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Abstract

Background: Many researchers have aimed to develop chronic health surveillance systems to assist in public health
decision-making. Several digital health solutions created lack the ability to explain their decisions and actions to human users.

Objective: This study sought to (1) expand our existing Urban Population Health Observatory (UPHO) system by incorporating
a semantics layer; (2) cohesively employ machine learning and semantic/logical inference to provide measurable evidence and
detect pathways leading to undesirable health outcomes; (3) provide clinical use case scenarios and design case studies to identify
socioenvironmental determinants of health associated with the prevalence of obesity, and (4) design a dashboard that demonstrates
the use of UPHO in the context of obesity surveillance using the provided scenarios.

Methods: The system design includes a knowledge graph generation component that provides contextual knowledge from
relevant domains of interest. This system leverages semantics using concepts, properties, and axioms from existing ontologies.
In addition, we used the publicly available US Centers for Disease Control and Prevention 500 Cities data set to perform multivariate
analysis. A cohesive approach that employs machine learning and semantic/logical inference reveals pathways leading to diseases.

Results: In this study, we present 2 clinical case scenarios and a proof-of-concept prototype design of a dashboard that provides
warnings, recommendations, and explanations and demonstrates the use of UPHO in the context of obesity surveillance, treatment,
and prevention. While exploring the case scenarios using a support vector regression machine learning model, we found that
poverty, lack of physical activity, education, and unemployment were the most important predictive variables that contribute to
obesity in Memphis, TN.

Conclusions: The application of UPHO could help reduce health disparities and improve urban population health. The expanded
UPHO feature incorporates an additional level of interpretable knowledge to enhance physicians, researchers, and health officials'
informed decision-making at both patient and community levels.
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Introduction

Background
Enhanced health surveillance systems for chronic disease
support could mitigate factors that contribute to the incline of
morbidity and mortality of diseases such as obesity. Obesity is
linked to increased overall mortality and has reached pandemic
proportions, being responsible for approximately 2.8 million
deaths annually [1,2]. Obesity represents an excessive and
abnormal accumulation of body fat, which leads to adverse
health effects that impose a health and financial toll on
individuals and society [2]. More than half of the US population
has at least one chronic condition, and 27% are living with
multimorbidity [3]. These conditions cause more than 1.7
million deaths per year in the United States, where obesity is
associated with the top leading causes of death (eg, diabetes,
heart disease, stroke, and cancer) [4].

Neighborhood factors such as socioenvironmental determinants
of health (SDoH) significantly contribute to these statistics [5-8].
Implementation of an intelligent health surveillance platform
that incorporates SDoH can improve preparedness, prevention,
and management of this obesity pandemic by assisting in the
implementation of effective treatment and interventions.

Health surveillance involves the “ongoing systematic collection,
analysis, and interpretation of data essential to the planning,
implementation, and evaluation of public health practice, closely
integrated with the timely dissemination of these data to those
who need to know” [9]. Researchers have aimed to develop
chronic health surveillance systems to assist in chronic health
decision-making [10-16]. The World Health Organization
(WHO) developed a conceptual framework for an Urban Public
Health Observatory (UPHO) comprised of 3 domains: mission,
governance, and knowledge and intelligence, the latter of which
incorporates a data management component [17]. This
framework from WHO therefore provides a strategic model for
health surveillance.

Many current digital health solutions and electronic health
record (EHR) systems lack the ability to incorporate machine
learning algorithms into their decision-making process, and
even if they do, the algorithms used do not have appropriate
capabilities to explain the suggested decisions and actions to
human users [18]. Machine learning approaches, so-called
black-box statistics, should be trustworthy, transparent,
interpretable, and explainable when making decisions in the
clinical or health science setting [18-20]. A system’s explanation
constitutes its interpretability [18,20-22]. Explainable AI (XAI)
increases the intelligence delivered to the user by providing
explanations, thereby enhancing the interpretability of outcomes
and findings. Researcher efforts have been shifting toward
applying algorithms that can aid in explaining the results of
machine learning models. For instance, the SHAP (Shapley
Additive Explanations) analysis [23] is an approach that assigns
each model feature an importance score for making a particular
prediction. Compared to traditional feature importance analyses,
the novelty of SHAP lies in its ability to assess importance at
the individual patient level. In this paper, we propose a novel
approach to explainability that uses knowledge graphs as a
semantic infrastructure explainable by design and enriches those
graphs with results from machine learning algorithms as metrics
and scores. The semantic causal relationships on the graph
provide contextual knowledge around a population, and the
metrics support those relationships, which provides 2 levels of
evidence: knowledge level and statistical level.

We implement a UPHO platform as a knowledge-based
surveillance system that provides better insight to improve
decision-making by incorporating SDoH and providing XAI
and interpretability functions [24]. Our UPHO consists of 3
layers: data, analytics, and application. In this work, we refine
the initial design by incorporating data management, knowledge,
and intelligence domains (Figure 1) that are in alignment with
the conceptual model by WHO and a focus on the semantics
layer.
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Figure 1. Expanded Urban Population Health Observatory framework. CDC: US Centers for Control and Prevention; USDA: US Department of
Agriculture; KG: knowledge graph; UPHO: Urban Population Health Observatory.

Objectives
The objectives of this article are to (1) expand UPHO by
incorporating a semantics layer, (2) cohesively employ machine
learning and semantic/logical inference to provide measurable
evidence and detect pathways that lead to undesirable health
outcomes, (3) provide clinical case scenarios and design case
studies on identifying SDoH associated with obesity prevalence,
and (4) provide a dashboard design that demonstrates the use
of UPHO in the context of obesity, using the provided case
scenario.

Methods

UPHO Expansion
Figure 1 shows the expansion of the UPHO to incorporate the
semantics layer. In the following section, we provide a detailed
description of the UPHO platform expansion design.

Data Management Domain
The data management domain comprises the data layer. The
UPHO collects population-level health and SDoH data and
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individual-level clinical and demographic data from EHRs
through regional registries.

Data Layer
To obtain population-level health data, we used the US Centers
for Control and Prevention (CDC) 500 Cities Behavior Risk
Factors Surveillance System, which includes data regarding
chronic diseases and their behavioral risk factors [25]. These
variables are model-based estimates of crude prevalence among
adults aged ≥18 years in 2018. We extracted variables pertaining
to obesity, lack of physical activity, lack of insurance, and
diabetes mellitus at the census tract level.

We extracted population-level SDoH variables that pertain to
food insecurity, transportation, and socioeconomic stability at
zip code, census tract, census block, and census block group
levels from the US Census Bureau 2018 American Community
Survey [26] and the US Department of Agriculture Research
Atlas [27].

Knowledge and Intelligence Domain

Analytics Layer
The analytics layer pulls raw data from different sources in the
data layer and analyzes it to classify it, predict new relations,
conduct spatial pattern detection, and calculate new metrics.
The analytics layer also performs feature engineering by
deriving new metrics and using them to enrich the original data
sets.

Semantics Layer
The stages of the UPHO semantics layer are shown in Figure
2. In the knowledge representation and axiomatization stages,
we use semantic web technologies to develop several domain
and application ontologies from relevant domains of interest to
provide necessary contextual knowledge. Ontologies are

systematic representations of knowledge that can be used to
integrate and analyze large amounts of heterogeneous data,
thereby allowing classification of knowledge [28]. In those
ontologies, we define concept hierarchies and rule axioms by
using existing domain knowledge, such as the WHO/CDC
guidelines, and federal and local sources. We develop new
ontologies by reusing several existing domain ontologies. For
this study, we adopted concepts, properties, and axioms from
5 different ontologies that we used in our prior work [29-32],
specifically (1) disease ontology (DO) [31] (eg, obesity,
diabetes); (2) the Childhood Obesity Prevention (Knowledge)
Enterprise (COPE) ontology [29] that defines SDoH concepts
such as socioeconomic issues (eg, food deserts, income) and
behavioral issues (eg, lack of physical activity, purchasing
preference); (3) geographical information system ontology
(GISO) [32] (eg, zip code, census tract); (4) health indicators
ontology (HIO) [32]; and (5) the adverse childhood experiences
(ACEs) ontology (ACESO), which defines concepts related to
ACEs, health outcomes (eg, mental and physical health),
interventions, and SDoH, including axioms that define issues
like lack of transportation (eg, limited access to a vehicle and
limited access to public transit) and food and how they affect
routine follow-up activities (eg, missing medical appointments)
[30].

We start our semantic analysis using concepts defined in our
ontologies and web services to align concepts to actual data
resources, allowing us to construct a population knowledge
graph structure that abides by an ontology and contains both
data and concepts [33]. We enrich that knowledge graph using
a logical reasoner that uses facts derived from existing
knowledge, new knowledge extracted from the analytics layer,
and the generic rule axioms defined in the domain ontologies
that trigger specific actions under certain conditions.

Figure 2. Urban Population Health Observatory semantic layer framework.

JMIR Form Res 2022 | vol. 6 | iss. 7 | e36055 | p. 4https://formative.jmir.org/2022/7/e36055
(page number not for citation purposes)

Brakefield et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Explainable AI
An effective explainable system accounts for the target user
group (eg, physician, researcher). Knowledge of the end user
is very important for the delivery of decisions,
recommendations, and actions. Each analytics and semantics
layer contains an explainability component that can be leveraged
in the uppermost health applications layer. To maintain features
such as data integration, XAI, and interpretability, we must
achieve interoperability by using semantics and ontologies.
Explanations adaptable to the user can decrease errors in
interpretation by enhancing the interpretability of outcomes and
findings.

Application Domain
The UPHO platform can be used as a basis to develop several
applications, some of which we have already developed,
including dashboards [24], mobile health (mHealth) apps [34],
digital assistants, and recommender systems [35]. In this article,
we leverage the UPHO to implement a dashboard for real-time
surveillance. By accessing dynamic knowledge discovered
through the UPHO, the dashboard can provide real-time early
warnings that are based both on content and context. The
platform is accessible to policymakers, physicians, researchers,
public health officials, and the public.

Clinical Scenarios
The following sections present 2 clinical case scenarios that
focus on a physician and a researcher as users to demonstrate
the methodology used in the knowledge and intelligence domain
layers and the corresponding dashboard design in the
application.

Scenario 1: A physician seeks an effective intervention for an
adult African American patient diagnosed with obesity. The
physician focuses on how SDoH in the patient’s neighborhood
can influence the doctor’s management plans.

Scenario 2: A researcher investigating the impact of SDoH on
obesity seeks an effective intervention for the adult obese
populations in Memphis, TN.

Analytics Layer: Machine Learning Model
Development
We trained a machine learning–based support vector regression
(SVR) machine model [36,37]. We linked CDC 500 Cities
population-level obesity and behavior data [25] to the
population-level social DoH [26,27] data set at the census tract
level in Memphis, TN. We analyzed 8 features and used a
Spearman rank test to assess the positive or negative relationship
between each feature. We used a variance inflation factor (VIF)
to detect multicollinearity between features. To examine patient
neighborhood-level exposure, we used SHAP analysis. Table
1 shows the summary statistics for features considered for this
study. We trained our support vector model on the 85% of
randomly selected training data and tested the model on the
15% of remaining data to ensure the generalizability of the
model, and we applied the linear kernel function. We scaled
our data to have a mean of zero and standard deviation of one.
We applied the grid search optimization method to seek optimal
hyperparameters to improve model performance using the Caret
package in R software (R Foundation for Statistical Computing)
[38]. In addition, to avoid overfitting 5-fold cross-validation
was applied to the training data set. We used root mean square

error (RMSE) and R2 to evaluate the performance of the model.

Table 1. Summary statistics for obesity and related risk factors in Memphis, TN, census tract (n=178 census tracts).

Test, mean (SD)Training, mean (SD)Original, mean (SD)OperationalizationFeatures

37.97 (6.95)37.42 (7.54)37.50 (7.84)Model-based estimate for crude
prevalence of obesity among adults
aged ≥18 years, 2018

Obesity

1616.17 (1120.23)1345.68 (967.83)1382.20 (108.37)Count of low income population more
than half mile from a supermarket in
the census tract

Low access to su-
permarket

63.72 (31.88)62.22 (33.04)63.17 (32.70)Percentage of population that is Black
or African American

Black

31.06 (17.06)28.27 (16.18)28.65 (16.28)Percentage of population living below
the federal poverty line

Poverty

14.16 (6.52)15.97 (9.67)15.73 (9.31)Percentage of unemployed populationUnemployment

11.35 (5.89)10.23 (6.70)10.38 (6.59)Percentage of population 25 years or
older without high school diploma

High school diplo-
ma

37.34 (9.99)35.97 (9.79)36.16 (9.80)Model-based estimate for crude
prevalence of lack of physical activity
among adults aged ≥18 years, 2018

Lack of physical
activity

111.93 (80.40)160.99 (337.65)350.20 (126.26)Crime rate per thousand peopleCrime

20.88 (6.67)20.10 (6.81)20.21 (6.78)Model-based estimate for crude
prevalence of lack of insurance
among adults aged ≥18 years, 2018

Lack of access to
insurance
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Semantics Layer: Knowledge Graph Generation
We followed the following ordered steps to generate the
semantics layer knowledge graph from concepts defined in our
domain ontologies.

1. We use concepts, relations, and axioms from domain
ontologies to construct a preliminary population knowledge
graph. For our scenario, we start by adding a dummy node
that represents either a patient or a population (Figure 3).
We begin connecting that node to concepts like disease,
risk factors, physical characteristics, etc. For example,
obesity falls into the disease type represented by the isA
relation in Figure 3, where isA reflects a subtype. For
instance, SDoH isA RiskFactr, and lackOfTransporation is
an SDoH subtype. These different hierarchies are encoded
in the ACESO ontology. We also add a prefix before each
type to reflect the namespace where that concept is defined
(eg, the term DO:Disease reflects that the concept disease
is defined in the DO). Relations can also reflect the
properties of a node. For example, a patient livesIn 38127,
which isA zip code, and that zip code has 8 census tracts
of the type CensusTract, defined in the GISO ontology.

2. We populate the generated graph structure with evidence
from the data layer. For instance, our data set contains a
variable that shows the prevalence of obesity as a percentage
metric in specific neighborhoods. We use that information
to add edges to our graph that link obesity (as a disease) to
prevalence (as a metric).

3. We further enrich and refine the initial graph by performing
knowledge engineering using the logical reasoner (Figure
2) and feature engineering using the results from the
analytics layer. The logical reasoner uses a set of rule

axioms to perform logical inference on concepts already
existing in the graph. For instance, our COPE ontology
encodes epidemiological causal axioms that link SDoH to
negative health outcomes. Textbox 1 shows how we encode
the generic axioms R1-R3. When we combine those generic
rule axioms with facts about a specific census tract, we can
infer all the risk factors associated with living in that census
tract, eg, knowing the facts F1 can tell us that the population
living in that area may be exposed to risk factors that lead
to obesity.

4. After performing the logical inference on the initial graph
structure, we incorporate new nodes and edges in the graph
corresponding to new concepts (eg, the
lackOfPhysicalActivity concept from the COPE ontology)
or new relations (eg, isExposedTo). The knowledge graph
refinement is an iterative process, so we can repeat step 2
until we reach a stable state of the graph after which we
can populate the graph with more evidence from our
engineered data that we pull from the analytics layer. For
that purpose, we use the population-level data about SDoH
risk factors collected from US Census, CDC, and USDA.
For instance, to capture the lack of physical activity we use
the CDC 500 Cities data set. The machine learning analysis
performed by the analytics layer provides edges that pertain
to prediction (eg, isPredictorOf, Figure 3). The final
knowledge graph is shown in Figure 3, which provides a
generic view of all possible assumptions we can make about
this patient or population.

5. To gather the most important information from this graph,
a user can trace a specific pathway based on both logical
inference and machine learning results. The red arrows in
Figure 3 reflect the pathway in our scenario.
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Figure 3. Knowledge graph that links concepts defined in domain ontologies (eg, GISO: CensusTract) to data resources stored in databases (eg,
percentage Black population) or those derived from the analytics layer. The upper part of the figure shows the nodes and edges produced through
semantic inference during the knowledge engineering phase. The lower part of the figure shows the nodes and edges added through ML analysis during
the feature engineering phase. GISO: geographical information system ontology; HIO: health indicators ontology; ACESO: adverse childhood experiences
ontology; COPE: Childhood Obesity Prevention (Knowledge) Enterprise; DO: disease ontology.

Textbox 1. Encoding axioms as general rules, initial facts, or new facts derived from feature engineering or logical reasoning.

Generic rule axioms

• COPE:lackOfPhysicialActivity leadsTo DO:Obesity (R1)

• %ObesityPrevalence:Metric isHealthIndicatorFor DO:Obesity (R2)

• Obesity:Disease isRiskFactorOf Diabetes:Disease (R3)

Facts

• individual:Patient livesIn “10300”:CensusTract (F1)

• “10300”:CensusTract has “49”:%PopWLackOfPhysicialActivity (F2)

• “10300”:CensusTract has “21”:%PopNoHighSchoolDiploma (F3)

• “10300”:CensusTract has “60”:%UnderPovertyLine (F4)

• “10300”:CensusTract has “46”:%ObesityPrevalence (F5)

Feature engineered through multivariate analysis

• %PopWLackOfPhysicialActivity:Metric isPredictorOf ObesityPrevalence:Metric [using F2-F5] (F6)

Logical reasoning

• individual:Patient isExposedTo LackPhysicalActivity:PhysicalCharacteristic [using F1 and F2] (F7)

• individual:Patient shouldBeScreenedFor Diabetes:Disease [using R1, R2, R3, F6, F7]
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Ethics Approval
No ethics review board assessment was required for this study
because we used publicly available data.

Results

Machine Learning Analysis
The significant Spearman rank coefficient and VIF of the 7
features included in this study are shown in Table 2. Any feature
exhibiting a VIF of greater than 10 was removed. For the SVR
model results, we obtained an RMSE of 0.312 for the training

set and 0.203 for the test set, while the R2 for the training set
was 0.91 and that for the testing data set was 0.95 . Since the
model provides similar results for training and test data sets,
the proposed model does not overfit. The SVR feature
importance results range on a scale of 0 to 100, and the greater
the score, the most important the feature (Table 3). We found
that the percentage of the population lacking physical activity,
percentage of population below poverty level, percentage of

population without high school diploma, percentage of
population unemployed, and percentage of Black population
were the most important variables when predicting obesity
prevalence in Memphis, TN.

Figure 4 shows SHAP’s value plot of feature contribution at
the patient neighborhood level (census tract: 10300), which
indicates the most important features such as the percentage of
the population that lack physical activity and the percentage of
population below the poverty level, from the point of view of
the prediction of obesity prevalence in the patient neighborhood.
The lack of physical activity and poverty had the largest positive
(increased) contributions to obesity prevalence. On the other
hand, the population of low income and more than a half-mile
from the supermarket showed a negative (decreased)
contribution but was the least important variable when predicting
the patient neighborhood obesity prevalence. The knowledge
extracted from our analysis will be used to detect the obesity
prevalence pathways, which are defined by the top 5 most
important features.

Table 2. Spearman rank coefficient and variance inflation factor for each feature.

VIFaSpearman rank coefficientFeatures

1.700.37Low access to supermarket

2.800.77Black

3.660.83Poverty

3.020.73Unemployment

3.550.81No high school diploma

8.820.92Lack of physical activity

1.680.37Crime

aVIF: variance inflation factor.

Table 3. Support vector regression data set–level feature importance score.

SVRa feature importanceFeatures

4.39Low access to supermarket

68.20Black

78.60Poverty

70.16Unemployment

73.41No high school diploma

100Lack of physical activity

0Crime

aSVR: support vector regression.
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Figure 4. The Shapley Additive Explanations (SHAP) value plot of the feature contribution (unscaled) for the patient’s neighborhood (census tract:10300).
The x-axis represents the SHAP’s value, and the y-axis represents the features. The lack of physical activity and poverty had the largest positive (increase)
contributions to obesity prevalence in the patient’s neighborhood.

UPHO: Dashboard Design

Use Case Scenarios
In this section, we describe the semantics feature provided by
UPHO through a proof-of-concept prototype that will display
the different features of the expanded system by implementing
the clinical scenarios described in the previous section.

First, the user will sign into the UPHO platform dashboard,
which will determine their specific role and establish the proper
access permissions. The user will make the selections from the
following menu items:

• S1. Select an outcome of interest (eg, obesity prevalence,
cancer,)

• S2. Select analytics aim
• S3. Select level of analysis and enter address/location

(patient’s address [patient-level], city, county, or state
[population-level])

• S4. Select geographical level of granularity (eg, zip code,
census tract)

• S5. Select SDoH domain-specific risk factors

After making these selections, the system will present
on-demand explanations of risk level calculations, based on the
selected level of geographic granularity.

Scenario 1
The physician selects “obesity prevalence” as the outcome of
interest (S1), and “causal pathway analysis” (S2) as the analytics
aim, “patient-level” as the level of interest (entering patient’s
address, S3), and “census tract” as the geographical level of
granularity (S4). The system provides risk-level calculations
and descriptive statistics based on the census tract of the
patient’s address. The physician also has the option to select a
particular SDoH of interest in S5, in which case the system will
highlight these nodes in the graph. Finally, the user selects
“Explore” to generate the results and a corresponding knowledge
graph. These results are tailored to the user’s interest in
patient-level analysis and provide an explanative overview of
the analysis results (Figure 5A). The system also allows the
user to hover over pathways and nodes to explore explanative
knowledge (Figure 5B, 5C) and offers a summary of
recommendations and knowledge (Figure 5D).
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Figure 5. The dashboard of the Urban Population Health Observatory displays a physician user interested in obesity prevalence in her patient’s
neighborhood with an overview of analysis results (A), explanations displayed when user hovers over a particular pathway (B), knowledge displayed
when user hovers over a particular node (C), and summary of recommendations and knowledge (D). ACESO: adverse childhood experiences ontology;
GISO: geographical information system ontology; DO: disease ontology; HIO: health indicators ontology.

Scenario 2
Here the researcher has access to more features. The researcher
explores the causal pathway analysis aim in a population-level
analysis and enters Memphis, TN, as a location of interest at
the census tract–level (S1-S3), as shown in Figure 6, and the
system provides risk-level calculations for the city of Memphis,
TN. The researcher also has access to regression plots (Figure
6, A), which reflect the selection in S5. In section B, the system

reports the results from the SVR machine model and provides
explanations for each feature included in the model (Figure 6,
B). In section C, the explanation pane presents a knowledge
graph showing results tailored to the user’s interest in
population-level analysis (Figure 6, C). The researcher can also
hover over pathways and nodes for knowledge (Figure 6, C, a,
b, and c), like the physician in scenario 1. The system also offers
the researcher a summary of recommendations and knowledge
(Figure 6, C, d).
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Figure 6. The dashboard of the Urban Population Health Observatory displays a researcher as the user interested in obesity prevalence in Memphis,
TN, with univariate regression plot (A), multivariate analysis (B), and (C) which contains an overview of analysis results (a), explanations displayed
when user hovers over a particular pathway (b), knowledge displayed when user hovers over a particular node (c), and summary of recommendations
and knowledge (d). ACESO: adverse childhood experiences ontology; GISO: geographical information system ontology; DO: disease ontology; HIO:
health indicators ontology.

Explanations
The graph part of the dashboard can serve as a tool for
researchers and physicians to semantically explain the
recommendations that we made about a specific patient or
population. The current version of the graph provides 2 different
visual cues, as follows.

• Tracing pathways on the graph provides visual cues. The
red arrows in Figure 3 show the edges that are part of a
causal pathway that leads from risk factors to negative
health outcomes for the specific patient, zip code, or census
tract. While this path is specific to the selected patient or
population, it can be used as a generic metapath. For
example, Individual livesIn CensusTract→representsA
Neighborhood→hasPhysicalCharacteristic→RiskFactorFor
Disease. Depending on the level of sophistication desired,
the user can trace paths on the graph and click on certain
nodes or edges to obtain more insights, including
statistically derived evidence or semantically inferred
knowledge. They can also track the sources of that
knowledge including the ontologies used.

• Clicking on a node or edge on the graph displays analysis
results or knowledge. The user can hover over a certain
edge (eg, lackOfPhysicalActivity
isPredictorOf
ObesityPrevalence; Figure 5B) to obtain an explanation of
the data that show lackOfPhysical activity in the patient’s
census tract leads to an increase in the prevalence of obesity.
Similarly, the user can hover over a metric node (eg,
percentage of the population below the poverty line, Figure
5C) to explain that this patient lives in a neighborhood in
which nearly 61% of the population lives below the poverty
line, compared to the average in their city, county, or state.

UPHO’s metrics can be implemented into the backend of EHR
systems (eg, Epic), and the results of those metrics can be
rendered on the EHR interface in the form of risk scores on
dashboards with severity indicators based on thresholds.
Physicians can examine these metrics at the population level or
individual patient level. UPHO can alternatively be used in a
standalone approach by allowing a physician to extract more
details about a single patient by providing the patient’s address
or a population of patients by providing their city, state, or
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county. The input is coded to a geographical level of granularity
that can be aligned with the population-level data to gain insights
into the patient’s environment.

Discussion

Principal Findings
Previous studies provided evidence that socially disadvantaged
communities are disproportionately affected by chronic diseases
such as obesity [5-8], which is a risk factor for developing
diabetes, heart disease, and cancer. The significance of UPHO
lies in its ability to provide a multifaceted surveillance system
design that serves as an apparatus for actualizing effective
interventions, addressing concerns in health disparities,
providing awareness to the public, and equipping health officials
with a surveillance system that will improve population health
decision-making and planning [24]. Using the semantics layer,
the UPHO platform provides contextual knowledge by reusing
several ontologies focusing on public health (eg, diseases,
transportation, geography).

The incorporation of semantics provides the user with an
additional layer of explainability and interpretability, which
could decrease errors in intervention or treatment due to
misinterpretation or misunderstanding. The semantics layer can
also use ontologies to overcome the challenge of scattered data
sources, thereby assisting in the achievement of interoperability,
which will be used to maintain features such as data integration,
XAI, and interpretability. We apply logical reasoners to extract
and supply knowledge despite limited data.

Similar chronic disease surveillance systems [10-16] have
offered approaches to assist in the efforts of improving chronic
disease surveillance. Several published systems do not
incorporate SDoH data [10-14]. One did not provide an
implementation of the systematic framework [16] and several
of them did not include XAI as a feature.

We followed the conceptual framework for UPHOs [17] and
sought to improve the quality of disease surveillance by
incorporating advances in AI and Bog Data, including interactive
dashboard design, explainability, data integration, and
interoperability, and incorporation of multimodal SDoH data.

Developing a multidimensional scalable surveillance system to
monitor and detect trends and deliver rapid early warnings and
recommendations could assist health officials, physicians, and
researchers in mitigating a health crisis such as the ongoing
COVID-19 pandemic [24].

Limitations
One of the major limitations of UPHO is that it collects
population data so that neighborhood or population assumptions
are made for an individual in a clinical setting. For instance,
individuals or patients who live in a particular population or
neighborhood might not have the same characteristics as other
individuals residing in the same neighborhood or population.
However, our platform provides an end-to-end approach to
examining the environment one resides and incorporates
information that is important for the implementation of effective
interventions for a given disease.

The future work will be focusing on the further development
of the UPHO platform, so it can enable timely, insight-driven
decisions and inform immediate or long-term health policy
responses [15] to current and future public health crises.

Conclusions
This study leveraged semantic technology and presented a
proof-of-concept prototype design for our knowledge-based
surveillance system, UPHO, which aims to reduce health
disparities and improve population health. The expanded feature
incorporates another level of interpretable knowledge needed
to inform physicians, researchers, and health officials’
decision-making process at the community level. Incorporating
XAI helps with the explainability and interpretability of the
relevant data, information, and knowledge. Users who are not
equipped with domain knowledge could extract common sense
knowledge from a system that incorporates XAI [35]. We as
humans need a clear visualization and understanding of
relationships between parameters in a system to make informed
decisions. The lack of understandability and explainability in
the health care and public health domains often leads to poor
transparency, lack of accountability, and ultimately lower quality
of care and biased health policies [39]. Thus, the incorporation
of semantics and XAI can improve fairness, accountability,
transparency, and trust in health care and public health.
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