Skip to main content
. 2022 Jul 21;55(15):1997–2010. doi: 10.1021/acs.accounts.2c00197

Table 1. Homo- and Heterodinuclear CHO/CO2 ROCOP Catalysts Using L1a.

# catalyst time (h) conv.b(%) CO2c (%) polym.d (%) TONe TOFf (h–1) Mn [Đ]g (g mol–1)
1 Mg(II)Mg(II) 10 15 >99 >99 151 15 800 [1.13]
2 Mg(II)Zn(II) 10 34 >99 >99 344 34 3100 [1.14]
3 Mg(II)Mg(II)/Zn(II)Zn(II)(1:1) 10 7 >99 >99 72 7 <500
4h Mg(II)Zn(II) 3 37 >99 >99 372 124 10 200 [1.02] 4750 [1.08]
5i Mg(II)Zn(II) 0.5 44 >99 >99 4415 8830 44 400 [1.04] 21 200 [1.05]
a

Reaction conditions: [Cat]/[CHO] = 1:1000, neat epoxide, 1 bar CO2, 80 °C.36 Note that under these conditions, the Zn(II)Zn(II) did not initiate polymerization, as the study utilized bromide coligands.

b

Conversion of epoxide, determined by 1H NMR.

c

Selectivity for carbonate vs ether, determined by 1H NMR.

d

Selectivity for polymer vs cyclic carbonate, determined by 1H NMR.

e

Turnover number (TON) = total number of moles of epoxide consumed/mol of catalyst.

f

Turnover frequency (TOF) = TON/time (hours).

g

Number average molecular weight [dispersity], determined by GPC.

h

Conditions: [Cat]/[CHO] = 1:1000, 1 bar CO2, 80 °C.37

i

Conditions: [Cat]/[CHO] = 1:10000, 20 bar CO2, 120 °C.37