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Abstract

Background: Advancements in genomic sequencing continually improve personalized medicine, and recent
breakthroughs generate multimodal data on a cellular level. We introduce MOSCATO, a technique for selecting
features across multimodal single-cell datasets that relate to clinical outcomes. We summarize the single-cell data
using tensors and perform regularized tensor regression to return clinically-associated variable sets for each ‘omic’ type.

Results: Robustness was assessed over simulations based on available single-cell simulation methods, and
applicability was assessed through an example using CITE-seq data to detect genes associated with leukemia. We find
that MOSCATO performs favorably in selecting network features while also shown to be applicable to real multimodal
single-cell data.

Conclusions: MOSCATO is a useful analytical technique for supervised feature selection in multimodal single-cell data.

The flexibility of our approach enables future extensions on distributional assumptions and covariate adjustments.
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Background

Classic bulk genetic sequencing involves averaging sig-
nature levels across all cells. Different sequencers may
sequence different types of molecules such as ribonucleic
acid (RNA), proteins, DNA methyl groups, etc. Disease
progression, therapy success, and other clinical outcomes
often vary among individuals suffering from complex dis-
eases [3, 7, 17, 35], and the heterogeneity in their out-
comes may be better understood through the intricacies
of a patient’s molecular signatures [1, 5, 24, 26]. This
has led to an explosive demand for multi-omics which
involves integrating multiple types of molecular informa-
tion in order to have a more Systems Biology approach.
For example, in breast cancer patients with resistance to
lapatinib therapy, Komurov et al. were able to suggest
additional therapy targets by identifying combinations of
RNA and proteins responsible for glucose deprivation that
was associated with the resilience [18].
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Methods for identifying graphs and gene regulatory
networks within a single molecular type has been well
studied [14, 20], however, different methods should be
considered when integrating multiple types of molecular
information in order to accommodate the between and
within molecular relationships [6]. Each molecular type
often contains thousands of features, and integrating
them creates a higher dimensional problem with more
sophisticated relationships both within and between
molecular types. For example, the Decomposition of Net-
work Summary Matrix via Instability (DNSMI) method
decomposes a matrix of network strengths by fitting a
series of models for the expected relationships across
molecular types and with the disease outcome [38].
Supervised sparse canonical correlation analysis (SCCA)
attempts to optimize the correlation matrix between
molecular types through lasso constrained linear combi-
nations of the features and also eliminates features weakly
correlated with the outcome [36].

In bulk sequencing experiments, rare cells or smaller
cell-types will be diluted due to the averaging across
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all cells within the sample. This motivated single-
cell sequencing techniques where molecular information
could then be sequenced on a cell-by-cell basis. While
initial protocols were limited to RNA [23, 29], newer tech-
nology may now sequence multiple types of molecular
information within each cell, denoted as multi-modal (or
multi-omic) single-cell sequencing. For example, CITE-
seq simultaneously sequences both cell surface proteins
and RNA on each cell of a sample [32]. Although still a
growing technology, applications have already been con-
sidered using this novel sequencing approach. For exam-
ple, Kendal et al. utilized CITE-seq technology to compare
tendons in healthy individuals to those with tendinopathy
[15]. Figure 1 displays an example of single-cell data from
each patient.

Many bulk sequencing problems utilize matrix decom-
position techniques for various analytical goals where the
dimensions correspond to different feature sets (e.g., RNA
or proteins). However, single-cell sequencing essentially
creates an added dimension for cells that did not previ-
ously exist in bulk sequencing. Tensors provide a general
framework for organizing high dimensional data, and a
matrix is a special case of a two dimensional tensor. There-
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fore, leveraging tensors for single-cell sequencing is an
interesting approach to accommodate the added cellular
dimension. For example, SCLRTC and scLRTD utilize ten-
sor decompositions to impute dropouts or missing data
found in single-cell sequencing data [25, 28]. scTenifold-
Net also utilizes tensor decomposition to identify unsu-
pervised gene regulatory networks in single-cell RNA-seq
data [27].

This manuscript proposes a novel method, Multi-
Omic Single-Cell Analysis using TensOr regression
(MOSCATO), for identifying the superstructure of a semi-
directed graph, or network, within multimodal single-cell
data that relates to a disease or phenotypic outcome.
Current single-cell methods are often either limited to
one subject/experiment, limited to just RNA, unsuper-
vised with no clinical outcome associations, or intended
for cell clustering and not feature selection. MOSCATO
uses regularized tensor regression to address each of
those common limitations found in existing methods.
“Preliminaries” section describes preliminary tensor con-
cepts, “Results” section presents the MOSCATO results
from a series of simulations and a real data application,
“Discussion” and “Conclusions” sections discuss future
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Fig. 1 Multimodal Single-cell Network Detection Experiments. For each subject in a study, their sample is sequenced in a multimodal single-cell
sequencer which returns a dataset for each ‘omic’ type. These datasets are constructed (rows for cells and columns for features) across all subjects in
the study. Each subject also has a disease outcome, and the study goal is to identify patterns across features which relate to the disease outcome
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work and limitations, and “Methods” section describes
the mathematical details behind MOSCATO. MOSCATO
is applicable when two ‘omic’ types of single-cell data
are present (e.g, RNA and proteins) with a univariate
outcome of interest.

Preliminaries

MOSCATO utilizes regularized tensor regression, and
this section describes existing and relevant tensor con-
cepts. “Tensor definitions” section defines tensors and
basic tensor operations, and “Tensor regression” section
uses the operations and definitions from “Tensor defini-
tions” section to describe tensor regression and regular-
ization techniques.

Tensor definitions

High dimensional data may be organized into a tensor,
and a matrix may be thought of as a 2-dimensional tensor.
Utilizing familiar tensor notation as provided by Kolda
and Bader [16], we let Z € RP1*P2XXPD denote a D-
dimensional tensor where dimension d contains p,; vari-
ables for d = 1, ..., D. For example, D = 1 denotes a vector
and D = 2 denotes a matrix. Many mathematical opera-
tions for tensors build on mathematical operations used in
matrices. For example, Definition 1 describes outer prod-
ucts between D vectors to create a D-dimensional tensor,
where o denotes the Khatri-Rao product.

Definition 1 Let by, by, ..., bp, denote vectors where by €
RP4. Then the outer product of those vectors, by obyo- - -0
bp, creates a D-dimensional tensor of size py Xpa X+ - - Xpp,
and each (ir, ..., ip)" element equals [T5_, ba,,.

It may also be convenient to reorganize a tensor into a
lower dimensional space by vectorizing or mode-d matri-
cizing the tensor. Definitions 2 and 3 describe these
reorganization techniques.

Definition 2 Let Z € RPI*P2X-XPD depote a D-
dimensional tensor. Then Z may be reorganized into a
column vector through the vec operator vec(Z) € Rl_[lepd,
where thej = 1+Z§=1(id—1) ]_[Z,_:l1 pa element of vec(Z)

corresponds to the (iy, ..., ip)" value in Z.

Definition 3 Let Z € RPIP2X-XPD depote a D-
dimensional tensor. Then Z may be reorganized into
a matrix through the mode-d matricization operator
Za € RPeXlazaPa | where the (ig, )" element within
Zq) equals the (iy, ..., iD)th value within Z and j = 1 +
> azaCa—D) g ca gr za Par-

Similarly as done in matrix operations, it may be of
interest to multiply two tensors with comparable dimen-
sions via inner products, as described in Definition 4.
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Definition 4 Suppose two tensors B € RP1**PD gpd
Z € RPYXXPD_ The inner product may be obtained by

(B, Z) = (vec(B),vec(Z2))
Z bil""liDZily..‘,iD' (1)

i1500iD

Furthermore, it may be of interest to multiply a matrix
along the 4 dimension of a tensor through d-mode prod-
ucts as described in Definition 5.

Definition 5 Suppose a tensor Z € RPVXXPa>xpp
and a matrix U € RT*Pd, The d-mode product
between Z and U may be expressed as Z x4 U €
RV XGXXPD where the (i1, ..., ig—1, )y ig41s - ip) " value
equals Zf:’zl Ziy,ip Wiy

The rank of a matrix denotes the maximum number of
linearly independent rows/columns in the matrix. Build-
ing on those concepts, the rank of a tensor may be thought
of as the maximum number of vectors that can be mul-
tiplied and added to replicate the tensor, as shown in
Definition 6.

Definition 6 Assume a D-dimensional tensor Z €
RP1>*P2XXPD | Z has rank R if no smaller R exists such that

R
Z = Zzgr) ozg) o~~~ozg)
r=1 (2)
=[ [Zl, ZZ; ooy ZD] ] )

where Definition 7 defines [[-]], z‘(;) € RPi gnd 7; =
[z‘(il),...,zfiR)] € RPa*R for some set of Z, matrices for
d=1,..D.

Definition 7 Let Z; € RP<*R for d = 1,...,D. Further-
more, let zg) denote the r'* column of Z4. Then

R
[[Z1,Z2,.. Zp] 1= Y 2 02y’ 0 02z 3)
r=1

The true rank of a tensor may often be difficult to deter-
mine due to the high dimensionality, motivating decom-
position techniques that estimate vectors for a given rank
that approximate the tensor, as shown in Definition 8.

Definition 8 Assume a D-dimensional tensor Z €

RP1*P2%--XPD_ A rank-R CP decomposition aims to use R
vector sets (one vector per dimension) to approximate Z by

R
~ r) () (r)
Zx E z 0z, 0---02p @
r=1

:[ [Zb Z2: veey ZD] ] )
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where Z,; = [ziil), ...,zfiR)] € RPaxR,

Kolda and Bader present additional details on decom-
position and other tensor operations [16].

Tensor regression

Building on notation covered in “Tensor definitions”
section, this section will briefly describe tensor regres-
sion that was originally presented by Zhou et al. [39].
Tensor regression builds on Generalized Linear Model
(GLM) concepts, where we have an outcome y for each
subject that follows some exponential family with link
function g(-) and mean p. Classic GLM uses univariate
independent variables to predict the outcome, but tensor
regression extends those concepts by additionally allow-
ing a predictor tensor. This is accomplished by multiplying
the dimensions of the tensor through coefficient vectors
that convert the dimensions to a univariate value that may
then predict the outcome.

Figure 2 shows a simple example with rank-1 tensor
regression and D = 2 dimensions for the predictor ten-
sor. Each dimension in the predictor tensor corresponds
to a different feature set, and each subject will contain its
own D = 2 predictor tensor to be used to predict their
univariate outcome y.

Imaging modalities such as magnetic resonance imaging
(MRI) present an excellent application for tensor regres-
sion models. For example, a particular brain MRI slice
may be of interest for an outcome, say, disease status.
This image slice can be expressed in an array structure
(i.e., a 2-dimensional tensor) where the value at a given
pixel denotes the MRI signal associated with that location.
Referring to the model shown in Fig. 2, the MRI image
slice would correspond to the predictor tensor, Z, and the
estimated coefficients would indicate regions of interest
associated with the outcome.

Tensor regression may also involve higher rank prob-
lems with the more formal representation

R
g<u>=ﬁo+xTU+<Zﬂ{”o Voneo ,3”,2> 5)

r=1
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where U contains the univariate independent variables
(e.g., age or sex). A rank-R tensor regression estimates
R coefficient vectors for each dimension in the predic-
tor tensor, but for simplicity, in this manuscript we will
assume rank-1. The Block Relaxation Algorithm is used
to estimate the coefficient vectors with additional details
described by Zhou et al. [39]. Zhou et al. [39] also claim
that regularization in tensor regression may be accom-
plished by simply imposing constraints when fitting the
models on each dimension.

If one naively vectorized the predictor tensor and fit a
classic GLM model, it would require estimating ]_[f;:1 Pd
coefficients for the tensor. This approach would not only
ignore the inherent structure of the data by treating each
element in the tensor as independent with no distinc-
tion between the dimensions, it would also attempt to
estimate many more coefficients compared to R ZdD=1 Pd
coefficients in tensor regression. Consequently, this naive
approach may be unrealistic in high dimensional problems
given a typically much smaller sample size. This reduction
in parameters highlights the benefits of tensor regression.
However, it is subject to limitations such as uniqueness
and identifiability. For example, suppose a rank-1 model
with D = 2, g(y) = B17 ZB,. Then for any scalar 7, we

could derive an equally optimal model g(y) = El TZﬁ~2
where ﬁl = 7f; and Eg = P2/t. Additionally, the Block
Relaxation Algorithm may converge to a local maxima as
opposed to the global maxima when attempting to maxi-
mize the log likelihood. Zhou et al. [39] describe measures
that may be used to check whether these issues are present
in the estimated tensor model.

Results

MOSCATO was applied to both simulated data and
real data. Results from the simulations are presented in
“Simulation results” section and results from the real
data application are presented in “Real data application
results” section. To our knowledge there are no appropri-
ate methods that easily match the goals of MOSCATO.
Nevertheless, to create a sensible competitor we employed

gy) =P+ | B

| X Z X |8,

1Xp,

P1 X P2 p2 X1

Fig. 2 Simple Example of Rank-1 Tensor Regression with D = 2. Suppose a univariate outcome y with canonical link g(-) and predictor tensor Z
with D = 2 dimensions. Each dimension in the predictor tensor corresponds to a feature set, and each feature set contains its own coefficient
vectors. The coefficient vectors in this example, B1 and B2, may be estimated by collecting outcomes and predictor tensors across multiple subjects

and applying the Block Relaxation Algorithm for estimation
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Fig. 3 This figure displays the tuned maxs and maxy hyperparameters using the StARS method [22] across the 9 different simulation settings
accounting for different numbers of average cells per subject and different levels of technical noise. The points represent the median tuned values
and the bars represent the first and third quartiles across 50 iterations for each simulation setting. (A) displays the tuned max network size within G,
and (B) displays the tuned max network size within X. Ideally, MOSCATO would tune maxg to 10 and maxy to 15 in order to select the proper
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a reasonable, but ad hoc, alternative method. MOSCATO
was benchmarked against a competing feature selection
technique using area under the receiver operating curve
(AUQ). In short, AUC methods select features that best
predict the outcome according to estimated receiver oper-
ating curves (ROCs). AUC selections were based on either
Bonferroni adjusted p-values or whether the AUC was less
than 0.3 or greater than 0.7.

Simulation results

Two ‘omic’ types denoted as G and X, along with an out-
come, were simulated for each subject, and simulations
were performed under 9 different settings accounting for
differing number of cells per subject and level of techni-
cal noise. For additional details on the simulations, refer
to “Simulation details” section.

Figure 3 displays the tuned maximum network size for
G and X, denoted as maxg and maxx. In a perfect execu-
tion of MOSCATO, maxg would be tuned to 10 and maxyx
would be tuned to 15 due to known network sizes in the
simulated data. All simulations tuned maxg and maxy to
values greater than the true number of network features,
regardless of the simulation setting. For maxy, smaller
values were tuned as technical noise decreased and num-
ber of cells increased, but this trend did not persist when
tuning maxg.

Figure 4 displays the sensitivity and specificity across
the 9 simulation settings for data types G and X for
the 3 different feature selection methods (MOSCATO,
AUC using p-values, and AUC using cutoffs). Sensitivity
measures the probability that network features are prop-
erly included in the selections, and specificity measures
the probability that non-network features are properly

Table 1 Number of Features in Simulations

Latent Variable # Features
H 15

G 10

G 15

Noise in G 1400

S 20

X 15

X 20

Noise in X 1500

The table summarizes the number of features within each latent variable used in
the simulations. These latent variables are displayed in Fig. 7. H describes the subset
of features within G that relate to the outcome but not any features within X, G
describes the subset of features within G belonging to the network, and G/
describes the subset of features within G related to some features within & but not
the outcome. S, X, and X’ describe similar subsets of features within X
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Fig. 4 This figure displays the sensitivity and specificity across the 9 different simulation settings accounting for different numbers of average cells
per subject and different levels of technical noise. The points represent the median sensitivity/specificity and the bars represent the first and third
quartiles across 50 iterations for each simulation setting. (A)-(C) display the sensitivity for G using MOSCATO, AUC selections using Bonferroni

adjusted p-values, and AUC selections using cutoffs (< 0.3 or > 0.7). (D)-(F) display the specificity for G under the three methods in the same order.
Similarly, (G)-() displays the sensitivity for X and (J)-(L) displays the specificity for X. Under perfect selections, the sensitivity and specificity should
equal 1
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excluded from the selections. As shown in Fig. 4, the sensi-
tivity and specificity under MOSCATO generally improve
as the number of cells increases per subject and as tech-
nical noise decreases. Conversely, the specificity declines
for AUC selections using p-values as the number of cells
increases and the technical noise improves. AUC based
on p-values not only produced counterintuitive results
where the performance actually degraded as the techni-
cal noise reduced, it also selected too many features such
that the results were not remotely sparse. This explains
that while the sensitivity remained high for all simula-
tions, this is simply due to the fact that nearly all features
were selected using that criteria. AUC selections based on
cutoffs resulted in opposite issues where it did not select
nearly any features and produced poor sensitivity with
nearly perfect specificity.

MOSCATO reproduced the superstructure of the graph
(i.e., network) reasonably well with generally high sen-
sitivity and also limited false positives present. This is
especially true when comparing against approaches using
the AUC. However, when it is expected that high levels of
technical noise are present with limited cells per subject,
caution should be used when considering MOSCATO.

Real data application results

Leukemia is a broad disease that encompasses all can-
cers that occur in blood cells. The 5-year survival rate
is about 65% according to data from 2011 to 2017, and
about 459,000 people were living with leukemia in 2018
in the United States [12]. Leukemia may be classified
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based on progression speed where chronic denotes slow
progression and acute denotes aggressive progression. In
addition to cancer progression, leukemia may be subtyped
by the type of cells where the cancer forms. For example,
lymphocytic leukemia describes cancer developing from
white blood cells and myelogenous leukemia describes
cancer developing in blood forming cells within the bone
marrow. Although rare, one may have both lymphocytic
and myelogenous leukemia which is denoted as mixed
phenotype leukemia.

To assess MOSCATO in practice, we applied it to real
single-cell data with multiple data types. Limited data
is currently available due to the infancy of multimodal
single-cell sequencing, so data across multiple studies
that all used CITE-seq protocols [32] on bone marrow
/ peripheral blood cells were used. CITE-seq produces
cellular level RNA information and cell surface protein
abundance via antibody derived tags (ADT) simultane-
ously, and our outcome of interest will be leukemia versus
healthy patients. Our goal will be to apply MOSCATO
to this data in order to obtain a subset of RNA and
ADT features associated with leukemia. After combin-
ing the data across studies, we have 14 healthy patients
and 7 patients with leukemia. Of the 7 leukemia subjects,
1 had chronic lymphocytic leukemia while the other 6
had mixed-phenotype acute leukemia. The studies used
and further details are described in “Real data application
details” section.

The data was pre-processed and integrated using Seurat
version 4.0.3 [10], and Fig. 5 displays the Uniform Man-
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Fig. 5 CITE-seq data was obtained across 21 subjects (14 healthy and 7 with leukemia). We pre-processed and integrated the data using Seurat
version 4.0.3 [10], and this figure displays the UMAP [2] results after the integration. The plots are split by healthy versus leukemia subjects
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ifold Approximation and Projection (UMAP) [2] plots
from the cell clusters established from the integrated data
across all 21 subjects. The Seurat workflow normalizes
the scRNA-seq data, identifies the highly variable genes,
scales the data, performs reciprocal principal component
analysis using the highly variable genes, finds the nearest
neighbors for each cell, and clusters the cells. After inte-
gration, 8 of the cell clusters (clusters 0, 1, 2, 3, 4, 5, 6 and
14 from Fig. 5), 17991 RNA features, and 5 ADTs (CD3,
CD4, CD14, CD19, and CD56) were measured across all
subjects.

In this application after pre-processing, each subject
contained 8 scRNA-seq matrices (one for each cell clus-
ter) where each matrix contained 17991 columns and
rows corresponding to the cells within that cluster. In
addition to the scRNA-seq datasets, each subject con-
tained another 8 matrices (one for each cell cluster) for
their single-cell ADT abundance where each matrix con-
tained 5 columns and rows corresponding to the cells
within that cluster (same cells as in the scRNA-seq
datasets). Finally, each subject had a binary disease sta-
tus (healthy or leukemia). The feature selection techniques
were applied to the 8 pairs of matrices separately (i.e., each
cell cluster treated independently), resulting in 8 different
MOSCATO and AUC selection results. The first step of
MOSCATO estimates the correlation between each sub-
ject’s scRNA-seq and single-cell ADT features, resulting
21 (i.e., one for each subject) correlation matrices, each of
size 17991 x 5.

Analysis was performed on each cell cluster separately,
and the selections were later reviewed for biological rel-
evancy. The rest of this section will focus on the results
obtained from cell cluster 0, but the complete results from
MOSCATO, AUC selections based on p-values, and AUC
selections based on the AUC cutoffs for each of the 8 cell
clusters are provided in Additional file 2. In summary, the
number of features selected by MOSCATO and AUC cut-
offs were similarly sized, but AUC selections based on p-
values resulted in nonsparse feature sets. DAVID [11, 31]
was used to analyze and organize the gene ontology infor-
mation from the RNA gene selections. DAVID clusters
genes based on common annotations and functional infor-
mation, and DAVID only allows clustering on gene sets
with less than 3000 genes. Since the AUC selections based
on p-values resulted in RNA selections well over this 3000
restriction for most cell clusters, we only focused on gene
clusters from the MOSCATO and AUC cutoff selections.

MOSCATO selected 96 RNA features within cell
cluster 0, and DAVID identified 2 gene clusters. The
strongest gene cluster (based on highest enrichment
score) used 7 of these 96 genes. This was the most
notable gene cluster which included the genes CD3D,
CD3E, and CD3G which are part of the KEGG path-
way for Human T-cell Leukemia Virus type 1 (HTLV-I)
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infection (KEGG pathway hsa05166), and HTLV-I infec-
tions are a known risk factor for developing adult T-cell
leukemia/lymphoma [13]. Additionally, the genes CD2,
CD3D, CD3E, CD3@G, and CD4 within this gene cluster
belong to the KEGG pathway for Hematopoietic cell lin-
eage (hsa04640) which assists in producing blood cells.
Given that the disease of interest in this application is
based on leukemia (i.e., cancer in tissues which produce
blood), it is reassuring that this gene cluster contains
genes associated with blood production. Also, genes CD2,
CD3D, CD3E, CD3G, KLRB1, CD247, and CD4 within
the gene cluster are associated with the gene ontology for
the cell surface receptor signaling pathway (GO:0007166)
which makes sense given that MOSCATO summarized
the single-cell data between RNA and cell surface pro-
teins (i.e., ADTs). Of the 5 cell surface proteins considered,
MOSCATO selected the ADT’s CD3 and CD4 for this
cell cluster. Figure 6 displays the RNA features within the
strongest functional DAVID cluster, along with the ADT
selections. No features selected by MOSCATO under cell
cluster 0 were selected by AUC cutoffs, and although 83 of
the 96 MOSCATO RNA selections were also selected by
AUC based on p-values, the AUC selections based on p-
values selected nearly half of all RNA features considered.
AUC selections based on cutoffs selected 11 RNA features
and 0 ADTs for cell cluster 0, and DAVID was not able to
discern any gene clusters based on the genes selected.

In conclusion, the selections made by MOSCATO under
cell cluster O resulted in a concise gene cluster discov-
ered by previously known annotations and functionalities.
These functionalities not only related to the disease of
interest (i.e., leukemia), it also related to cell surface func-
tionalities. This highlights that MOSCATO not only con-
siders supervised information (e.g., disease versus no dis-
ease), it also considers the relationships across data types
(e.g., RNA and cell surface proteins). Performing feature
selection using solely AUC not only neglects the between
data type relationships, it also was not able to return a con-
cise set of genes that related to leukemia. Furthermore, it
is arbitrary to select pre-specified AUC cutoffs for selec-
tions, and the p-value selections did not produce sparse
solutions. Also, AUC selections were based directly on
normalized expression/sequenced values, but MOSCATO
performs selections based on the similarities between data
types. This possibly helps reduce batch effects found in
individual subjects by standardizing each value between
-land 1.

Discussion

MOSCATO was performed on both simulated and real
data. The simulations produced fairly accurate results
with a sensitivity and specificity close to 1 for many of the
simulations, although MOSCATO did not perform as well
in situations with high technical noise or low cell counts
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Scaled Gene Weight
1.00
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cD2}

Fig. 6 MOSCATO selected 96 RNA features and 2 ADT features from cell cluster 0 shown in Fig. 5. This figure displays the strongest functional RNA
gene cluster (left labels) within the 96 MOSCATO selections as determined by DAVID [11, 31], along with all ADT selections (right labels). DAVID
determines gene clusters based on similar gene ontology and annotations. These RNA genes correspond to KEGG pathways for blood cell production
(CD2, CD3D, CD3E, CD3G, and CD4) and HTLV-I infection (CD3D, CD3E, and CD3G), as well as genes with ontology information for cell surface
receptor signaling (CD2, CD3D, CD3E, CD3G, KLRB1, CD247, and CD4). The label colors display the absolute scaled weight of the coefficient vectors
from the tensor regression used in MOSCATO so that higher values correspond to a higher weight put on that gene/protein in the tensor regression

per subject. Since MOSCATO calculates its predictor ten-
sor to be the estimated correlation of the datasets per
individual, it is unsurprising that cell count would con-
tribute to more accurate correlation estimates. Although
not used in this manuscript, covariate adjustments could
easily be made in MOSCATO by simply adding them to
the tensor regression.

The real data application involved 21 subjects, and
given the highly variable nature of single-cell sequenc-
ing data, the features selected should be interpreted with
some caution. Furthermore, since the data was collected

across different studies, only 5 proteins were used that
merged across all 21 subjects. As single cell technologies
become more available and cost feasible, future experi-
ments should be considered with more consistent proteins
across experiments and larger sets of subjects.
MOSCATO currently assumes all cells come from the
same cell type, but it might be more interesting to accom-
modate situations in which multiple cell types are present.
We are currently working on higher dimensional applica-
tions of MOSCATO in a future manuscript. A reasonable
solution could incorporate another step which estimates
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a similarity matrix for each cell type and includes another
dimension to the predictor tensor for cell type. Addition-
ally, MOSCATO was only tested on experiments with two
data types, but extensions should be considered in situa-
tions where more than two data types are present. This
could be accomplished by extending the predictor ten-
sor to accommodate a dimension per data type extracted,
although higher dimensional summary measures would
need to be considered.

MOSCATO was only tested using Pearson’s correlation
as the summary measure to construct the predictor tensor
Z, but other summaries should be considered. For exam-
ple, mutual information or inverse covariance matrices
might be interesting avenues to explore for future con-
sideration. Graphical lasso [8] is a popular technique to
obtain both the nodes and edges of a graph by applying
lasso regressions to estimate the inverse of the covari-
ance matrix, and this estimated inverse of the covariance
matrix could be explored as the predictor tensor input for
MOSCATO.

This study only used rank-1 tensors, but higher ranks
could be considered that may unveil other patterns and
networks available in the data. The proper rank could be
obtained using typical model selection criteria such as
cross validation, although interpreting the results may not
be as straight forward.

Zhou et al. discuss hypothesis testing via asymp-
totic normality results [39], and these hypothesis testing
schemes could be explored to assess network strength.
For example, one could perform a global test whether the
model coefficients equal zero for the network selections.

Although MOSCATO returns the superstructure for a
graph, it does not provide information on directionality
and does not currently consider directional consistency.
For example, suppose two genes are positively correlated
with each other, but they contain conflicting correlative
directions with the outcome. This inconsistency in direc-
tionality makes interpreting the results more difficult, and
may be mitigated by additionally tuning based on opti-
mizing balance. This concept has been considered in bulk
level analyses with a single ‘omic’ type [34], and it could be
considered for future work for multimodal data.

Conclusions

MOSCATO is a statistical technique for analyzing multi-
modal single-cell data where the study goals are to identify
which features within the ‘omic’ datasets relate to each
other and a clinical outcome. MOSCATO was found to
perform favorably through a series of simulations and a
real data application. Multimodal single-cell data contin-
ues to grow in popularity, and feature selection techniques
such as MOSCATO may be critical to fully leverage the
potential in using the data for highlighting biological
markers in complex diseases.
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Methods

Multimodal network analysis using tensor regression

In classic bulk sequencing, the data contains one record
per subject. Supposing n subjects with two data types,
bulk sequencing studies would contain two data sets (i.e.,
a dataset for each data type), G € R"*? and X € R"*1.
In single-cell sequencing, there are multiple records per
subject where each row corresponds to a cell within the
subject. Consequently, for a given subject i with two data
types, their single-cell data would contain two datasets
G; € R™i*P and X; € R™*1, where m; denotes the num-
ber of cells for subject i. Since the number of cells typically
differs across subjects (i.e., m; # my where i # i), we
organize each subject’s data into separate datasets (i.e., G;
and A}) as opposed to organizing the input data directly
into a 3-dimensional tensor with a dimension for cells. It
should also be noted that each subject’s data often consists
of thousands of cells, and concatenating the single-cell
data in long format may be computationally inefficient.
Furthermore, we assume each subject i contains a univari-
ate outcome y; for i = 1,..,n, and we may express the
outcomes in a vector as y =[y1,¥2, ..., ¥»] . . For simplicity,
we may denote the two data types as G and X without the
i subscript, although as described previously, each sub-
ject’s single-cell data will contain separate matrices for the
data types as opposed to expressing data in long format as
found in bulk sequencing.

MOSCATO aims to identify a subset of features within
G and A that relate to each other and the outcome.
In graphical modelling terms, MOSCATO identifies the
superstructure of a semi-directed graph with undirected
nodes involving features within G and X with some path
directed to the outcome y. MOSCATO accomplishes this
by imposing elastic net constraints on a tensor regression
model [40].

Similarly as in the MRI image example from “Tensor
regression” section, multimodal single-cell data contains
multi-dimensional data per subject (i.e., features within
G and features within X’) with a univariate outcome.
This motivates the use of tensor regression for multi-
modal single-cell data. Additionally, tensor regression not
only efficiently accommodates multi-dimensional input
data with a univariate outcome, it also handles regu-
larization techniques and allows for additional covariate
adjustments (e.g., age, sex, race, etc.). However, tensor
regression requires equivalent dimensions for each sub-
ject’s input tensor, and single-cell sequencing experiments
nearly always return differing number of cells. Therefore,
to standardize the dimensions across each subject, the
first step of MOSCATO involves collapsing the cellular
dimension all together by estimating a correlation matrix
between their data type matrices,

Z; = pil € RT"P, (6)
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where P = corr(xy, gix) letting x;; denote the j7* feature
in X; and g denote the k™ feature in G; for the i’ subject.
Although many summary matrices could be considered,
such as the inverse of the covariance matrix or mutual
information, Pearson’s correlation provides a simple inter-
pretation while also standardizing the values within Z;
between -1 and 1.

In broad strokes, MOSCATO applies a rank-1 tensor
regression on Z to determine the elements in each ‘omic’
type that are associated with each other and with the out-
come. Specifically, using the Z; tensors for i = 1,...,n to
estimate the coefficients, a tensor regression model simi-
lar to (5) and depicted in Fig. 2 will be fit with elastic net
constraints. The elastic net constraint works to balance
by a weighted average between an L!-norm and L?-norm,
where the L'-norm truncates small coefficients to zero
and the L2-norm better handles highly correlated features.
In summary, the elastic net constraint typically denoted as
A1 — oc)/2||/3||% + «||B]]1) in the classical GLM setting
will now involve

(1 — ax)/211Bx|13 + ax||BxI1),

q
D 1By, # 0) < maxy,

j=1

(7)
(1 - ag)/211Bl13 + acllBal),

p

> 1(Bg, # 0) < maxq,

k=1

where Bx € R? denotes the coefficient vector for X,
B € R? denotes the coefficient vector for G, Bx; denotes
the coefficient for the j feature in X, and g, denotes
the coefficient for the k* feature in G. The hyperparame-
ters ax €[0,1] and ag €[0, 1] denote the weights to put
on the L!'-norm constraints for X and G, respectively. The
hyperparameter A in the classical GLM setting denotes the
overall weight to put on the constraint, and it may be any
positive number from 0 to infinity. Since tuning X to the
proper range may be difficult due to the nontrivial param-
eter space, we use maxy and maxg instead to denote the
maximum number of non-zero values within B8x and B¢,
respectively. This reparameterization of the constraints
drastically simplifies the hyperparameter space and subse-
quent tuning, as described in “Tuning on stability” section.

For some fixed ay, ag, maxy, andAmaxg, the tensor
regression model will be fit to obtain Bx € R? and g €
R”. Due to the L'-norm truncating small values to zero
from the elastic net constraint, only a subset of values
within ﬁx and ﬁAG will be nonzero. Thus, final network
features within data type X will be the set {j : BX/. #
0,j = 1, .., g}, and final network features within data type
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G will be the set {k : f}Gk # 0,k = 1,..., p}. Algorithm 1
summarizes the steps to MOSCATO.

Algorithm 1 Schematic for MOSCATO
Require: X, G,y
fori=1tondo
Z; = Cor(X;,Gi)
end for
Tune hyperparameters A =
using Algorithm 2
Fit g(y) = Bo + (Bx o Bg, Z), with elastic net penalties
using the tuned A
Network features within X'= {j : BXJ #0,j=1,..,q}

Network features within G= {k : ﬁgk #0,k=1,..,p}

{aX) aG, maxy, maxG}

Tuning on stability
MOSCATO assumes fixed values for ay, ag, maxy, and
maxg which will be tuned using an extension of the Stabil-
ity Approach to Regularization Selection (StARS) method
[22]. Tuning on accuracy, such as by cross validation or
Bayesian information criterion, tends to result in overly
dense solutions in high dimensional problems with results
that are not reproducible [22]. The most extreme scenar-
ios for stability are perfectly stable results from selecting
no features (i.e., completely sparse) or selecting all features
(i.e., no sparseness). Building on that logic, StARS initial-
izes the parameters to the sparsest solution and gradually
relaxes the sparsity until some instability threshold ¢ is
met. Instability is estimated based on subsamples from the
data by performing the feature selection under each sub-
sample and summarizing the consistency in results across
different subsamples. Although ¢ may initially be thought
of as an arbitrary cutoff between 0 and 1, it may be eas-
ily interpreted as the amount of allowable instability. In
essence, a smaller ¢ would imply a more sparse but stable
result. The motivation behind allowing some instability
as opposed to fixing ¢ to 0 is to allow some noise to be
selected in order to ensure that no true signal is missed in
the final feature selection. In statistical terms, this means
that StARS prioritizes reducing type II errors.

Although the StARS method was developed for tuning
a single sparsity parameter, the four hyperparameters ax,
ag, maxy, and maxg will be tuned using similar logic.
Focusing on tuning one dimension at a time, we initial-
ize to a sparse solution with some small maxy. Fixing
maxy, we estimate the instability for a range of ax values
between 0 and 1. Select the ay value resulting in the low-
est instability, and if that instability is less than ¢, increase
maxy and repeat the process. This continues until the ¢
instability is hit to select maxx and «x. Using the highest
maxy and corresponding optimal oy with instability less
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than ¢, a similar process is then repeated for tuning maxg
and «. In this case with two dimensions, one for X’ and
another for G, we first tune ax and maxy for some fixed
ag and maxg, and then use maxy and @x when tuning
ag and maxg. The initial fixed o and maxg may be kept
large, suppose ag = 0.5 and maxg = floor(p/2) such
that an overly sparse G does not impact the stability on X
for the first dimension of tuning. This is summarized in
Algorithm 2.

Algorithm 2 StARS Method for Tuning Tensor Hyperpa-
rameter
Require: G, X, vy, gridy, ¢, S, ¢, maxg,, maxy,
Generate S random samples, each of size ¢
Initialize maxg to floor(0.5 * n) and g = 0.5
for maxy = maxx, to q do
Initialize &x = gridy,
for ax in grid, do
A = {ag, ax, maxg, maxy}
forﬁs =1toSdo
Bx(ax) = fitted coefficient vector using A; and
subsample s
gnd for A
Ox, (A1) = 1/S(X5_y I(Bx; (0x) #0),j=1,..q
Ex; (A1) = 20x,(A1)(1 — Ox,(A)), j = 1,0 q
Dx(A) =1/g XL Ex (A1)
ifoay = gridalAthen
Doptimal = Dx(A1)
A= A
else A
if Dx(Aq) < Doptimal then
Daptimal = DX(Al)
oy = oy
A=A
end if
end if
end for
if Dopsimar > ¢ then
A=A
break
else
Ao=A
end if
end for
Repeat the process to estimate maxg and &g using
optimal maxy and &x

Simulation details

Theoretical details of simulations

Splatter [37] is a popular technique to simulate single-
cell RNA-seq (scRNA-seq) data, and it has been shown to
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mimic distributions from real scRNA-seq data. The gen-
eral Splatter schematic initiates by simulating a gene mean
and then adjusts the gene mean to account for variation
in outliers, library size, and dispersion. It then simulates
the “observed” scRNA-seq values through a Poisson dis-
tribution using the adjusted gene mean, and the values
are then randomly truncated to zero to replicate dropouts.
Although Splatter realistically portrays scRNA-seq dis-
tributions, a few extensions were required in order to
simulate multimodal single-cell data with supervised gene
networks.

To accomplish this, we leverage latent structures for
multimodal supervised networks detailed in Zhang et al.
[38]. Figure 7 demonstrates the expected causal relation-
ships within the data containing a supervised multimodal
network. In summary, we expect there to be a subset of
features within G and X that relate to the outcome but
not with each other; a subset of features within G and X
that relate to each other but not with the outcome; a sub-
set of features within G and X that are independent of
each other and the outcome; and finally the target sub-
groups of the analysis, subset of network features within
G that relate to the network features within X that ulti-
mately relates to the outcome. These expected relation-
ships among these latent components may be represented
through a covariance matrix where the off diagonals will
be non-zero where relationships exist and zero where
independence is expected. More details are provided in
the Additional file 1.

To extend Splatter for supervised multimodal networks,
we will first simulate the latent values (S, H, X, G, G/, X,
and y) for each subject using a multivariate normal distri-
bution with zero mean and the latent variables’ covariance
matrix. Since the latent values were simulated from a mul-
tivariate normal, they will each be normally distributed
with mean 0. The Splatter simulation assumes the ini-
tial gene mean comes from a gamma distribution, so we
take the square of the latent value divided by its stan-
dard deviation. By doing so, the transformed latent values
then become gamma distributed with shape equal to 1/2
and scale equal to 2 times its variance. These transformed
latent values will be used as the initial gene means for each
subset of features, and the latent value for y will be used
as the mean to simulate an observed outcome from a nor-
mal distribution. Initial gene means for the noise subset
of features are randomly simulated independently. Addi-
tional theoretical details may be found in the Additional
file 1.

Dispersion is adjusted on a subject level, library size is
adjusted on a cellular level within a subject, outliers are
adjusted on a feature level within a subject, and dropouts
are accounted for on a cellular/feature level within a sub-
ject. The Splatter simulation is performed using the trans-
formed gene means (combining all latent components
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Latent Structure of Network Involving 2 Data Types

g X

|
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. Outcome |

G — X

= Non-Network Components

= Network Component

Noise Noise

—» = Causal Direction

Fig. 7 Latent structure for supervised multimodal networks. From [33] and adapted from [38]. Assume two data types, G and X. S describes the
subset of features within X’ that relate to the disease outcome but not with any features within G; H describes the subset of features within G that
relate to the disease outcome but not with any features within &’; G and X describe the network where the subset of features within G relate to the
subset of features within X’ that ultimately relate to the outcome; G’ and X’ denote the subset of features that relate to each other but not with the
outcome; and finally each data type will have independent noise not related to each other or the outcome

within G and X), and then the features are later separated
by data type for each subject.

Simulation specifications

MOSCATO was applied to a series of simulations using
the techniques described in the previous section. Simula-
tions were performed under 9 different settings account-
ing for the average number of cells per subject (250, 500,
or 1000) and amount of technical noise (low, moderate,
or high). Simulations were replicated 50 times under each
simulation setting and each simulation had 100 subjects.
G contained 1440 total features where only 10 belonged to
the network, and X' contained 1555 total features where
only 15 belonged to the network. Table 1 describes the
total number of features contained within each of the
latent variables described in Fig. 7.

For tuning the hyperparameters, we set grid, =
{0.2,0.5,0.7}, ¢ = 0.02, R = 50, and ¢ = 50. maxg,
and maxy, were initially set to 5, although this number
may be increased in order to reduce runtimes as long as
the instability remains below ¢ for its initialization. Ide-
ally, MOSCATO would tune maxg to 10 and maxy to

15 in order to select the proper network size according
to Table 1, but this will be unlikely due to the mechanics
behind the StARS tuning method described in “Tuning on
stability” section which prioritizes reducing type II error
over type I error.

In addition to applying MOSCATO, we also applied
competing methods using the AUC. Seurat provides a
popular single-cell sequencing workflow, and following
similar methods used by the authors of Seurat [10], this
AUC approach was done using the presto version 1.0.0
R package [19]. Selections using AUC were performed
using two different criteria. One criterion was based on
whether the Bonferroni adjusted p-value was less than
the nominal significance level (set to 0.05) under the null
hypothesis that the AUC equals 0.5. Additionally, selec-
tion criteria using cutoff values where features with an
AUC either less than 0.3 or greater than 0.7 were selected.
Since AUC requires categorical outcomes, we use the
median of the outcome to binarize it (i.e., if the outcome
is less than the median then recode the outcome as ‘O,
otherwise if the outcome is greater than the median then
recode as ‘1’).
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Real data application details

Data was combined across multiple studies for healthy
and leukemia subjects. The studies used to obtain the data
are summarized in Table 2. Only non-perturbed, baseline
cells were considered.

Seurat version 4.0.3 [10] was used to normalize the data,
cluster cells, and integrate the cell types across subjects.

We applied MOSCATO to each of these cell clusters
separately, each with grid, = {0.01,0.05,0.1}. Since Seurat
clusters cells by maximizing correlation between features,
the multicollinearity across features would consequently
be high and require more weight on the L?-norm (i.e.,
lower « within the elastic net constraint).

Due to the modest sample size, we tuned the hyperpa-
rameters using a subsampling size of 20 (out of 21 total
subjects) to estimate stability based on a “leave one out”
scheme. Although StARS suggests setting the instability
threshold ¢ to 0.05 for most applications [22], in this
application with a small sample size (i.e., only 21 subsam-
ples) and large number of RNA features (i.e., 17991 vari-
ables), the estimated instability under sparsest solutions
will be much smaller than 0.05. For example, suppose
all 21 subsamples select completely disjoint feature sets,
but due to the high number of variables in consideration,
many variables are consistently excluded from any selec-
tions across all of the subsampled results. Since StARS
considers both consistency in selections and consistency
in exclusions, the estimated instability will be quite small
due to the consistency in exclusions despite if the small
number of features selected may be completely disjoint
across all subsamples. Therefore, ¢ was set to 0.001.

To compare selections with another method, the
MOSCATO results were compared to selections based on
the AUC. The AUC approach was done using the presto
version 1.0.0 R package [19]. Similarly as was done for
MOSCATO, the AUC feature selections were performed
on each cell cluster separately. Feature selections were
made under two different selection criteria for AUC: if
the Bonferroni adjusted p-value was less than 0.05 under
the null hypothesis that the AUC equals 0.5 or whether
the AUC was less than 0.3 or greater than 0.7. Since the
p-value would likely be small in situations with many
cells (i.e., large sample sizes producing sensitive p-values

Table 2 Studies Used with CITE-seq Protocols and Healthy or
Leukemia Subjects

Study ID Tissue Type  # Healthy Subjects  # Leukemia
Subjects
ERP124005 [21]  Blood 10 0
GSE152469 [4] Blood 0 1
GSE139369 [9] Blood 1 4
GSE139369 [9] Bone Marrow 3 2
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for miniscule AUC deviations from 0.5), both a p-value
approach and an approach based on the AUC values were
considered.

The real data application may be reproduced by fol-
lowing the steps provided at https://github.com/lorinmil/
MOSCATOLeukemiaExample.
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