:
Following viral infection in
humans, specific antibody
reactions often appear between
days 5 and 15 after infection,
with the IgM response lasting
3-6 weeks and the IgG

response lasting several months.
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when binding to the ACE2 receptor on the host cell membrane; the
S2 subunit mediates the fusion of the host cell and the virus, and con-
sists of the fusion peptide (FP), heptad repeat 1 (HR1), central helix
(CH), connector domain (CD), heptad repeat 2 (HR2), transmembrane
domain (TM), and cytoplasmic tail (CT).*>?* The $1/52 protease cleav-
age site exists between the S1 and S2 subunits, and the host protease
can cleave the S protein at the S2’ site, which activates the protein
and fuses the virus to the host cell membrane through irreversible
conformational changes (Figure 1a).22

SARS-CoV-2 is extraordinarily stable at 4°C for 14 days and can
be viable at 37°C for 24 h.2® It can be transmitted by respiratory
secretions, aerosols, direct contact, the fecal-oral route, mother-to-
child transmission, and ocular transmission.2*?° Infected individuals
usually begin to show symptoms within 8.2-15.6 days, with an aver-
age of 11.2 days, with the disease progressing more rapidly in the
elderly than in younger people.?® After human infection, the virus
deposits in the upper respiratory tract and gradually penetrates deep
into the lungs; however, the virus can also cause damage to the ner-
vous system (e.g., the brain), digestive system (e.g., the liver, stomach,
intestines), the urinary system (e.g., the kidneys), and the cardiovascu-
lar system.2”

Viruses can provoke an immune reaction in the body, with
immunoglobulin M (IgM) as the first line of protection, usually appe-
aring within 3-5 days after infection. Immunoglobulin G (IgG) often
appears 1 week after infection, with high affinity and adaptive
response, and a long duration, making it useful as a marker of the
previous infection (Figure 1c). There are two principal categories of
SARS-CoV-2 tests adopted currently: (1) Nucleic acid-based viral
tests; and (2) antigen- and antibody-based serological viral tests.
The main specimens used are taken from the upper respiratory
tract, lower respiratory tract, and blood. Sometimes, digestive tract
samples are also used. Upper airway specimens mainly comprise
nasopharyngeal swabs (NPS), oropharyngeal swabs (OPS), tongue
swabs (LS), and mouthwash samples; lower respiratory tract samples
inhalation (TA), and
bronchoalveolar lavage fluid (BALF); blood samples can be whole

mainly comprise  sputum, tracheal
blood or serum according to different test kits, and digestive tract

samples often comprise anal swabs.?8

2.3 | Optimization of samples: virus collection and
harvesting has an impact on detection results

The area sampled can have an impact on viral load, with samples col-
lected from different sites having different viral loads. Upper respiratory
tract samples are more common and nasopharyngeal swabs are consid-
ered to have the maximum viral load in diagnostic tests for respiratory
viruses, including SARS-CoV-2.2’ However, recently, researchers have
analyzed saliva specimens and found that they are more sensitive than
nasopharyngeal swabs (NPS) in the diagnosis of asymptomatic and mild
coronavirus infections in children and adults.?*°

The sampling method and choice of lysate also have a large

impact on the detection, and the size of the swab end cotton balls and

self-sampling by health professionals versus the general population
can also have an impact on the viral load. The WHO currently recom-
mends that the gathered swabs are placed in the collection tubes con-
taining virus transport media (VTM), Amies transport media, or sterile
saline. Some scholars have used lysis buffer instead of virus storage
solution to improve the security, sensitivity, and speed of the assay,>!
while other researchers have developed a technique called Precipita-
tion Enhanced Analyte Retrieval (PEARL) lysis solution that can rapidly
isolate RNA, DNA, and proteins from a variety of sources in a sample
and have high sensitivity, low cost, and simple operation for use in
POC.*2

When evaluating reagents from different companies, our group
found that cross-use of different brands of lysates affected the results
of the assay, indicating that different brands of lysates need further

optimization and validation.

3 | NUCLEIC ACID-BASED SARS-COV-2
DETECTION

3.1 | Quantitative real-time reverse transcription
PCR: Detection principle and evaluation

311 |
gRT-PCR

Detection principle, target, and process of

Nucleic acid-based assays are important tools to diagnosis viral infec-
tions, and polymerase chain reaction (PCR) is considered to be the
“gold standard method” for virus detection because of its fast recog-
nition, high sensitivity, and high specificity. The WHO and the FDA
suggested the use of reverse transcription PCR (RT-PCR), part of the
Nucleic Acid Amplification Test (NAAT), which can be used to test for
viruses.®® In the gRT-PCR protocol, reverse transcriptase converts the
extracted and purified SARS-CoV-2 RNA into cDNA, which is then
amplified using gene-specific primers in the quantitative real-time
PCR step of the qRT-PCR protocol. Repeated thermal cycling in which
the probe reports a fluorescent signal each time the target region of
the genome is amplified results in quantitative detection (Figure 2a).3*

Viral RNA extraction is now commonly performed by making use
of upper airway specimens (e.g., nasopharyngeal swabs or oropharyn-
geal swabs, which were used more frequently) and lower airway spec-
imens (e.g., phlegm and bronchoalveolar lavage fluid), but also blood,
stool, and tissue samples. gRT-PCR can target regions such as
ORF1ab (RdRp), N, E, S, and ORF8 genes, among which the RdR1ab
located in RdRP, and the N and E gene in OFR1ab are more con-
served, with the detection of the RdRP and E genes being less restric-
tive and more sensitive compared with N gene detection.®®> The WHO
developed and shared primers that target the E gene, as well as the
RdRp gene sequence, to screen for and confirm SARS-CoV-2 for the
first time worldwide, and the design method based on this also suc-
cessfully differentiated SARS-CoV and SARS-CoV-2.¢ CDC China
also designed primers targeting the N gene and ORF1ab for inspec-
tion of viral RNA.



BIOENGINEERING &
ZHANG ET AL TRANSLATIONAL MEDICINEJLm

(a) Quantitative reverse transcription PCR

@ Nasopharyngeal swab @ Collected specimen @ RNA extraction @ Retro transcription
- Purified RNA
\\ . N \\\
‘/’(’ /* ""6{:””“
S P
\
@ dsDNA for detection @ Denaturation (95°C) @ Primer annealing (60°C) Extension (72°C)
Polymerization
g
ALLLLILIY I”” 3 |”||i| ”lll I
dsDNA < y Reverse K
4 P
> IO, O oo LR
3 \ Forward T T (7’
.
Key concept(Repeat steps 5-8) @ Test results

Fluorescent signal

Positive
Fluorescent

Reporter -~~~ Quencher

w o of 1'rrr|’

cleavage

Threshold

Fluorescence

Negative

RT-gPCR machine

Ground state fluorophore Excited state fluorophore Cycles
(b) CRISPR/Cas system detection
Purified RNA a2 .
urihe RT LAMP Forward/Reverse Primer AN
f\ ‘Bl—? gzl’gs °f| primers Bsu DNA polymerase
S polymerase Reverse Transcriptase >
Reverse Tranoscnptase Single-strand binding proteins E
60-65°C Reverse Transcriptase
25-42°C . .
RT-LAMP Heat Block colorimetric
reporter
Forward outer £ Backward outer Loop primer —
F3  Primer Target Primer = F1 Blc
Fac F2c Fle 0 Bl B2 B3 r 0 00 Je2e N
. — T —— Flc B1 /
— Y
L Forward i c i F2 i T B2
(o b % e LR L
o
9T eSS
>
Single-strand binding proteins(SSBs) Bsu DNA polymerase C CRISPR/Cas
AT LN ﬁ ) Reverse Primer dsDNA
o — ) - > oo —
Bsu DNA po;ym\;rasxe Single-strand bmdln‘g‘;ﬁcl‘im‘i(ssﬁs) SSBS /
A
gRNA s Positive Sample
Transcription RNW S5 — g
—_— 8
e *
Negative Sample
Cas13 ¢ P
&< Result Time

dsDNA % > *0 quenched fuorescent

%2@ I% ¢ =3 gRNA o] or ¢C
"> N
Cas-based detection Negative Positive

Cas12a/b

FIGURE 2 Legend on next page.



BIOENGINEERING &
MTRANSLATIONAL MEDICINE

ZHANG ET AL.

3.1.2 | Evaluation of gRT-PCR detection results
The FDA has granted approval for well over 200 molecular diagnostic
devices, and all approved qRT-PCR devices can be used to report pos-
itive/negative results. Moreover, the amplification of viral RNA during
the assay is graphically represented as a quantitative cycle, which is
usually reported as a cycle threshold (CT) value.®” It has been reported
that usually appropriate CT values range from 25 to 28, and when CT
values exceed 28, nonspecific precipitating sequences are usually
detected, and inactivation of Taq polymerase might also lead to differ-
ent results. Clinical samples are usually identified as positive under
two conditions: (1) The amplification signal/cycle of the sample needs
to exceed the set threshold line during the positive cycle compared
with that of the control; (2) having a relatively lower CT value/num-
ber, where the CT value is inversely proportionate to the quantity of
RNA/DNA in the given specimen. During the detection process, CT
values are influenced by sample type, RNA extraction, and the qRT-
PCR kits and equipment. The CT values of various clinical samples
during actual diagnosis vary between 16.9 and 38.8, and Ct values
<40 are often suggested as indicators of SARS-CoV-2 positivity.3®
However, false-negative results of gRT-PCR often interfere with
the control of virus transmission epidemics, and different samples and
insufficient viral load of collected samples are an important factor
contributing to false negatives. The overall sensitivity of nasopharyn-
geal swabs and nasopharyngeal aspirate samples in RT-PCR was
reported to be in the range of 45%-60%.%° A study of 213 patients
with new coronary pneumonia within the first 7 days showed false-
negative rates of 11%, 27%, and 40% for sputum, nasal swabs, and
oral swabs, respectively. The timing of sampling before and after
symptom onset is also an important factor in the generation of false
negatives, and the false-negative rate varies over time; Kucieka et al.
used a Bayesian hierarchical model to analyze 1330 confirmed cases
to assess the false-negative rate between 5 days before symptom
onset and 21 days after the occurrence of symptoms, and found that
the false-negative rate on the day before the symptoms appear, the
day symptoms appear, and the 21st day after symptom onset were
67%, 38%, and 66%, and the median false-negative rate gradually
decreased to 20% on days 3 and 4 of symptom onset.*° In addition,
the presence of false positives can interfere with the determination of

the true disease status of patients; therefore, some investigators have

suggested the use of multiplex combinations or RT-PCR combined
with serology during infection to control the false-negative and false-
positive rates.

There remain some gaps between different RT-PCR kits in terms
of specificity and sensitivity, depending on their targets, primer
design, and other factors, and many institutions and laboratories have
analyzed and assessed the effectiveness of different RT-PCR kits.
Recently, Chinese researchers assessed the effectiveness of five
RT-PCR kits from Da An, Liferiver, Kinghawk, among which Da An
(detecting ORF1ab, N) had 100% good specificity with a limit of
detection (LoD) of 250 copies/ml. Ninety-six samples were used by
Altamimi et al. at the Saudi Center for Disease Prevention and Control
(SCDC) for the analysis of TIB MOLBIOL, Altona Diagnostics, Thermo
Fisher Scientific, and other 12 different commercially available RT-
PCR kits for SARS-CoV-2. The results showed that except for the
LYRA kit, which had a sensitivity of only about 66.6%, all kits had a
sensitivity between 95% and 100%, with the BGI, 1Q Real, Sansure,
and RADI kits being the most sensitive (100%). The specificity of most
of the kits was 100%, except for four kits, BGIl, KAIRA, PowerCheck,
and Sansure, which were around 97%. Altamimi et al. also found that
the design of the primers had a large impact on the performance of
the kits.*? Kim et al. tested the Allplex SARS-CoV-2/FluA/FluB/RSV
assay (Seegene), Standard M nCoV real -time detection kit (SD Bi) for
SARS-CoV-2 and its variant B.1.351 (Beta)-time detection kit
(SD Biosensor), and U-TOP COVID-19 detection kit (Seasun Biomate-
rials). The LoD for the target genes was estimated to be 1300
copies/ml for the latter three kits and 650 copies/ml for the Allplex
SARS-CoV-2/FIuA/RSV kit. The Standard M nCoV real-time detection
kit had 100% specificity and sensitivity, and was the best one for
RdRp gene detection.*? In a study with 354 patients with COVID-19
pneumonia as a random sample source, the clinical performance of
three test kits, Sansure Biotech, GeneFinderTM, and TagPathTM,
were evaluated, revealing LOD values of 200 copies/ml,
500 copies/ml, and 10 genomic copy equivalents, respectively, with
Sansure Biotech having the highest specificity and sensitivity.*> RT-
PCR analysis for mutant loci is quite important to control outbreaks of
mutant strains, and a total of five RT-PCR assays for relevant muta-
tion loci, such as SARS-CoV-2 Variants |l Assay Allplex, UltraGene
Assay SARS-CoV-2452R & 484K & 484Q Mutations V1 RT-PCR

assay kits were evaluated. The overall mean Ct value of the five kits

FIGURE 2 Nucleic acid-based detection of SARS-CoV-2 (a) gRT-PCR: Step 1-4: SARS-CoV-2 RNA in different collected samples, such as
nasopharyngeal swabs, can be extracted and purified using an RNA extraction kit, and complementary DNA (cDNA) for amplification and
detection can be obtained by reverse transcriptase; Step 5-9: template cDNA undergoes denaturation, primer annealing, and extension in the
real-time PCR instrument The fluorescence signal is released when the fluorescence molecule is no longer inhibited by the quenching molecule,
and the instrument can convert the fluorescence signal in the cycle into the cycle threshold (CT) value, which can be expressed as the quantified
viral load data, and the validity of SARS-CoV-2 infection is verified by comparison with negative controls and threshold lines. (b) CRISPR/Cas
system: Based on reverse transcription recombinant polymerase amplification (RT-RPA) and reverse transcription loop-mediated isothermal
amplification (RT-LAMP), purified RNA can be amplified in an isothermal instrument, and the amplified product can be reported both by the
chromogenic substances in the amplification system and by the CRISPR/Cas system for further specific cleavage of nucleic acids and
determination of virus infection. The CRISPR-associated Cas protein then binds to the guide RNA, forming a complex that can target cleavage of
the viral nucleic acid sequence, and the result can be reported by the fluorescence quenching molecules in the reaction, by reporting the
fluorescence signal, or by the side stream chromatography color development strip of the cleaved nucleic acid fragment.
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was 23.6 = 3.8, with accuracy ranging from 96.9% to 100%, among
which the SARS-CoV-2 Variants |l Assay Allplex (for L452R, W152C,
K417T, K417N) kits had 100% sensitivity and specificity.**

3.1.3 | PCR technique used in variants detection
Outbreaks are difficult to control because of the high infectivity of
mutant strains, and the emergence of mutant strains can adversely
affect the performance of molecular assays, especially those
targeting genomic single-target tests. N and E genes as targets,
while the S gene is often off-target due to its susceptibility to muta-
tion. In one study, a mutation in the viral genome at locus 26,340, C
to U, caused a failure of the cobas SARS-CoV-2 E gene gRT-PCR
assay, but because the detection probe of the cobas SARS-CoV-2
gRT-PCR kit can target both regions of the genome, the experi-
menter was still tested positive, which also reminded researchers to
develop Multiple-target primer sets were developed to avoid false-
negative results.*> Specific tracking of mutant strains can also be
achieved by sequencing emerging mutant strains and changing the
corresponding primer and probe sets, and many devices have been
developed specifically to detect mutant strains, particularly those
based on detecting genetic loci where the S protein is more suscep-
tible to mutation.

RT-PCR analysis for mutant loci is quite important to control out-
breaks of mutant strains, and a total of five RT-PCR assays for rele-
vant mutation loci, such as SARS-CoV-2 Variants Il Assay Allplex,
UltraGene Assay SARS-CoV-2452R & 484K & 484Q Mutations V1
RT-PCR assay kits were evaluated. The overall mean Ct value of the
five kits was 23.6 + 3.8, with accuracy ranging from 96.9% to 100%,
among which the SARS-CoV-2 Variants Il Assay Allplex (for L452R,
W152C, K417T, and K417N) kits had 100% sensitivity and specific-
ity.** Novel whole-genome sequencing technologies based on the
EasySeqTM RC-PCR SARS-CoV-2 WGS kit and RT-PCR have proven
to be useful for high-throughput detection of mutant strains of SARS-
CoV-2.% Vega-Magania et al. designed three specific primers and pro-
bes for qRT-PCR detection based on the N501Y, 69-70del, K417N,
and E484K S mutations, which played an important role in detecting
the E484K mutation and P.2 mutant strains.*” Exploiting the good
selectivity and self-quenching properties ascribed to molecular bea-
cons, researchers developed a two-tube multiplex qRT-PCR detection
method that can identify present viruses of concern (VOCs) via the
detection of eight different mutation sites in the S protein.*® Based
on Multiplex PCR-Mass Spectrometry (MS) Minisequencing Technol-
ogy, Zhao et al. established a matrix-assisted laser desorption/
ionization (MALDI)-time of flight (TOF) MS technique based on multi-
plex PCR amplification products using nucleic acid sequences of
SARS-CoV-2 nonmutants and synthetic plasmids carrying mutants,
which can detect, for example, HV6970del, N501Y, and K417N, in
seven mutation loci of the S protein RBD region and nine other com-
bined variant types, effectively detecting B.1.1.7 (Alpha), B.1.351
(Beta), B.1.429 (Epsilon), B.1.526 (lota), P.1 (Gamma), and B.1.617.2
(Delta).*

3.2 | Reverse transcription loop-mediated
isothermal amplification

321 |
RT-LAMP

Detection principle, target, and process of

LAMP, as a new DNA/RNA amplification technique, does not require
expensive thermal cyclers (unlike PCR). LAMP allows isothermal
amplification in resource-limited areas with the advantages of high
speed, sensitivity, and specificity. RT-LAMP, as a NAAT, can reverse
transcribe the RNA in the sample to obtain cDNA, followed by auto-
matic circular strand replacement DNA synthesis by 4-6 internal and
external primers to form a dumbbell DNA structure with the participa-
tion of Bst DNA polymerase.>3°° The nucleic acid amplification stage
requires four to six primers to amplify the nucleic acid at a stable tem-
perature of 60-65°C in combination with six regions of the target

5152 where four primers are necessary for the LAMP reaction

gene,
(internal, external, forward, and reverse); however, more primers can
improve the sensitivity and specificity of the assay, and significantly
decrease the time required for the assay.

Common targets used for RT-LAMP assays are similar to those of
RT-PCR and the ORF1ab, S, E, and N genes can be targeted for SARS-
CoV-2."%°*Yan et al. developed an RT-LAMP assay to analyze ORF1a
and S genes in just 30 min, and all 130 clinical samples in the experi-
ment showed 100% detection sensitivity and specificity.>* Primer-
probe targets against SARS-CoV-2 ORF1lab and S genes have also
been reported.>* The ORF1b region was also selected for LAMP
amplification using six primers and the results obtained were verified

by gel electrophoresis.

3.2.2 | Evaluation of RT-LAMP detection results

LAMP-based assays are available in tiny PCR tubes, where dumbbell-
like structures with many DNA synthesis initiation sites can be trans-
ferred into longer tandems (where each tandem has many DNA syn-
thesis initiation sites) during nucleic acid amplification, eventually
leading to the accumulation of different DNA structures with the
same target DNA sequence,®® which in turn can be determined by tur-
bidity, the addition of pH-sensitive dyes, or intercalation dyes to pro-
duce color or fluorescence; agarose gel electrophoresis of the
products can also be used to determine SARS-CoV-2 infection.>> RT-
LAMP uses more primers than RT-PCR; therefore, it has a higher
specificity.>* The LAMP procedure is up to 10 times more sensitive
than routine PCR for the assay of new coronaviruses in the absence
of false negatives. Yu et al. also designed a LAMP-based diagnosis
technique for SARS-CoV-2 testing using six primers, termed iLACO
(isothermal LAMP-based method for COVID-19), and found that the
sensitivity and accuracy of iLACO were better than that of the
Tagman-based qPCR detection method.>® Recently, it was also shown
that RT-LAMP targeting the SARS-CoV-2 N gene could specifically
detect viral RNA of SARS-CoV-2 without cross-reactivity with related
coronaviruses. (e.g.,, MERS-CoV, HCoV-229E) and other viruses that
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TABLE 1 Evaluation of the advantages and disadvantages of SARS-CoV-2 detection technology
Reaction

Subjects that based Method time Advantages

Diagnostic Medical CcT About 1 h More accurate in determining
Imaging disease status

Artificial intelligence: CT Same as CT Diagnostic capability based on
combined with algorithm- continuous optimization of
based deep learning algorithms

Nucleic acid-based Next-generation sequencing 1-2 days Can display the complete
molecular biology (NGS) genome and effectively
diagnostics identify mutant strains

qRT-PCR 1-2 days Gold standard: High specificity
and sensitivity

Quantitative and qualitative

RT-LAMP 30-60 min Simple reaction conditions,
Suitable for point-of-care
testing (POCT)

CRISPR-Cas system 30-60 min Suitable for point-of-care
testing (POCT)

Serological diagnosis Colloidal gold immunolateral 15-20 min Suitable for point-of-care
based on antigen- flow chromatography testing (POCT), Result
antibody visualization

ELISA 4-6h Enables amplification of virus

and antibody signals

Disadvantages

Cannot be distinguished from
other viral pneumonia

Al recognition models need to
pass a certain time in training,
and the technical
requirements are high

Need for well-equipped
laboratories and
knowledgeable laboratory
staff

High rate of false negatives, and
has experimental operation
and cost requirements

Primer design is complicated

Possible “off-target”
phenomenon can affect the
judgment of the test results

Window period exists for early
detection, Cross-reactivity
with other viruses

Poor repeatability, Easy to
contaminate

can lead to respiratory illnesses (e.g., RSVA, RSVB, and ADV).57 These
results also suggest that RT-LAMP-based technology has a promising
prospect in the diagnosis of SARS-CoV-2 infection.

The sensitivity and specificity of RT-LAMP are usually compared
with those of RT-PCR, and Promlek et al. have performed screening
and testing between RT-LAMP and RT-PCR kits and between differ-
ent RT-LAMP kits. In a recent comparative study with a sample of
315 nasopharyngeal swabs, investigators tested the FastProof
30 min-TTR SARS-CoV-2 RT-LAMP method against Sansure Novel
Coronavirus (2019-nCoV) Nucleic Acid Diagnostic Kit. The general
sensitivity was 81.82% and the specificity of the RT-LAMP kit was
100%, in which the RT-LAMP sensitivity was 100% for samples with
Ct values <31, but when Ct value was >36, this value decreased to as
low as 15.79%, suggesting that a low viral load is associated with the
poor sensitivity of RT-LAMP.%8 Jang et al. designed five sets of LAMP
primers for the N, E, and RdRp genes, and evaluated and optimized
the LoD of different primer combinations for LAMP using clinical
nasopharyngeal swabs. Finally, the SARS CoV-2 RdRP (FAM)/N
(Cy5)/internal control RT-LAMP assay indicated the lowest LOD and
the sensitivities of this LAMP kit in comparison with the RT-PCR kit
(RARP: 93.85%, N: 94.62% and RARP/N: 96.92%) were slightly lower
than that of the AllplexTM 2019-nCoV assay (100% sensitivity for
RdRP, E and N gene, and 97.69% sensitivity for IC), but better than
the AllplexTM 2019-nCoV assay (100% sensitivity for RARP, E and N,
and 97.69% sensitivity for IC). 97.69%), and the PowerChekTM
2019-nCoV real-time PCR kit (RARP: 92.31%, E: 93.85% and RdRP/E:

95.38%).>° Dong et al. evaluated 19 RT-LAMP assay kits using 4 stan-
dard RNAs and 29 clinical specimens. Six sets of primers showed the
best results (Set-4, 10, 11, 13, 14, and 17), which also showed high
concordance (87.8%-97.6%), with Set-4 having the maximum positive
detection rate (82.8%) and a LOD of 3 copies per 25 ul reaction; thus,
Set-4 was recommended as the preferred diagnosis set for patients;
researchers also recommended utilizing Set-4 and any of Set-10,
11, 13, and 14 for efficient POC-based detection.®°

3.3 | SHERLOCK: A CRISPR-Cas-based SARS-
CoV-2 detection method

Clustered regularly interspaced short palindromic repeat (CRISPR)
technology is considered a robust instrument to modify genomes and
can be used to easily alter nucleic acid sequences and gene functions.
CRISPR in combination with CRISPR-associated proteins (Cas) pro-
teins has great potential to correct genetic defects, treat and prevent
disease transmission, and in clinical research. The CRISPR-Cas system
makes a significant contribution to therapy as well as diagnosis for dif-
ferent infectious disease molecules, for example, CRISPR-Cas9 could
be used as an antiviral agent to treat HIV infection, in diagnostic tests
for Zika virus, and for methicillin-resistant Staphylococcus aureus
infection.®? In recent years, research on guide RNA and RNA-targeted
CRISPR effectors has also laid the groundwork for diagnostics and
suppression of RNA viruses based on CRISPR-Cas13.%2 CRISPR-Cas
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can usually be classified into two categories, each of which contains
specific types®®: (1) A class comprising a complex structure consisting
of RNA-guided multi-unit protein complexes that contain type |, type
lll, and type IV. (2) Type Il is a single-protein CRISPR system con-
taining type Il (recognized by the Cas9 enzyme), type V (recognized by
Cas12a, C2c1, or C2c3 nucleases), and type VI (recognized by Cas13
effector enzymes), among which Cas12 and Cas13 are usually used
for detection and therapy of viral diseases.®*

Specific  high-sensitivity =~ enzymatic  reporter  unlocking
(SHERLOCK) is the first CRISPR/Cas13-based technology, consisting
of recombinase polymerase amplification (RPA) or RT-RPA, as well as
Cas13a.®®> The complex formed recognizes and cleaves the target
nucleic acid sequence, while nontarget RNAs in the reaction system
that are coupled to fluorescent reporter molecules will snap off, the
guenched molecule is released, and the fluorescent signal is visible,
resulting in a rapid method to detect the targeted viruses, even at very
low concentrations.®® SHERLOCK has been used to detect Zika and
dengue viruses. These findings show good promise for SHERLOCK as
a platform for the rapid, portable, and multiplex quantitative detection
of emerging viral infections.®>%” Zhang et al. combined RT-LAMP with
a CRISPR-mediated assay to develop the STOPCovid assay, which
does not require sample extraction, but instead lyses viral particles at
room temperature (22°C) or in one pot using QuickExtract particles
for 10 min. The authors also used a magnetic bead purification
method to simplify RNA extraction and improve sensitivity, with the
process using Cas12b belonging to the bacterium Aphthous aliphaticus
(AapCas12b), which can maintain sufficient activity with LAMP (55-
65°C) in the same temperature range for the N gene assay (Fig-
ure 2b).%8

CRISPR/Cas technology also serves an integral role in the specific
detection of mutant strains, and Liang et al. developed the CRISPR-
Cas12a technology based on the K417N/T, L452R/Q, T478K,
E484K/Q, N501Y, and D614G mutant S loci. In comparison with RT-
PCR, the CRISPR-Cas12a assay could distinguish four wild-type
viruses as well as the Alpha, Beta, and Delta variants of SARS-CoV-
2.%7 Liang et al. have also designed CRISPR RNAs specific for Omicron
(crRNA-S-37X vs. crRNA-S-49X) and constructed CRISPR/Cas12a-
based detection kits for S371L, S373P, and S375F (corresponding to
crRNA-S-37X), Q493R, G496S, and Q498R (corresponding to crRNA-
S-49X) mutant loci were analyzed for the specific detection of Omi-
cron.”® The POC-based miSHERLOCK CRISPR/Cas suite for the S
protein mutation sites N501Y, Y144del, and E484K was also demon-

strated to detect Alpha, Beta, and Gamma variants.”*

3.4 | Analysis of nucleic acid-based SARS-CoV-2
detection and other methods

Although real-time RT-gPCR is considered the gold standard method
and the most widely applied in most countries, the detection protocols
of all mentioned above need expensive experimental instruments,
reagents, professional laboratories, and researchers. What's more, the

accuracy of test results depends a lot on sample types’? and different

detection targets.” Therefore, this method is not suitable for POCT or
somewhere deficient in medical resources. In contrast, RT-LAMP does
not need skilled researchers and specialized labs. The method costs only
30-60 min with high accuracy, which decreases the burden of sample
transit and the risk of delayed reporting. Despite that many researchers
develop different techniques based on RT-LAMP targeted 4-6 primers,
the impact of cross-reaction and new coronavirus mutations hinder the
development of its commercialization to some extent. Cas12 and
Cas13, RNA-guided components of the bacterial adaptive immune sys-
tem, can target single- and double-stranded DNA or single-stranded
(ss) RNA substrates, respectively.”>”# Therefore, the CRISPR-Cas sys-
tem can be developed as a novel strategy to detect SARS-CoV-2 RNA
rapidly. SHERLOCK was demonstrated that it can detect RNA and DNA
of target diseases rapidly and accurately. Apart from SHERLOCK, Cas13
protein also can be used to detect SARS-CoV-2. The difference is that
Cas13 exhibits cleavage is activated by ssRNA sequence bearing com-
plementarity to its crRNA spacer instead of DNA target. So an additional
T7 transcription is needed after amplification to convert the DNA
amplicons to RNA.”> However, limited by PAM and PFS, the target
sequence is only a short specific region, which is an obstacle for some
short targets. Besides, developing multi-channels test assays is a major
trend in the future. But non-specific collateral cleavage of Cas12 and
Cas13 systems may influence other target pathogens, which is not con-
ducive to developing multi-channels tests.

In efforts to develop rapid diagnostic tests, more NAATs are
investigated except RT-LAMP and CRISPR-Cas systems, such as
(TMA),”¢
assisted reaction (NEAR),”” and recombinase polymerase amplification
(RPA).”® NEAR can achieve a linear amplification of DNA template by
two enzymes (nicking endonuclease and DNA polymerase), which

transcription-mediated amplification nicking enzyme-

reaction temperature will occur at 60°C. Compared with LAMP, the
speed of amplification of RPA is increasingly faster at 37°C or less.”?
Although these technologies are all potentially applied to POC appli-
cations, only TMA has been commercialized in a high-throughput
instrument.”” In the circumstance of pandemic COVID-19, TMA can
meet the need for pandemic-scale diagnostic testing. Not only can the
TMA system possess high efficiency, but also high sensitivity and
specificity. Pham et al. demonstrated that the TMA assay achieved
95% positivity at 0.003 TCID50/ml in three specimen matrices(pooled
NP swab specimens, STM, and saline) and was not caused any cross-
reaction in 30 nontarget viral, bacterial, and fungal microorganisms or
30 NP swab specimens.”® In summary, these NAATs show great
potential for their simplicity, sensitivity, specificity, and low cost of
time. It is hopeful that apply these NAATS into practice and develop
multiplex detection of SARS-CoV-2, such as influenza A and B
(Table 2).

4 | ANTIGEN-ANTIBODY-BASED
SEROLOGICAL SARS-COV-2 DETECTION

Although viral nucleotide-based RT-PCR assays have been the stan-
dard diagnostic approach to SARS-CoV-2 detection, RT-PCR-based
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(a) Lateral flow assay: Based on quantum dots and colloidal gold
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(b) Cloud Network Platform: Real-time tracking and monitoring of the epidemic
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FIGURE 3 Legend on next page.
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test kits still have many problems: (1) PCR tests need to be accredited
professional laboratories with high-cost instruments and well-trained
laboratory personnel; (2) the test has a long turnaround period and is
complex to perform, usually taking 2-3 h to obtain results; and
(3) inappropriate false-positive and false-negative results resulting
from external factors, such as the collected samples and handling, can
occur (Figure 3).

The human body produces specific antibodies against SARS-
CoV-2 infection, and these antibodies can be used as targets for the
fast, simple, and highly sensitive detection of the virus with a sensitiv-
ity of >57.2% and up to 87.5% for IgM and >71.4% and up to 87.5%
for 1gG.2° Notably, the RBD of the S protein displays higher antigenic-
ity than the N protein, as shown by studies showing sensitivities of
96.8%, 96.8%, and 98.6% for RBD IgM, IgG, and IgA, respectively.®!
Many experts recommend the detection of specific antibodies as a
supplement to nucleic acid testing, and paper-based lateral flow

immunoassays (LFIA) have been developed (Figure 3a).

4.1 | Colloidal gold immunochromatography
The lateral flow assay (LFA)-based colloidal gold immunolateral flow
chromatography kit consists of an in-line sample pad, a conjugate pad,
an incubation and detection pad (test and control lines), and an absorp-
tion pad for serum, plasma and whole blood.®? The principle of opera-
tion is robust and simple, the sample (containing the test solution,
buffer and functionalized colloidal gold particles, binding antibodies,
antigens, and proteins) is added to the sample pad where it flows
through the capillary to the absorbent pad, where colloidal gold parti-
cles bound to SARS-CoV-2 antigens can indirectly bind to 1gG/IgM
binding complexes and anti-human IgG/IgM antibodies on the test line,
and colloidal gold bound to antibodies (e.g., rabbit and mouse anti-
bodies that can bind to colloidal gold) can also bind to the
corresponding antibodies at the control line. Finally, three results indi-
cating positive, negative, and invalid (false positive or false negative)
can be obtained from the colors in the test and control lines.8%#*

After the outbreak, a rapid IgM antibody assay was designed and
developed for SARS-CoV-2 virus detection, which requires only 10-20 pl
of serum and can be completed within 15 min. A team of Chinese

researchers developed a colloidal gold immunolateral flow chromatography

device that can co-detect IgG and IgM, achieving rapid detection in
15 min.25 Separate detections of 1gG or IgM is not as effective as com-
bined IgG/IgM detection, and in a study of 470 individuals using the S pro-
tein and N protein as antigens, 1gG and IgM antibodies could be detected
using a colloidal gold immunolateral flow chromatography device; the kit
achieved a general sensitivity of 92.9% and a specificity of 98.7%.8°
Antibody-based serological assays also require paying attention to the
timing of infection, which might have an impact on the results of the assay.
Wang et al. used the SARS-CoV-2 IgM/IgG antibody kit (colloidal gold
method) in infected and noninfected individuals and found sensitivities of
50%, 70%, 92.5%, and 97.5% at 1-3, 4-6, 7-9, and >9 days after admis-
sion. In addition, the titers of SARS-CoV-2 targeted IgG as well as IgM anti-
bodies from positive samples increased with time of admission, with the
positivity rate for both antibodies increasing from 50% to 92.5%.5”

The viral load in SARS-CoV-2 patient specimens and changes in
serum levels of specific antibodies can have important implications for
serological assays; therefore, a number of investigators have evalu-
ated and analyzed different serological assay kits. In a recent study,
the performance and availability of seven different antigen detection
kits were evaluated in unvaccinated patients recruited for the first
time at six sites in Germany and Brazil, with Mologic (sensitivity:
90.1%, specificity: 100%), Bionote (sensitivity: 89.2%, specificity:
97.3%), Standard Q (sensitivity: 81.9%, specificity: 99%) meeting the
WHO criteria for assay sensitivity and specificity (sensitivity >80%,
specificity >97%). The results indicated high susceptibility in the first
3 days after symptom onset (287.1%) and in individuals with a viral
load 26 log,o SARS-CoV-2 RNA copies/ml (288.7%).88 UK researchers
recently evaluated 12 lateral flow immunoassay (LFA) kits that are
used to detect antibodies of SARS-CoV-2. The sensitivity and speci-
ficity of the 12 LFAs were low 21 days prior to symptom onset; how-
ever, they all increased 21 days after the onset of symptoms, with
specificities ranging from 74.3% to 99.1% for IgM/IgG, 82.9% to
100%, and IgM specificity ranged from 75.2% to 98%. The Bionote
had the highest overall sensitivity (79.0%) and its sensitivity for
IgM/1gG response reached 88.2% after >21 days of symptom onset.®?
With the emergence of variant strains, Pickering et al. investigated
the specificity and LoD of six rapid test kits, such as the Innova Rapid
SARS-CoV-2 antigen test, and the Spring Healthcare SARS-CoV-2
antigen rapid test Cassette, the SureScreen-V kit, the Encode kit, and
the E25Bio rapid diagnostic test. The specificity, LoD, and sensitivity

FIGURE 3

Serological detection of SARS-CoV-2 (a) Lateral flow assay: Quantum dots/colloidal gold can couple antibodies via specific labeling

(using agent Maleamide-polyethylene glycol-succinimide ester (SMPEG)) and nonspecific labeling (using EDC/NHS chemistry methods). The
rapid quantum dot and colloidal gold immunodiagnostic method for SARS-CoV-2 antibody-based on high specificity recombinant protein and

guantum dot/colloidal gold immunofluorescence probes by double antibody sandwich or indirect method methodology using lateral flow assay.
The patient sample added to the sample pad will move to the absorbent pad along the NC membrane by chromatography, which will form the
tagged-antibody-antigen-antibody complex. After 10-15 min, test results can be observed on the test kit and operators can get an accurate
fluorescence signal by a handheld fluorescent immunoanalyzer. (b) Cloud Network Platform: Rapid test kits can be used at the point of care for
suspicious population screening tests, mobile devices such as cell phones can be used for result identification, handheld fluorescent immunoassay
analyzers can perform a quantitative and qualitative analysis of test results, and qualitative and quantitative data can be uploaded to the terminal
database, the CDC can manage relevant infections and suspicious populations through analysis of qualitative and quantitative data, give relevant
clinical diagnosis recommendations, and combine with wearable devices such as smartwatches to achieve daily monitoring of people's medication,
body temperature, heart rate, and other vital signs at the point of care such as communities and families, to control the development of epidemics
in a timely and effective manner.
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were measured for the assay kits, with both SureScreen-V and Encode

achieving 100% specificity and Innova achieving the highest overall

Source
63

164

165

sensitivity (89%) for clinical samples, rising to 95.5% and 98.6% when
used on specimens with Ct values below 28 and Ct values below
25, respectively.”®

4.2 | Enzyme-linked immunosorbent assay

ELISA is considered the gold standard for laboratory testing for SARS-
CoV-2. Using serological samples, the S protein (consisting of the S1
and S2 subunits, and the RBD) and the N protein of the virus can be

used as the major immunogens to assay for serum virus-neutralizing
91,92

251 Curve ELISA (I1gG)
IgM CLIA Kit

Dimension EXL SARS-CoV-2 IgG
(CV2G)

EUROIMMUN Anti-SARS-CoV-
Diazyme DZ-Lite SARS-CoV-2

Diagnostic

antibodies in patients, which can assay immunoglobulins of the
virus in samples.”® ELISA for virus detection is based on the antigen-
antibody complex structure and enzyme-labeled antibodies, among
which indirect ELISA and sandwich ELISA are the two most commonly
used methods of detection.”*The enzyme on the enzyme-labeled anti-

body can catalyze the hydrolysis, oxidation, and reduction of the sub-

Detection principle

CLIA
ELISA

CLIA

strate to form a colored substance, which can be analyzed
qualitatively by the naked eye or quantitatively by a spectrometer or
other device,”® where the strength of the colored signal is propor-
tional to the level of the antigen or antibody is detected.

The patient's antibody levels, as well as the SARS-CoV-2 protein
as an antigen, are two important factors affecting serological testing.
Most patients infected with the new coronavirus develop specific
IgM, IgA, and IgG responses within days 5-15, with IgM and IgA last-

Inc.

ing 3-6 weeks and IgG lasting several months.”®?” Recently, an ELISA

Manufacturer

Siemens Healthcare Diagnostics
EUROIMMUN US, Inc.
Diazyme Laboratories, Inc.

kit was developed using the RBD region from S protein, which had a
specificity of 99.3% and could detect a large number of antibodies
2 weeks after the appearance of symptoms.”® ELISAs to assay IgG
and IgM antibodies using the N and S proteins of the new coronavirus
have been developed and the positive detection rates for the S
protein-based ELISA and the N protein-based ELISA were 82.2% and
80.4%, with the S protein-based ELISA being significantly more sensi-
tive to IgM than the N protein-based ELISA.”?

Symptom Onset): 26.1%, 83.3%,

94.4%

Agreement Symptom Onset):
NPA:98.3%

61.9%, 92.9%, 100%

NPA: 100%
confirmation): 93.3%

PPA(O-7, 8-14, 215, Days Post
NPA:99.2%

Clinical Performance
PPA (215, Days post PCR
PPA (0-7, 8-14, 215, Days from

4.3 | Mutation sites on mutant strains cause
antibody capture evasion in serological assays

The N protein is highly immunogenic and is the most produced pro-
tein by coronaviruses, and it can cause high titers of neutralizing anti-
bodies in the humoral immune response and modulate the host cell
immune response to accelerate the viral life cycle.”® Therefore, puri-
fied N proteins and their neutralizing antibodies are often used as

markers to detect the corresponding antibodies or antigens in sam-

Human serum and plasma
Human serum or plasma
human serum and plasma

Collected samples

ples. In a study of 1441 subjects, researchers evaluated the Abbott
PanbioTM COVID-19 Ag rapid antigen detection kit with an overall
specificity of 99.9% (95% Cl: 99.5-100) and a sensitivity of 68.9%
(95% Cl: 55.6-79.8). The investigators found multiple disruptive

amino acid substitutions in the 229-374 immunodominant epitopes

(Continued)

Detection

target
IgM
Abbreviations: LoB, limit of blank; LoD, limit of detection; LoQ, limit of quantitation; NPA, negative percent agreement, specificity; PPA, positive percent agreement, sensitivity.

TABLE 3

of the viral N antigen by viral sequencing and sequence matching.
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These also included A376T coupled to M241I and the most common
A220V mutation, which escaped detection by capture antibodies and
gave false-negative Abbott PanbioTM COVID-19 Ag assay results.'°°
Given that the N antigen or “S antigen + N antigen” is mostly used
as a marker in current serological kits, we point out that mutated sites in
mutant strains may escape antibody capture, leading to reduced sensi-
tivity and false-negative results. In Omicron, for example, there are
32 mutant sites on the S protein, including N501Y, L452, K477, and
E484, which have been shown to evade serum-neutralizing antibody
binding.2°*71%% For the “S antigen + N antigen” assay kit, the presence
of a large number of mutations on the S protein can cause a significant
decrease in assay sensitivity and lead to false-negative results in serolog-
ical assays. Therefore, we suggest that researchers evaluate and validate
currently available antigen detection kits using VOCs samples and
develop neutralizing antibodies based on conserved epitopes to improve

the sensitivity of antigen detection kits.

4.4 | Analysis of antigen-antibody-based
serological SARS-CoV-2 detection

In general, antigen-antibody-based serological SARS-CoV-2 detections,
such as Ag-rapid detection tests (Ag-RDTs) or antibodies specific tests, are
more suitable for POC testing. And the ELISA, considered the gold stan-
dard for laboratory testing for SARS-CoV-2, always serves as a comple-
mentary technique for clinical diagnosis. Tali et al. analyzed five studies and
summarized that the average sensitivity of Ag-RDTs was found to be
56.2% (95% Cl: 29.5%-79.8%) and the average specificity of 98.9% (95%
Cl: 97.3%-99.5%).1%% Briefly, Ag-RDTs possess high specificity like molecu-
lar diagnostic methods. In contrast, low sensitivity is a disadvantage that
cannot be neglected. This defect is associated with the type of
specimen, ' time of specimen collection, % antigens stability,’°” and qual-
ity of the specimen. Mertens et al. reported that viral loads of specimens
made a great difference to Ag-RDTs sensitivity. When viral loads were high
(real-time RT-PCR CT values of <25), the sensitivity of Ag-RDTs achieved
74.8%. However, the overall sensitivity was only 57.6% when all specimens
were taken into consideration.’®® Therefore, WHO suggests that Ag-RDTs
tend to conditions that are remote and underserved or seriously pandemic.
Given the average time of immune response to SARS-CoV-2 is around
1-2 weeks, the span of immune response will influence the clinical diagno-
sis. In the post-pandemic era, vaccination will gradually cover most people,
which will complicate the results of antibody detection. Therefore, the
applicable conditions of antibody detection should be considered (Table 3).

5 | MULTI-CHANNEL DETECTION OF
SARS-COV-2 AND OTHER RESPIRATORY
INFECTIOUS DISEASES

In the context of the SARS-CoV-2 pandemic, other respiratory infectious
diseases cannot be ignored, such as influenza A/B and respiratory syncy-
tial virus (RSV). The clinical signs and symptoms of these respiratory

infectious diseases are similar to that of SARS-CoV-2. Therefore,

developing multi-channel detection assays is significant. Wang et al
developed an ultrasensitive fluorescent immunochromatographic assay
based on multilayer quantum dot nanobead for simultaneous detection
of SARS-CoV-2 antigen and influenza A virus,1%? which showed excellent
sensitivity and specificity compared to traditional AuNP-based ICA
method and ELISA kits. Apart from serological multi-channel test assays,
the majority of test methods rely on nucleic acid detection. Zhou et al
developed simultaneous detection of SARS-CoV-2, influenza, and Respi-
ratory Syncytial Viruses (RSV) based on the CRISPR-Cas12 system.'©
They demonstrated that CRISPR-Cas12a with specific gRNAs had an
LOD of 1 copy/pl for SARS-CoV-2 and 100 copies/pl for influenza A and
B and RSV, respectively. The CRISPR-Cas12a test produced 100.0%,
93.8%, 100.0%, and 90.0% sensitivity for SARS-CoV-2, influenza A,
influenza B, and RSV, respectively, with a specificity of 100%. All these
tests required 30 min at one time. Recently, the Allplex™ SARS-CoV
2/FIuA/FIuB/RSV (SC2FabR) assay was reported for the simultaneous
detection of four viruses. Via comparison of four commercially available
kits (the Allplex™ 2019-nCoV kit, Standard M n-CoV Real-Time Detec-
tion kit, Allplex™ Respiratory panel 1 kit, and Advansure™ RV-plus Real-
Time RT-PCR kit), the sensitivity of SC2FabR was 100% (99/99) for
Flu A, 100% (91/91) for Flu B, and 98.7% (74/75) for RSV, with 100%
specificity for all targets compared with that of the RP1 assay. Besides,
the sensitivity of the SC2FabR assay was 99.0% (98/99) for Flu A, 100%
(91/91) for Flu B, and 92.0% (69/75) for RSV, and the specificity levels
were 99.5% for Flu A and RSV and 99.7% for Flu B compared with RV-
plus assay.'**

6 | ULTRA-SENSITIVE QUANTUM DOTS
AND BIOSENSORS: A NEW HIGH-
PERFORMANCE POCT KIT THAT COMBINES
QUALITATIVE AND QUANTITATIVE
DETECTION

In the face of the rapidly spreading SARS-CoV-2 epidemic and the
emerging class of highly infectious mutants that evade antibody cap-
ture traditional serological tests are not ideal. ELISA, although a widely
used laboratory serological test, requires a long assay process of 2 h
due to the incubation and washing operations involved.”* The results
of colloidal gold-based lateral flow kits are unreliable due to their dif-
ferent evaluation criteria and quality are again unreliable, and the test
is qualitative and does not allow quantitative analysis of the extent of
antibody response in patients.'? Therefore, we present here a kit for
the use of novel ultrasensitive quantum dots and biosensors in SARS-
CoV-2 assay and the related performance to achieve a complemen-

tary quantitative antigen/antibody assay.
6.1 | Application of ultrasensitive quantum dots
for rapid quantitative detection in POCT

Quantum dots are novel engineered nanomaterials with outstanding

optoelectronic properties that are applied to ultrasensitive detection
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in bioanalysis, diagnostics, and imaging strategies. In recent years, the
functionalization of QDs with different biomarkers, such as antigens,
antibodies, nucleic acids, and peptides, show great potential for clini-
cal diagnosis.**®

Quantum dots can couple antibodies by specific and nonspecific
labeling.1'* The specific labeling uses the directional coupling agent
Maleamide-polyethylene glycol-succinimide ester (SMPEG) to couple
the quantum dots and antibodies. And the nonspecific labeling uses
EDC/NHS
antibodies.'*®

chemistry methods to conjugate the QDs and

Wang et al. developed a new ICA method by using a novel silica-
QD nanocomposite with triple-QD shell (SiTQD) as the advanced
signal probe. This SITQD nanocomposite with a triple QD-shell is con-
structed by PEI-mediated LBL self-assembly. Then making the SARS-
CoV-2 NP antigen detecting antibody conjugated with SiTOD NPs via
carbodiimide chemistry. Compared with previous ICA methods, three
layers of quantum dots greatly enhanced the fluorescence signal. And
high-performance SiTOD ensures this system with high stability and
sensitivity.1°?Wang et al. first developed two-channel ICA to simulta-
neously detect SARS-CoV-2 and FluA. Under the optimal conditions,
the LOD values for SARS-CoV-2 NP and HIN1 were estimated as
5 pg/ml and 50 pfu/ml by quantitative analysis of throat swab sam-
ples. However, the LODs determined by the ELISA kits for SARS-
CoV-2 NP and H1IN1 was 0.1 ng/ml and 5000 pfu/ml, respectively.
Thus, they demonstrated that the sensitivity of SiTOD-ICA was
100 times higher than the traditional AuNP-based ICA method and
over 20 times that of ELISA kits. Besides, compared with two quan-
tum dot assays (SiQD and SiDQD-based ICA), the fluorescence images
of SiTQD-based ICA were twice than two other quantum dots assays
in different concentrations (10-0.1 ng/ml). Therefore, the fluorescent
immunochromatographic assay based on multilayer quantum dot
nanobead can be an efficient POCT tool for rapidly and accurately
detecting SARS-CoV-2 or other pathogens. Zhang et al. combined the
CRISPR-Cas13 system with fluorescent quantum dot nanobead
SARS-CoV-2 (CFNS) assay.**¢ The CRISPR/Cas13 reaction could spe-
cifically be recognized and cleaved the amplified products. Then the
cleavage products and sheep anti-FITC IgG antibody-labeled quantum
dot microsphere (QDM-anti-FITC antibody) would be mixed and
added to the test strip. The fluorescence detector could show the
fluorescence ratio to get the results. Compared to different Ct values
of RT-PCR with this method, they found that the results detected by
the CFNS assay have a linear relationship with the results of the
golden standard, which means CFNS could get reliable results in less
time. Via detection of standard positive RNA at different concentra-
tions from 1015 copies/ml to 1 copy/ml, they demonstrated that
CFENS could reach the detection limit of 1 copy/ml In general, the
novel test methods based on quantum dot nanobead are fast, sensi-
tive, specific and easy to operate, which is more suitable for POCT
compared with ELISA or traditional immunolateral flow chromatogra-
phy methods.

Absolutely, with the global epidemic of the SARS-CoV-2, the
treatment diagnosis and monitoring of patients is more critical. How-

ever, current testing methods often require a great number of

professional laboratory operators and manual entry of test results,
which adds a lot of pressure to the already heavy burden of the
healthcare system. Therefore, it is significant to develop visualization
devices and construct data integration platforms. Zhang et al. incorpo-
rated smartphones and quantum dot microbead assay to monitor pan-
demics in real-time.''” On the one hand, quantum dot microbead
improves the sensitivity and specificity of virus detection, on the
other hand, handheld detector enables device portability and data

sharing.

6.2 | Biosensor for SARS-CoV-2 antigen and
antibody detection

Currently, biosensors are mainly based on field-effect transistors
(FETs) and surface plasmon resonance (SPR) principles, and both FETs
with the aid of graphene coating and SPRs relying on electron reso-
nance on precious metal surfaces can be used to detect protein-pro-
tein, antigen-antibody, and protein-nucleic acid interactions,1&11?
and to track biomarkers such as antigens, antibodies, nucleic acids,
and ROS.*?° Elledge et al. developed the COVID-19 FET sensor,
which was sprayed with antibodies specific for S protein on graphene,
to capture SARS-CoV-2 antigen in nasopharyngeal swab specimens
and measured a LOD of 2.42 x 10? copies/ml in validated clinical
samples. A protein engineering-based approach has been developed
to design a simple luciferase (spLUC) antibody sensor that can analyze
serum, plasma, whole blood, and saliva samples within 30 min to gen-
erate quantitative serological data. spLUC sensor sensitivity for
detecting antibodies to S protein was shown to be 89% by testing
over 150 patient samples and 98% sensitivity for detecting antibodies
to N protein, with specificity exceeding 99% for both. Notably,
Elledge et al. used a modular design approach in the development pro-
cess that allows for flexibility in responding to mutant RBD structural
domains of emerging VOCs and evaluating antibody responses to
emerging variants.'?! Three SARS-CoV-2 specific single chains were
screened by phage display technology constructs mutable fragment
crystallizable fragment (scFv-Fc) fusion antibodies, the developers
developed a cellulose nanobead (CNB)-based LFIA biosensor that can
specifically detect SARS-CoV-2 N protein in 20 min with a detection
line of 2 ng of antigenic protein, and the results can be analyzed quali-
tatively by color-displayed bands or by a handheld portable LFIA
reader in quantitative analysis results can be obtained within 10 s,

enabling home telemedicine monitoring.1?2

7 | CLOUD PLATFORM FOR EPIDEMIC
PREVENTION AND CONTROL:
TELEMEDICINE TESTING KITS AND MOBILE
DEVICES IN EPIDEMIC TRACKING AND
CONTROL

In the post-COVID-19 era, it is increasingly important to facilitate

patients to obtain faster and more convenient medical services and
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dynamically monitor the spread of the epidemic. In other words, how
to integrate medical data and predict the development of epidemic
situation in the future maybe make a real difference to control the
epidemic. The Internet of Medical Things (loMT) promote the proac-
tive tele-healthcare of suspected COVID-19 patients.'?® With the
development of 5G technology, Guo et al reported a 5G-enabled fluo-
rescence sensor for rapid detection and tele-monitoring of COVID-19
patients.’?* Not only can the fluorescence sensor detect the strip in
10 min, but also connect to edge hardware devices (personal com-
puters, smartphones, IPTV, etc.) and the fog layer of the network to
perform reliable data transmission with low latency and high security.
What's more, several COVID-19 monitoring mHealth applications
were proposed, which enabled patients to record and upload their
results.2?° In the online hyper-connected world, the SARS-CoV-2 epi-
demic can be predicted through the sharing and analysis of medical
data, including mathematical prediction models and algorithms (Fig-
ure 3b).

In conclusion, with the use of fast and accurate POC biosensing
equipment, the detection results are uploaded to the mobile cloud
monitoring platform in real time, which in turn establishes a cloud-
based big data quality management and epidemic spread control sys-
tem, generating a dynamic map of virus epidemic development control
from two dimensions, spatial and temporal, so that the CDC command
center can fully and timely understand the instantaneous information
changes of the epidemic prevention and control grassroots units to
achieve efficient and rapid linkage and unified Coordinated scheduling

and resource allocation, thus effectively controlling the epidemic.

8 | CONCLUSION AND PROSPECT
At present, a range of nucleic acid molecule and antigen-antibody based
methods are accessible for SARS-CoV-2 detection. The highly specific
and sensitive nature of nucleic acid testing has led to its use in many
countries for high-throughput analysis of numerous specimens in the
population; but because of its equipment, space, and personnel require-
ments, nucleic acid testing can only be performed in specialized sites
such as hospitals and CDCs. Serology-based test kits can meet the need
for home and community-based POC testing because of their small size,
flexibility, and less demanding testing environment. The recently
emerged antigen-antibody test kits with high sensitivity and specificity
can also serve as a supplement to detect SARS-CoV-2 outbreaks caused
by strong mutant strains, such as Delta and Omicron, as well as for out-
break control in home and community care settings.

gRT-PCR continues to be the mainstream gold standard method
to detect SARS-CoV-2 qualitatively and quantitatively. Nevertheless,
the assay still has limitations, such as differences in viral load in vari-
ous samples that affect the sensitivity of the assay, and mutation sites
generated in mutant strains that affect the binding of primers and
detection antibodies in serological kits. Highly infectious SARS-CoV-2
mutants and asymptomatic patients with false-negative test results
also present a requirement for fast, highly sensitive, highly specific,
and cost-effective POC-based testing kits. LAMP- and CRISP/Cas-

based POC assays have been rapidly developed, with the results of
both kits being available in 0.5-1 h. Moreover, the design of relevant
primers and guide RNAs allows for flexible detection of mutant strains
as the mutant genome is sequenced and common SARS-CoV-2 muta-
tion loci are analyzed. LAMP is compatible with many different types
of LFA (e.g., colloidal gold immunochromatography kits) that have
been widely used in the United States and Europe. However, POC-
based detection kits have not yet achieved widespread popularity in
some poor and developing countries and regions (e.g., Africa). In
China, although RT-PCR is mainly used to detect infection, the China
National Health Commission recently issued documents related to the
new coronavirus self-test system, advocating people to adopt self-
testing to ease the pressure of controlling the epidemic.

The SARS-CoV-2 virus mutant strain pandemic represented by
Delta and Omicron has proved the value of rapid detection kits. In the
future, POCT test kits with easy operation, fast detection speed, and
high specificity and sensitivity will become the mainstream of analysis
and are expected to effectively screen infected individuals at home
and in the community to control mutant strain outbreaks. Unlike time-
consuming and expensive whole-genome sequencing to identify
SARS-CoV-2 variants, flexible gRNA and primer design for high-
performance CRISP/Cas and RT-LAMP kits are expected to diagnose
and track strongly infectious mutants such as Delta and Omicron in a
timely manner in the future, so that epidemic prevention policies and
treatment plans can be formulated according to the hierarchy of dif-
ferent infectious mutant strains and Rational allocation of medical
resources. Although serology-based rapid antibody tests can enable
large-scale immune screening, they still have a lag and cannot prove
the presence of the virus.

Antigen detection is expected to move the detection window for-
ward for early screening. Currently, N and S proteins are often used
as markers in the assay, but due to the generation of mutant strains
and their mutation sites, antibody capture escape often occurs in the
assay, especially with kits that use S proteins, the sensitivity of the
assay will be significantly reduced. In the future, the development of
recombinant antibodies based on conserved sites, the use of
ultrasensitive quantum dot materials, and the application of modularly
designed biosensors are expected to circumvent the risk of escape.

Therefore, we suggest that until the emergence of vaccines with
efficient cross-protection and clinically validated therapeutic regi-
mens, developers need to focus on rapid antigen detection devices
and, with a large number of clinical samples to validate them, develop
high-performance POCT kits that can be used at the point of care,
such as colloidal gold, ultrasensitive quantum dots, and biosensors,
and use new nanoparticles and other materials to effectively move
the detection window of infection forward, expand the scope of appli-
cation of the kit by combining it with readable home devices such as
smartphones, and realize timely tracking of strongly infectious mutant
strains such as Delta and Omicron using flexibly designed POCT kits
such as CRISP/Cas and RT-LAMP to control the epidemic in house-
holds and communities in a timely manner so that appropriate actions
can be taken to effectively control the SARS-CoV-2 and its mutant
strains in the future.
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