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Dynamic Alterations in the Respiratory Tract Microbiota of
Patients with COVID-19 and its Association with Microbiota
in the Gut

Yifei Shen, Fei Yu, Dan Zhang, Qianda Zou, Mengxiao Xie, Xiao Chen, Lingjun Yuan,
Bin Lou, Guoliang Xie, Ruonan Wang, Xianzhi Yang, Weizhen Chen, Qi Wang,
Baihuan Feng, Yun Teng, Yuejiao Dong, Li Huang, Jiaqi Bao, Dongsheng Han, Chang Liu,
Wei Wu, Xia Liu, Longjiang Fan, Michael P. Timko, Shufa Zheng,* and Yu Chen*

The role of respiratory tract microbes and the relationship between respiratory
tract and gut microbiomes in coronavirus disease 2019 (COVID-19) remain
uncertain. Here, the metagenomes of sputum and fecal samples from 66
patients with COVID-19 at three stages of disease progression are sequenced.
Respiratory tract, gut microbiome, and peripheral blood mononuclear cell
(PBMC) samples are analyzed to compare the gut and respiratory tract
microbiota of intensive care unit (ICU) and non-ICU (nICU) patients and
determine relationships between respiratory tract microbiome and immune
response. In the respiratory tract, significantly fewer Streptococcus,
Actinomyces, Atopobium, and Bacteroides are found in ICU than in nICU
patients, while Enterococcus and Candida increase. In the gut, significantly
fewer Bacteroides are found in ICU patients, while Enterococcus increases.
Significant positive correlations exist between relative microbiota abundances
in the respiratory tract and gut. Defensin-related pathways in PBMCs are
enhanced, and respiratory tract Streptococcus is reduced in patients with
COVID-19. A respiratory tract–gut microbiota model identifies respiratory
tract Streptococcus and Atopobium as the most prominent biomarkers
distinguishing between ICU and nICU patients. The findings provide insight
into the respiratory tract and gut microbial dynamics during COVID-19
progression, considering disease severity, potentially contributing to
diagnosis, and treatment strategies.
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1. Introduction

The rapid outbreak of coronavirus disease
2019 (COVID-19) has crippled global health
and disrupted global economies. The in-
crease in the number of severely ill pa-
tients after the spread of COVID-19 world-
wide has resulted in heavy investment
in healthcare infrastructure and medical
supplies. COVID-19 is caused by severe
acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which emerged in Wuhan,
China at the end of 2019.[1–4] While the
majority of patients exhibit mild to mod-
erate symptoms, up to 15% of infected
individuals progress to severe pneumo-
nia, and approximately 5% eventually de-
velop acute respiratory distress syndrome
and/or multiple organ failure.[5] Higher fa-
tality rates have been observed in elderly
individuals with comorbidities and those
who are immunocompromised.[6–8] How-
ever, the mechanism of severe disease in
patients with COVID-19 is not well under-
stood.
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The human microbiota plays a crucial role in individual health.
In particular, microorganisms residing in the gut and respira-
tory tract can alter susceptibility to and the outcomes of infec-
tious diseases.[9] Several studies have explored the function of the
microbiome in the development of COVID-19, suggesting possi-
ble relationships between the gut,[10] nasopharyngeal,[11] and oral
microbiomes[12,13] and COVID-19. The diversity and composition
of the gut microbiota showed significant differences between pa-
tients with COVID-19 and healthy cohorts, and these differences
tended to be associated with disease severity.[14,15] Opportunis-
tic bacterial and fungal pathogens were enriched in the feces of
patients with COVID-19, suggesting that secondary infections
causing the dysbiosis of the gut microbiota are common in these
patients.[16,17] The human upper respiratory tract is the major por-
tal of entry for SARS-CoV-2. It contains an airway microbiome
that represents its microenvironment and serves as an essential
component of the airway epithelial barrier.[18] However, how the
respiratory tract microbiome is altered in patients with COVID-
19 is largely unknown.[19,20] In addition, little is known about the
association between the respiratory tract microbiota and the gut
microbiota, which is one of the most crucial questions regarding
the contribution of the microbiota to the health of patients with
COVID-19.

The sputum microbiome can reflect microbial changes in the
respiratory tract[21,22] and the fecal microbiome can reflect mi-
crobial changes in the gut.[14,16] In this study, we investigate the
dynamic alterations in the respiratory tract microbiota of pa-
tients with COVID-19 and their association with gut microbiota.
We recruited 66 patients with COVID-19 at three disease pro-
gression stages (admission, progression, and recovery) and con-
ducted metagenome sequencing of sputum and fecal samples. A
total of 143 respiratory tract microbiomes, 97 gut microbiomes,
and 66 peripheral blood mononuclear cell (PBMC) transcrip-
tomes were sequenced and subsequently used to systematically
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investigate the similarities and differences between the gut and
respiratory tract microbiota in intensive care unit (ICU) and non-
ICU (nICU) patients at the admission, progression, and recovery
stages. The findings of this study reveal the dynamic alterations
in respiratory tract microbiota during COVID-19 infection and
the relationship between respiratory tract microbiota, gut micro-
biota, and immune responses in patients with COVID-19. These
data provide insight into the roles of changes in the respiratory
tract and gut microbiomes, and immune system, at different dis-
ease progression stages and COVID-19 severities.

2. Results

2.1. Altered Respiratory Tract and Gut Microbial Composition in
Patients with COVID-19

To explore changes in the microbiota of patients with COVID-
19, we performed metagenome sequencing on 143 sputum and
97 fecal samples from ICU patients, nICU patients, and healthy
people. Sputum samples at three disease progression stages (ad-
mission, progression, and recovery) and fecal samples at two
stages (progression and recovery) were included in the study
(Figure 1A). Streptococcus, Rothia, and Actinomyces were the top
three most abundant genera in both the healthy individuals and
patients with COVID-19. Interestingly, we found that the rela-
tive abundance of Streptococcus decreased significantly in patients
with COVID-19 compared with that in the healthy cohort (p <

0.01). ICU patients had a lower relative abundance of Streptococ-
cus and Actinomyces than nICU patients (Figure 1B). Among the
gut microbiota, Bacteroides was the most abundant genus in the
healthy cohort. However, the relative abundance of Bacteroides de-
creased significantly in patients with COVID-19 compared with
that in the healthy cohort (p < 0.01). ICU patients had a sig-
nificantly lower relative abundance of Bacteroides than nICU pa-
tients (p < 0.01). In contrast, the relative abundance of Enterococ-
cus increased considerably in the fecal samples of patients with
COVID-19 (Figure 1B).

To investigate microbial diversity among patients with COVID-
19, we calculated the Shannon index to measure the alpha diver-
sity for each patient. Alpha diversity evaluates the diversity within
a sample, including richness and evenness measurements. We
first compared the Shannon indices of respiratory tract and gut
microbial samples. The results show that the respiratory tract mi-
crobiota had a higher Shannon index than the gut microbiota
(Figure 1C). When we compared the Shannon indices of ICU
and nICU patients, we observed that the ICU patients had sig-
nificantly lower Shannon indices than the nICU patients in both
their respiratory tract and gut microbial samples (p < 0.01) (Fig-
ure 1D). This finding suggests that the microbial diversity in ICU
patients was significantly lower than that in nICU patients in the
respiratory tract and gut (p < 0.01).

We further calculated beta-diversity to evaluate differences in
the microbiota among the respiratory tract and gut samples, and
then combined these results using principal coordinate analysis
(PCoA) dimensional reduction methods to obtain visual repre-
sentations. Comparisons of beta diversity between the respira-
tory tract and gut samples showed that the microbial beta diver-
sity was significantly higher in the respiratory tract than in the
gut (p < 0.01) (Figure 1E). These results indicate that there are
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Figure 1. Altered respiratory tract and gut microbial compositions in patients with COVID-19. A) Overview of the experimental design. B) Microbial
compositions in the respiratory tract and gut of ICU patients (n = 20), nICU patients (n = 46), and a healthy cohort. C) Comparison of alpha-diversity
between respiratory tract and gut microbiota. D) Comparison of alpha-diversity between the microbiota of ICU and nICU patients in the respiratory tract
and gut. * p < 0.05, ** p < 0.01, *** p < 0.001. E) First two axes of PCoA (Bray distance) for the beta-diversity of respiratory tract and gut microbiota. F)
First two axes of PCoA (Bray distance) for the beta-diversity of ICU and nICU patient microbiota in the respiratory tract and gut. Group differences were
tested by pairwise PERMANOVA. ICU: intensive care unit; nICU: non-ICU; PCoA: principal coordinate analysis; PERMANOVA: permutational multivariate
analysis of variation; centerline, median; box limits, upper and lower quartiles; error bars, 95% CI.
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more differences among respiratory tract microbial compositions
than among gut microbial compositions. We further compared
the Shannon indices of the ICU and nICU patients for the res-
piratory tract and gut samples, and found that there were signifi-
cant differences between the ICU and nICU patients in both the
respiratory tract and gut microbiota (p < 0.01) (Figure 1F).

2.2. Dynamic Alterations in Respiratory Tract Microbiota and its
Association with Disease Severity

We examined the relative abundance of genera in the microbiota
of respiratory tract samples at the admission, progression, and
recovery stages to analyze the dynamic changes in the respira-
tory tract microbiota. In the nICU patients, the relative abun-
dance of Streptococcus was higher in the recovery stage samples
than in the samples collected at the admission and progression
stages (Figure 2A). These results were consistent with the obser-
vation that the respiratory tract microbiota of the healthy cohort
had a higher relative abundance of Streptococcus than that of pa-
tients with COVID-19 (Figure 1B). In ICU patients, a higher rel-
ative abundance of Streptococcus was found in the recovery stage
samples than in the admission and progression stage samples
(Figure 2A), suggesting that the relative abundance of Strepto-
coccus was associated with disease progression in both ICU and
nICU patients. Moreover, Streptococcus abundance was signifi-
cantly lower in ICU patients than in nICU patients, suggesting
a significant negative correlation between Streptococcus relative
abundance and disease severity (p < 0.01). Further comparison
of Shannon indices between ICU and nICU patients at different
stages indicated that there was a significant difference in micro-
biota alpha diversity between ICU and nICU patients at the pro-
gression and recovery stages (Figure 2B).

To further explore the differences in respiratory tract mi-
crobial composition between ICU and nICU patients at differ-
ent stages of disease progression, we performed multiple lin-
ear model regression analyses that included information about
patient ICU status, sex, age, smoking history, antibiotic usage,
and corticosteroid usage. At the admission stage, the genera
Streptococcus, Atopobium, Actinomyces, and Mogibacterium were
significantly lower in ICU patients than in nICU patients (p
< 0.05). In contrast, the genera Veillonella, Malassezia, Neisse-
ria, and Candida were significantly higher in the ICU patients
(p < 0.05) (Figure 2C). In the progression stage samples, the
genera Actinomyces, Atopobium, Streptococcus, Rothia, and Bac-
teroides were significantly lower in ICU patients than in nICU
patients (p < 0.05). In contrast, Staphylococcus, Enterococcus,
Lautropia, Stenotrophomonas, Candida, and Neisseria were signifi-
cantly higher in ICU patients (p < 0.05) (Figure 2C). In the recov-
ery stage samples, the genera Mogibacterium, Prevotella, Atopo-
bium, Gemella, and Bacteroides were significantly lower in ICU
patients than in nICU patients (p < 0.05). In contrast, Candida,
Enterococcus, Acinetobacter, Pseudomonas, Lautropia, and Neisseria
were significantly higher in ICU patients (p < 0.05) (Figure 2C).
Based on these results, we found that Atopobium was signifi-
cantly decreased in ICU patients in all stages, whereas Streptococ-
cus and Actinomyces decreased in the admission and progression
stages. In contrast, genera previously associated with respiratory
tract bacterial infections (e.g., Enterococcus, Stenotrophomonas,

and Candida) were significantly increased in ICU patients during
the progression stage (p < 0.05). Based on the results of the mul-
tiple linear model regression analyses, we also found that antibi-
otic therapy was not the cause of the differences in Streptococcus,
Atopobium, Actinomyces, and other genera between the ICU and
nICU patients during hospitalization (Figure 2C). The only differ-
ence in genus abundance was related to antibiotic Candida ther-
apy in the admission stage (Figure 2C). In addition, the results
show that corticosteroid usage did not have a significant influ-
ence on the abundance of Streptococcus, Atopobium, Actinomyces,
or other genera (Figure S1, Supporting Information). Based on
these findings, we suggest that the differences between the ICU
and nICU patients during hospitalization were not caused by an-
tibiotics or corticosteroid therapy.

Next, we performed a relative abundance correlation analysis
to investigate the relationships between the microbial genera at
each stage (Figure 2D). Our results show that Atopobium was sig-
nificantly correlated with Streptococcus and Actinomyces in the ad-
mission, progression, and recovery stages, whereas Neisseria and
Veillonella were significantly correlated with each other in the ad-
mission and progression stages (p < 0.05). Only Candida was sig-
nificantly correlated with Enterococcus at the progressive stage (p
< 0.05).

To determine the species involved in the observed changes
in microbiota genera, we compared the relative abundances of
each species between ICU and nICU patients at the admission,
progression, and recovery stages (Figure 2E). In the Streptococ-
cus genus, the relative abundances of three species, Streptococ-
cus gordonii, Streptococcus salivarius, and Streptococcus parasangui-
nis, were significantly decreased in ICU patients at the admis-
sion and progression stages (p < 0.05). In the genus Actinomyces,
the relative abundances of Actinomyces oris and Actinomyces sp.
ICM47 decreased considerably in ICU patients at the admission,
progression, and recovery stages. In the Atopobium genus, the
relative abundance of Atopobium parvulum was significantly de-
creased in ICU patients at the admission, progression, and recov-
ery stages (p < 0.05). In the Rothia genus, the relative abundance
of Rothia aeria was significantly decreased in ICU patients only
at the progressive stage (p < 0.05). In the Veillonella genus, the
relative abundance of the species Veillonella parvula was signifi-
cantly decreased in ICU patients only at the admission stage (p
< 0.05). Thus, the reduced relative abundance of certain genera,
such as Streptococcus and Actinomyces, was related to changes in
many species, whereas in Atopobium, Rothia, and Veillonella, only
one species was responsible for the change in the relative abun-
dance of the genus.

2.3. Relationship between Respiratory Tract Microbial
Composition and Clinical Indices

Analysis of variance (ANOVA) was performed to determine the
relationships between patient age, sex, COVID-19 severity, and
clinical indices in ICU and nICU patients. We found that the
levels of interleukin-6 (IL6) and interleukin-10 (IL10) cytokines
were significantly higher in the ICU patient group than in the
nICU patient group (p < 0.05) (Figure 3A,B). The levels of IL6
and IL10 had a significant positive correlation with the age of
the patients in both the ICU and nICU groups (Figure 3A,B).
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Figure 2. Dynamic alterations in the respiratory tract microbiota and its association with disease severity. A) Respiratory tract microbial composition
of ICU patients (n = 20) and nICU patients (n = 46) at the admission, progression, and recovery stages. B) Comparison of alpha-diversity between the
respiratory tract microbiota of ICU and nICU patients at the admission, progression, and recovery stages. C) Associations between respiratory tract
microbiota and patient information at the admission, progression, and recovery stages. The color in the heatmap represents the regression coefficients
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The lymphocyte count was significantly lower in the ICU patient
group than in the nICU patient group (p < 0.05) (Figure 3C). This
lymphopenia phenomenon has been previously reported in indi-
viduals afflicted with COVID-19.[23] The lymphocyte number was
significantly negatively correlated with the age of patients in both
the ICU and nICU groups (p < 0.05) (Figure 3C). We also found
that procalcitonin (PCT) levels and neutrophil counts were signif-
icantly higher in the ICU patient group (p < 0.05) (Figure 3D,E).

Next, we performed a correlation analysis of the clinical in-
dices among all the patients (Figure 3F). The white blood cell
(WBC) count was significantly correlated with the number of
neutrophils (p < 0.05). In addition, the results show that lym-
phocyte number was significantly negatively correlated with neu-
trophil number and the levels of two cytokines, IL6 and IL10.
We also found that the levels of the cytokines interleukin-2 (IL2),
interleukin-4 (IL4), IL6, IL10, tumor necrosis factor 𝛼 (TNF-𝛼),
and interferon 𝛾 (IFN-𝛾) were positively correlated with each
other.

To identify non-redundant covariates of microbiome variations
from correlating factors, we performed a forward stepwise re-
dundancy analysis (RDA) among patients with COVID-19 based
on their clinical indices, including their blood composition and
immune factor levels. Based on the blood composition RDA, we
found that the number of neutrophils, lymphocytes, and platelets
were significantly correlated with the microbial composition of
patients with COVID-19 (p < 0.05) (Figure 3G), and based on the
immune factor RDA, we found that IL10 and IFN-𝛾 were signifi-
cantly correlated with the microbial composition of these patients
(p < 0.05) (Figure 3H).

We conducted Spearman correlation analysis between clinical
indices and the relative abundances of microbial genera, to ex-
plore the relationships between the clinical indices and respira-
tory tract microbiota of patients with COVID-19 (Figure 3I). The
results show that neutrophil numbers were significantly nega-
tively correlated with the relative abundances of many species of
the genera Streptococcus, Actinomyces, and Rothia in the micro-
biota (p < 0.05). However, the relative abundance of Neisseria was
positively correlated with neutrophil number. The lymphocyte
number was significantly positively correlated with the relative
abundances of species in the genus Atopobium, and IFN-𝛾 levels
were positively correlated with the relative abundances of Strep-
tococcus gordonii, Streptococcus milleri, and Rothia aeria. Interest-
ingly, PCT levels were significantly positively correlated with Neis-
seria elongate and Pseudomonas aeruginosa (p < 0.05) (Figure 3I).

2.4. Defensin-Related Pathways in PBMCs were Promoted in
Patients with COVID-19 and Associated with Respiratory Tract
Microbiota

The relationships between the respiratory tract microbiota and
immune response-related gene expression were examined by
RNA sequencing of PBMCs from the blood of ICU and nICU

patients with COVID-19 at the progression stage, and from
18 healthy individuals (control group). First, we performed a
t-distributed stochastic neighbor embedding (tSNE) clustering
analysis based on the gene expression data of patients with
COVID-19. The tSNE clustering analysis results show that all the
healthy donor samples were clustered together, while the sam-
ples of patients with COVID-19 were separated into three clus-
ters (Figure 4A). Based on the COVID-19 severity data, we found
that among the three clusters, one contained primarily nICU pa-
tients, one contained primarily ICU patients, and the third was
a mixture of nICU and ICU patients (Figure 4A). These results
suggest that the ICU and nICU patients had distinct PBMC gene
expression patterns.

A differentially expressed gene (DEG) analysis was performed
between ICU and nICU patients with COVID-19 to investigate
which genes were related to COVID-19 severity (Figure 4B).
Among the 914 DEGs identified between the ICU and nICU
patient groups, 130 genes (14.2%) were upregulated and 784
genes (85.8%) were downregulated in the ICU patient group. The
results show that there were significantly more downregulated
genes than upregulated genes in the ICU patients, compared to
the nICU patient group (Chi-square test p < 0.05).

Gene ontology (GO) enrichment analysis was performed on
the DEGs that were upregulated in the ICU patients to investigate
which functions were upregulated in ICU patients compared to
nICU patients. “Neutrophil mediated immunity” was one of the
most significantly enriched GO terms found (Figure 4C), sug-
gesting that neutrophils were significantly activated in ICU pa-
tients (p < 0.05). This finding was consistent with the increased
number of neutrophils in the ICU patients in the clinical index
data (Figure 3E). In addition, hemostasis-related GO terms, such
as “Hemostasis” and “Blood coagulation,” were also significantly
enriched in the ICU patient group (p < 0.05).

Gene set enrichment analysis (GSEA) based on gene expres-
sion data was then performed to systematically analyze pathway
changes among the ICU, nICU, and healthy control patients.
For each patient, we calculated the GSEA score of the pathways
based on the REACTOME database, and based on these scores we
found that the ICU patients, nICU patients, and healthy donors
had distinct pathway activation patterns (Figure 4D). Interest-
ingly, defensin-related pathways, like “Beta defensins” and “An-
timicrobial peptides,” were found to be significantly up-regulated
in patients with COVID-19 compared to healthy individuals (p
< 0.05). Defensin-related pathways were also upregulated in
ICU patients compared to nICU patients (Figure 4E). Moreover,
we observed that hemostasis-related pathways were upregulated
in ICU patients, consistent with the results of the GO enrich-
ment analysis. To explore the relationship between defensin-
related pathways and respiratory tract microbiota, we conducted
Spearman correlation analysis between the GSEA score of each
pathway and relative microbial abundances. The results show
that “Defensins,” “Beta defensins,” and “Antimicrobial peptides”
were all negatively correlated with the relative abundances of

estimated by multiple linear model regression analyses. * p < 0.05, ** p < 0.01, *** p < 0.001. D) Genus correlation networks constructed for the
admission, progression, and recovery stages. Edge widths are proportional to the strength of correlation. E) Genera identified in the microbiota are
shown in a phylogenetic tree, grouped into the phyla Proteobacteria, Bacteroidetes, Fusobacteria, Firmicutes, and Actinobacteria. Box plots show the
relative abundances of species which showed significant differences between the ICU and nICU patients at the admission, progression, and recovery
stages. ICU: intensive care unit; nICU: non-ICU; centerline, median; box limits, upper and lower quartiles; error bars, 95% CI.
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Figure 3. Association of patient clinical indices with respiratory tract microbiota. A) IL6. B) IL10. C) Lymphocyte number. D) PCT. E) Neutrophil number.
F) Relationship between each clinical index. The color in the heatmap represents the correlation coefficients estimated by correlation analysis. * p < 0.05,
** p < 0.01, *** p < 0.001. G) RDA results of blood composition and microbial relative abundances. H) RDA results of immune factors and microbial
relative abundances. I) Relationship between clinical indices and microbial relative abundances at the species level. The color in the heatmap represents
the correlation coefficients estimated by Spearman correlation analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. ICU: intensive care; nICU: non-ICU; RDA:
redundancy analysis; IL2: interleukin-2, IL4: interleukin-4, IL6: interleukin-6, IL10: interleukin-10, TNF-𝛼: tumor necrosis factor 𝛼; IFN-𝛾 : interferon 𝛾 ;
WBC: white blood cell; PLT: platelet; PCT: procalcitonin; centerline, median; box limits, upper and lower quartiles; error bars, 95% CI.
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Figure 4. Defensin-related pathways in PBMCs were increased in patients with COVID-19 and associated with respiratory tract microbiota. A) Clusters
of healthy donors and patients with COVID-19 based on tSNE clustering. B) DEGs between ICU (n = 20) and nICU (n = 28) patients. C) Significantly
enriched GO function terms based on up-regulated DEGs in ICU patients. D) GSEA score of the pathways based on REACTOME database for each patient.
E) Defensin- and hemostasis-related pathways were up-regulated in ICU patients compared with nICU patients F) Relationship between pathway GSEA
score and microbial relative abundances at the species level. The color in the heatmap represents the correlation coefficients estimated by Spearman
correlation analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. ICU: intensive care unit; nICU: non-ICU; tSNE: t-distributed stochastic neighbor embedding;
DEGs: differentially expressed genes; GO: gene ontology; GSEA: gene set enrichment analysis; centerline, median; box limits, upper and lower quartiles;
error bars, 95% CI.
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Figure 5. Dynamic alterations in the gut microbiota of patients with COVID-19 and its association with respiratory tract microbiota. A) Gut microbial
composition of ICU and nICU patients at the progression and recovery stages. B) Comparison of alpha-diversity between the gut microbiota of ICU and
nICU patients at the progression and recovery stages. C) Associations between the gut microbiota and patient information at the progression and recovery
stages. The color in the heatmap represents the regression coefficients estimated by multiple linear model regression analyses. * p < 0.05, ** p < 0.01,
*** p < 0.001. D) Genera identified in the microbiota are shown in a phylogenetic tree, grouped in the phyla Proteobacteria, Bacteroidetes, Fusobacteria,
Firmicutes, and Actinobacteria. Box plots show the relative abundances of species which significantly changed between ICU and nICU patients at the
progression and recovery stages. E) Associations between the gut and respiratory tract microbiota. The color in the heatmap represents the correlation
coefficients estimated by Spearman correlation analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. F) Correlation between the gut and respiratory tract
microbiota of the Bacteroidetes genus. ICU: intensive care unit; nICU: non-ICU; centerline, median; box limits, upper and lower quartiles; error bars,
95% CI.

species in the genera Streptococcus, Actinomyces, and Bacteroides
in the respiratory tract (Figure 4F).

2.5. Dynamic Alterations in the Gut Microbiota of Patients with
COVID-19 and its Association with Respiratory Tract Microbiota

To analyze the dynamic changes in the gut microbiota, we in-
vestigated the relative abundances of the microbiota in the gut

during the progression and recovery stages. In nICU patients,
the relative abundance of Bacteroides was higher in samples from
patients in the recovery stage than in those from patients in the
progression stage (Figure 5A). This observation is consistent with
our finding that the gut microbiota of the healthy cohort had a
higher relative abundance of Bacteroides than that of patients with
COVID-19 (Figure 1B). In ICU patients, a higher relative abun-
dance of Bacteroides was found in recovery stage samples than in
progression stage samples (Figure 5A), which suggests that the
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relative abundance of Bacteroides is related to disease progression
in both ICU and nICU patients. In addition, compared to the mi-
crobial composition observed in nICU patients, Bacteroides was
significantly decreased in ICU patients, suggesting that the rel-
ative abundance of Bacteroides is significantly negatively corre-
lated with disease severity (p < 0.05). Interestingly, Enterococcus
rather than Bacteroides was the most abundant genus in ICU pa-
tients, suggesting that Enterococcus relative abundance was corre-
lated with disease severity. Comparisons of the Shannon indices
of ICU and nICU patients at the progression and recovery stages
indicated that there was a significant difference in microbial al-
pha diversity between ICU and nICU patients at the progression
and recovery stages (Figure 5B).

To further understand the differences in gut microbial com-
position between the ICU and nICU patients at different disease
progression stages, we also performed a multiple linear model
regression analysis that included information about patient ICU
status, sex, age, smoking history, and antibiotic usage. In the pro-
gression stage samples, the genus Bacteroides was found to be sig-
nificantly lower in ICU patients than in nICU patients (p < 0.05).
In contrast, the genera Escherichia, Enterococcus, and Streptococcus
were significantly increased in the ICU patients (p < 0.05) (Fig-
ure 5C). In the recovery stage samples, Bacteroides was also found
to be significantly lower in ICU patients than in nICU patients.
Both Enterococcus and Candida were significantly increased in
the ICU patients (p < 0.05) (Figure 5C). Thus, Bacteroides was
significantly decreased in ICU patients in both the progression
and recovery stages, whereas genera associated with bacterial
infections (such as Enterococcus and Candida) were significantly
increased in ICU patients at the progression and recovery stages
(p < 0.05).

We compared the relative abundance of each species between
ICU and nICU patients at the progression and recovery stages to
determine which species contributed the most to the genera-level
changes in the composition of the gut microbiota (Figure 5D). In
the Bacteroides, the relative abundances of Bacteroides uniformis,
Bacteroides vulgatus, and Bacteroides thetaiotaomicron were signif-
icantly decreased in ICU patients during the progression and re-
covery stages (p < 0.05). In the genus Streptococcus, the relative
abundance of Streptococcus sanguinis was significantly increased
in ICU patients at the progressive stage (p < 0.05). In the genus
Enterococcus, the relative abundance of Enterococcus faecium was
significantly increased in ICU patients during the progression
and recovery stages (p < 0.05). In the Escherichia genus, the rel-
ative abundance of Escherichia coli was significantly increased
in ICU patients only at the progression stage (p < 0.05). Thus,
the decreased relative abundance of the genus Bacteroides could
be attributed to multiple species, whereas in genera such as Es-
cherichia and Enterococcus, only one species was correlated with
the increased relative abundance of the genus.

Interestingly, we found that the relative abundances of Entero-
coccus and Candida were significantly increased in ICU patients
in both the respiratory tract and gut microbiota (p < 0.05). To fur-
ther investigate the relationship between the microbiota of the
respiratory tract and the gut, we conducted a correlation analy-
sis based on the relative abundances of each genus. A signifi-
cant correlation was revealed between the relative abundances of
infection-related genera, such as Enterococcus, Candida, and Pseu-
domonas, in the respiratory tract and gut (Figure 5E). Species-level

investigation revealed that bacterial pathogens, such as Enterococ-
cus faecium, Candida albicans, and Pseudomonas aeruginosa, were
significantly correlated between the respiratory tract and gut (p <

0.05).
In addition, we found that the Bacteroides genus was signifi-

cantly reduced in ICU patients in both the respiratory tract and
gut microbiota (Figure 6A). The relative abundance of Bacteroides
in the respiratory tract was significantly lower than that in the gut.
Correlation analysis between the respiratory tract and gut, based
on the samples in which Bacteroides were detected, showed a sig-
nificant (p < 0.01) correlation between Bacteroides in the respira-
tory tract and gut (Figure 5F).

2.6. Respiratory Tract and Gut Microbiota Could Accurately
Classify the Disease Severity of Patients with COVID-19

To identify the microbial characteristics associated with COVID-
19 severity in the respiratory tract and gut, unsupervised ran-
dom forest classification analysis using a leave-one-out cross-
validation method was performed at the genus and species levels.
We identified microbial classifiers distinguishing ICU patients
from nICU patients based on the respiratory tract, gut, and com-
bined respiratory tract–gut microbiota in patients with COVID-
19. At the genus level, the random forest classifiers based on the
respiratory tract and gut microbiota achieved area under the re-
ceiver operating characteristic curve (AUC) values of 0.825 and
0.785, respectively (Figure 6B). The combined respiratory tract–
gut classifier achieved an AUC of 0.874 (Figure 6C), which was
higher than the AUC values of the individual respiratory tract and
gut classifiers. The random forest classifier also identified the
top bacterial genera characteristics of ICU and nICU patients.
For the respiratory tract classifier, Atopobium, Streptococcus, and
Actinomyces were the top three characteristic genera. For the gut
classifier, Enterococcus, Streptococcus, and Bacteroides were the top
three characteristic genera. For the combined respiratory tract–
gut classifier, Streptococcus and Atopobium in the respiratory tract
and Bacteroides and Enterococcus in the gut were the top four char-
acteristic genera between ICU and nICU patients.

At the species level, the random forest classifiers based on the
respiratory tract and gut microbiota achieved AUC values of 0.859
and 0.809, respectively. The combined respiratory tract–gut clas-
sifier achieved an AUC of 0.909 (Figure 6D). Based on the results,
the combined respiratory tract–gut classifier had a higher AUC
than the individual respiratory tract and gut classifiers at both
the genus and species levels, indicating that the combined classi-
fier performed better in distinguishing ICU and nICU patients.
Based on the random forest classifier, we also identified the top
characteristic species between the ICU and nICU patients. In the
respiratory tract, Streptococcus mitis, Actinomyces oris, and Atopo-
bium parvulum were the top three characteristic species. In the
gut, Enterococcus faecium, Bacteroides thetaiotaomicron, and Strep-
tococcus sanguinis, were the top three characteristic species. In
the combined respiratory tract–gut classifier, Atopobium parvu-
lum, Streptococcus oralis, and Actinomyces oris were the top three
characteristic species in the respiratory tract between ICU and
nICU patients, and Bacteroides thetaiotaomicron and Enterococcus
faecium were the seventh and eighth characteristic species in the
gut between ICU and nICU patients (Figure 6E).
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Figure 6. Respiratory tract and gut microbial dynamics during COVID-19 progression and their diagnostic potential for disease severity. A) Graphical
representation of major microbial alterations during disease progression in the respiratory tract and gut. ROC curves showing the discriminative ability
between ICU (n = 20) and nICU (n = 46) patients using the relative abundance of the respiratory tract, gut, and combined respiratory tract–gut mi-
crobiomes at the B) genus and D) species levels. Top eight important C) genera and E) species based on Gini importance according to random-forest
classifiers based on the respiratory tract, gut, and combined respiratory tract–gut microbiomes. ICU: intensive care unit; nICU: non-ICU; ROC: receiver
operating characteristic; centerline, median; box limits, upper and lower quartiles; error bars, 95% CI.

3. Discussion

The present study is among the pioneering attempts to explore
the metagenomic characteristics of the respiratory tract and gut
microbiota in patients with COVID-19 at various disease progres-
sion stages and with different disease severities (ICU and nICU).
We systematically examined the similarities and differences be-
tween the gut and respiratory tract microbiota in ICU and nICU
patients at three stages (admission, progression, and recovery)
and demonstrated the features and dynamics of the respiratory
tract microbiota and its association with the gut microbiota and
immune response in patients with COVID-19. We found a sig-
nificant decrease in the respiratory tract and gut microbial diver-
sity in COVID-19 ICU patients compared to that in nICU pa-
tients. This observation is consistent with previous studies re-
porting low bacterial diversity associated with respiratory viral
infectious diseases.[24,25] However, our study also showed signif-
icant severity-specific shifts in the overall microbial composition

between COVID-19 nICU and ICU patients, suggesting that the
extent of microbiota dysbiosis might be correlated with the sever-
ity of the disease.

To analyze the dynamic changes in the respiratory tract mi-
crobiota, we first investigated the relative abundance of the mi-
crobiota in the respiratory tract at the admission, progression,
and recovery stages. Our study revealed that Streptococcus is one
of the most abundant genera inhabiting the respiratory tract in
healthy individuals, consistent with previous reports.[26,27] We
also found that three genera, Streptococcus, Actinomyces, and
Atopobium, were significantly decreased in ICU patients com-
pared with nICU patients at the admission and progression
stages. Streptococcus relative abundance was significantly corre-
lated with disease progression and severity. The depletion of
Streptococcus might represent a dysbiotic state of the respiratory
tract microbiota, possibly resulting from the introduction and
overgrowth of competing microbes, or an enhanced immune re-
sponse to SARS-CoV-2 infection.[28,29] The possible role of an
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immune imbalance is supported by the increased levels of cy-
tokines in ICU patients and its significant correlation with mi-
crobiota variation. The increased immune response induced by
viral infection could potentially alter the respiratory microbiota,
and the latter can further modulate local immune responses.[30,31]

Meanwhile, the concentration of PCT was significantly higher
in ICU patients, suggesting possible co- and/or secondary in-
fections in ICU patients. We suggest that both the overgrowth
of competing microbes and an increased immune response to
SARS-CoV-2 infection might play a role in the Streptococcus de-
pletion in the respiratory tract microbiome. However, additional
studies are needed to determine the factors that most influ-
ence disease-severity-related microbiome changes in COVID-
19. In addition, based on our current results, it is difficult to
unequivocally conclude whether lower Streptococcus abundance
caused changes in disease severity or whether the disease sever-
ity changes caused lower Streptococcus abundance. To address this
question, additional studies that include more time points for
sample collection before and during SARS-CoV-2 infection are
needed.

Interestingly, we found that the genus Veillonella increased in
ICU patients at the admission stage, and the genera Enterococ-
cus and Candida significantly increased in ICU patients at the
progression stage. The genus Veillonella has been shown to be
a shared indicator of COVID-19 in multiple studies,[13,32] and a
cause of chronic anaerobic pneumonitis.[33] Several members of
the Veillonella are periodontal pathogens that are overrepresented
in the bronchoalveolar lavage fluid of patients with COVID-19.[34]

In addition, the genera Enterococcus and Candida have been re-
ported to be associated with secondary bacterial infections in
COVID-19. Dysbiotic microbiota may diminish an individual’s
ability to resist colonization by pathogens and predispose them to
secondary infection, thus leading to a poor prognosis. Our obser-
vation that microbiota with high Streptococcus abundances were
more stable and resistant to co/secondary infection and showed
lower disease severity supports this supposition.

In the present study, we found Bacteroides to be one of the most
abundant genera in the gut microbiota of healthy individuals,
and this genus was significantly lower in ICU patients than in
nICU patients at the progression and recovery stages. The rel-
ative abundance of Bacteroides in the gut was significantly cor-
related with disease severity. The depletion of Bacteroides might
represent a dysbiotic state of the gut microbiota because of the
introduction and overgrowth of competing microbes. The rela-
tive abundance of the genus Enterococcus is known to be associ-
ated with secondary bacterial infections and it was significantly
higher in the ICU patients than in the nICU patients at both the
progression and recovery stages. Interestingly, we found a signif-
icant positive correlation in the relative abundance of microbiota
(i.e., Bacteroides and Enterococcus) between the respiratory tract
and the gut. However, whether there is a transfer of microbiota
between the respiratory tract and gut remains to be determined.

Respiratory tract microbiota has been associated with suscep-
tibility to respiratory infections and bronchiolitis, as well as with
symptom severity and clinical outcomes.[35,36] Our results show
remarkable changes in the respiratory tract microbiota between
ICU and nICU patients with COVID-19 at different stages of
disease progression, indicating its potential to serve as a surro-
gate biomarker of COVID-19 severity. Thus, we systematically

compared the respiratory tract and gut microbiota as prognostic
biomarkers for COVID-19 severity using a random forest model.
The results of our study indicate that the respiratory tract micro-
biota shows slightly better performance as a predictor than the
gut microbiota. In addition, we found that a combined respira-
tory tract–gut microbiota classifier showed better performance
for COVID-19 severity prediction than either the respiratory tract
or gut microbiota alone.

Our study had several limitations. First, this was a single-
center study; therefore, no evaluation of variations among pa-
tients from different locations and countries was included.
Nonetheless, we are confident that our findings are represen-
tative. Second, although multiple variables (sex, age, smoking
history, antibiotic usage, corticosteroid use, and sputum from
coughing by conscious patients or bronchial aspirate) were con-
sidered in the microbiota analysis, dietary factors were not con-
sidered in this study. Third, although we found some similari-
ties in the patterns of change between the respiratory tract and
gut microbial composition, whether these patterns arose from a
transfer of microbiota between the respiratory tract and gut is un-
known, and how the microbiota might have transferred remains
elusive. Finally, based on the results of this study, we could only
define a correlation between microbiome changes and disease
severity, and not a direct causal relationship showing that spe-
cific microbial changes or changes in genera abundance lead to
changes in disease severity.

4. Conclusion

In summary, the present study shows that dynamic changes oc-
cur in the respiratory tract and gut microbial communities of pa-
tients with different COVID-19 disease severities, and that sig-
nificant changes in the composition of the respiratory tract and
gut microbiomes can be found between ICU and nICU patients.
Our findings demonstrate that the respiratory tract microbial
composition of patients with COVID-19—particularly changes
in the abundances of three genera, Streptococcus, Atopobium, and
Actinomyces—could be used as a noninvasive biomarker for dys-
biosis of the pulmonary microbiome or the invasion of potential
pathogens in the lungs. Second, these studies provide substantial
evidence that major potential pathogens (Enterococcus and Can-
dida genera) are associated with lung co-infections in COVID-
19, and thus guide antibiotic treatment of secondary bacterial
infections in COVID-19. Finally, the transcriptome sequencing
data provided here conclusively show that defensin-related path-
ways in PBMCs increase in patients with COVID-19, and these
changes are associated with changes in the microbial composi-
tion of the respiratory tract. Taken together, our study provides
new and important data that will be valuable for halting the con-
tinuing and insidious COVID-19 health crisis.

5. Experimental Section
Study Design and Participants: Sixty-six patients with COVID-19 (46

nICU hospitalized patients and 20 ICU hospitalized patients) and 18
healthy individuals from the First Affiliated Hospital of Zhejiang Univer-
sity were included in this study. This cohort covered a wide age range,
in which older patients constituted a greater fraction of the severe symp-
tom group (Table S1, Supporting Information), consistent with previous
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reports on the age and severity distribution of the disease.[8] The ICU pa-
tients met one of the following conditions: 1) respiratory failure and re-
quired mechanical ventilation, 2) shock, and 3) complicating nonfunction
of other organs.[37] These patients were included in the ICU group. Other
hospitalized patients were included in the nICU group. Sputum and fecal
samples were collected from patients at different disease stages (admis-
sion, progression, and recovery). The disease stages of the patients were
determined by a team of physicians based on clinical symptoms, chest CT
scans, laboratory indicators, and virological test results. Patients in the
progression stage were identified by the progression of pulmonary inflam-
matory lesions compared with those in the admission stage and had high
levels of laboratory inflammation indicators. Patients in the recovery stage
were identified by the improvement of clinical symptoms and respiratory
function, absorption of pulmonary inflammation, and negative virological
test results. In addition, PBMC samples were collected from 48 patients
(28 in the nICU and 20 in the ICU) in the progression stages. PBMC RNA-
seq data was collected from all 18 healthy donors, and sputum and fecal
microbiome sequencing data from 16 of them. The study protocol was ap-
proved by the Ethics Committee of the First Affiliated Hospital, Zhejiang
University School of Medicine, China (2021IIT A0239).

Epidemiological, clinical, and laboratory characteristics, as well as treat-
ment and outcome data, were obtained through data collection from hos-
pital electronic medical records. A trained team of doctors reviewed the
data. The clinical data included personal characteristics, comorbidities,
date of symptom onset, symptoms and signs, laboratory indicators, tim-
ing of antiviral treatment, and the progression and resolution of clinical
illness. IL2, IL4, IL6, IL10, IFN-𝛾 , TNF-𝛼, and PCT levels and lymphocyte,
neutrophil, and monocyte numbers were included as laboratory indicators.
The documented comorbidities included diabetes mellitus, heart disease,
chronic lung disease, renal failure, liver disease, HIV infection, cancer, and
immunosuppressive treatment, including corticosteroids. The symptoms
started when fever, cough, chills, dizziness, headache, or fatigue appeared.

Sample Collection: The respiratory tract samples included in this study
were sputum from conscious patients and bronchial aspirates from un-
conscious patients. The detailed method for sputum sample collection
is described in the Supporting Information section. Blood samples were
collected in special whole-blood collection tubes. PBMCs were isolated us-
ing standard density gradient centrifugation and used for RNA-seq analy-
sis. The fecal samples were collected in the hospital with a special sterile
container, stored frozen on dry ice, incubated in Dulbecco’s phosphate-
buffered saline with agitation for 15 min, and filtered through 40-micron fil-
ters. All medical staffs were equipped with personal protection equipment
for biosafety level 3 during sampling, including solid front-wraparound
gowns, goggles, and N95 respirators.

Library Generation for PBMC Transcriptome Sequencing: Total RNA was
isolated from the PBMC samples using the QIAamp RNA Blood Mini Kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions.
Total RNA (1 μg) was used to prepare a sequencing library. PolyA-tailed
RNAs were selected using mRNA capture beads (VAHTS) and the Illu-
mina Total RNA-seq (H/M/R) Library Prep Kit was used according to the
manufacturer’s instructions. Library quality was examined using an Ag-
ilent Bioanalyzer 2100. The libraries were pooled in equimolar amounts
to a final concentration of 2 nm. The normalized libraries were denatured
with 0.1 m NaOH (Sigma) and the pooled denatured libraries were pair-
end sequenced with a 150-bp read length in the Illumina NovaSeq 6000
platform.

Library Generation for Metagenome Sequencing: DNA was extracted
from frozen sputum and fecal samples using a TIANamp Micro DNA Kit
(DP316, Tiangen Biotech) according to the manufacturer’s recommen-
dations, after the host cells were removed using a self-developed host-
removal kit. DNA quality was assessed using an Agilent 4200 TapeStation
(Agilent Technologies). DNA libraries were constructed using standard-
ized protocols for DNA fragmentation, end repair, adapter ligation, and
PCR amplification. Library quality was assessed using an Agilent Bioana-
lyzer 2100. Whole-genome shotgun sequencing of the sputum and fecal
samples was performed on an Illumina HiSeq2500 platform. All samples
were paired-end sequenced with a 150-bp read length to a targeted data
size of 5.0 Gb.

RNA-seq Data Process: FASTQC[38] was used to determine the ini-
tial read quality control (QC) metric (base quality distribution). NGS QC
toolkits[39] were used to trim the low-quality reads. The RNA-seq reads
were mapped to the reference genome using Tophat.[40] Following align-
ment, Cufflinks[40] was used for transcript assembly. Transcripts generated
from all the sequencing samples were merged using Cuffmerge[40] and the
output files were imported separately into Cuffdiff[40] for further statistical
analysis.

Metagenome Data Process: Sequence reads were passed through
the KneadData QC pipeline (http://huttenhower.sph.harvard.edu/
kneaddata), which incorporates the Trimmomatic[41] and BMTagger[42]

filtering and decontamination algorithms to remove low-quality read
bases and reads of human origin, respectively. Trimmed non-human
reads shorter than 50 nucleotides were discarded. Samples with <

500 000 microbial reads were excluded. Taxonomic profiling was per-
formed using the MetaPhlAn2 classifier.[43] The classifier relied on
approximately 1 million clade-specific marker genes derived from >

10 000 microbial genomes to unambiguously classify reads to taxonomies
and yield the relative abundances of the taxa identified in the sample. To
analyze the microbial differences in COVID-19 severity, multiple linear
model regression analysis[44] (including patient information) and linear
discriminant analysis effect size analysis[45] were also performed to
identify microbiota biomarkers between groups of different COVID-19
severity. In addition, to perform taxonomic classifications of all the reads,
Kraken2 was used to perform exact k-mer matching to sequences within
the NCBI non-redundant database, using lowest common ancestor
algorithms.

Identification of Microbiota Markers for Predicting COVID-19 Severity
Based on Respiratory Tract and Gut Metagenome Data: To identify micro-
bial markers that distinguish samples from ICU and nICU patients, clas-
sification models were constructed based on genus and species profiles
using random-forest models. The models were validated by 10-fold strati-
fied cross-validation testing (i.e., the dataset partitions were resampled 10
times). In each test, the accuracy of the model was examined using the re-
ceiver operating characteristic, and abundance filtering was performed to
remove low-abundance features by calculating the average relative abun-
dance. Two steps were performed in the random-forest model. In the first
step, the model was constructed using each of the two microbial profiles
(respiratory tract and gut) independently. All the prefiltered features were
used to perform a random-forest function with the indicated parameters
(500 trees, balanced class weight) and compute the “feature importance”
(Mean Decrease Gini). The optimal number of features was determined
using the recursive feature elimination method[46] with a parameter step
= 0.1 and five different random seeds. In the second step, the combina-
tion model was constructed using features determined from the separate
respiratory tract and gut models. The features were then selected using
the recursive feature elimination method.[46] All analyses were performed
using the R software (ver. 4.0.0) package, “randomForest”.

Statistical Analysis: DEGs were identified using a significance thresh-
old of q value (false discovery rate) ≤ 0.05. R software (ver. 4.0.0) was used
for tSNE to cluster the data, explore the relationships between different
samples, and identify outliers. GO enrichment analysis was implemented
using the “clusterProfiler” R package.[47] GO terms with a corrected FDR
≤ 0.05 were considered significantly enriched. Single-sample GSEA was
used to evaluate the enrichment score of each sample. It was conducted
using the R package “GSVA”.[48] REACTOME gene sets were downloaded
from the Broad Institute website (https://www.gsea-msigdb.org/gsea/).

Alpha diversity was used to evaluate the diversity within a sample, in-
cluding richness and evenness measurements. The R software (ver. 4.0.0)
package “vegan”[49] was used to calculate the alpha diversity (Shannon
index) among the patients with COVID-19. The differences in alpha diver-
sity among and between groups were statistically evaluated using permu-
tational multivariate ANOVA or the permutation test with a p-value cal-
culated based on 2000 permutations. Fisher’s exact test and the Mann–
Whitney U test were used to compare categorical and continuous vari-
ables, respectively. Multiple comparisons were corrected using the false
discovery rate algorithm with a cut-off value of 0.05. Beta diversity was
used to evaluate differences in the microbiomes among the samples.
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PCoA-dimensional reduction methods were also used to obtain visual rep-
resentations. This analysis was implemented in the R “vegan” package[49]

and visualized using scatter plots.
RDA was performed among the patients with COVID-19 based on clin-

ical indices to identify non-redundant covariates of microbiome variations
from correlating factors. RDA extracted and summarized the variations in
a set of response variables explained by a set of explanatory variables. Cor-
relation analysis was used to reveal associations between taxa and sam-
ple metadata. Network analysis was used to explore the co-occurrence of
microbial taxa in patients with COVID-19 based on Spearman correlation
analysis. The correlation networks represented potential interactions be-
tween co-occurring microbial taxa. Correlation coefficients and significant
p-values were computed using R software. The networks were visualized
and analyzed using Cytoscape.[50]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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