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Abstract 

Background:  Hospital length of stay (LOS) is a key indicator of hospital care management efficiency, cost of care, and 
hospital planning. Hospital LOS is often used as a measure of a post-medical procedure outcome, as a guide to the 
benefit of a treatment of interest, or as an important risk factor for adverse events. Therefore, understanding hospital 
LOS variability is always an important healthcare focus. Hospital LOS data can be treated as count data, with discrete 
and non-negative values, typically right skewed, and often exhibiting excessive zeros. In this study, we compared the 
performance of the Poisson, negative binomial (NB), zero-inflated Poisson (ZIP), and zero-inflated negative binomial 
(ZINB) regression models using simulated and empirical data.

Methods:  Data were generated under different simulation scenarios with varying sample sizes, proportions of zeros, 
and levels of overdispersion. Analysis of hospital LOS was conducted using empirical data from the Medical Informa-
tion Mart for Intensive Care database.

Results:  Results showed that Poisson and ZIP models performed poorly in overdispersed data. ZIP outperformed the 
rest of the regression models when the overdispersion is due to zero-inflation only. NB and ZINB regression models 
faced substantial convergence issues when incorrectly used to model equidispersed data. NB model provided the 
best fit in overdispersed data and outperformed the ZINB model in many simulation scenarios with combinations of 
zero-inflation and overdispersion, regardless of the sample size. In the empirical data analysis, we demonstrated that 
fitting incorrect models to overdispersed data leaded to incorrect regression coefficients estimates and overstated 
significance of some of the predictors.

Conclusions:  Based on this study, we recommend to the researchers that they consider the ZIP models for count 
data with zero-inflation only and NB models for overdispersed data or data with combinations of zero-inflation and 
overdispersion. If the researcher believes there are two different data generating mechanisms producing zeros, then 
the ZINB regression model may provide greater flexibility when modeling the zero-inflation and overdispersion.

Keywords:  Count data, Poisson regression, Negative binomial regression, Zero-inflated Poisson regression, Zero-
inflated negative binomial regression, Simulation study
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Background
In healthcare, length of stay (LOS) is a key indicator used 
to assess the hospital care management efficiency, cost of 
care, quality control, appropriate use of hospital services 
and resources, and hospital planning [1–6]. The need for 
efficient hospital management has been exemplified with 
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the recent onset of the 2019 coronavirus/COVID-19 pan-
demic. Health crises like these show the best interest of 
patients, hospitals, and public health is in the efficient 
management of hospital stays while ensuring adequate 
bed capacity and that clinician time can be provided 
for patients with other conditions [7]. Reducing LOS 
improves financial, operational, and clinical outcomes 
by decreasing the costs of care for a patient and mini-
mizing the risk of hospital-acquired conditions [8, 9]. In 
some hospitals, administrators benefit from using predic-
tive models to assist with planning and resource alloca-
tion for deliveries [9]. Clinics optimize clinical settings 
by implementing analytical applications leading to timely 
and accurate decision making while reducing the hospi-
tal LOS [8–10]. Hospital LOS is often used as a measure 
of a post-medical procedure outcome, as a guide to the 
benefit of a treatment of interest, and/or as an impor-
tant risk factor for adverse events, hospital readmission, 
and mortality [11–13]. Therefore, understanding hospi-
tal LOS variability across various patients’ clinical and 
socio-demographic characteristics and hospitals’ charac-
teristics, such as geographic region and hospital sizes, is 
always an important public health focus [9, 14–22].

Inpatient hospital LOS is the number of nights spent 
in hospital, calculated from the day of admission to the 
day of discharge [23]. This type of data can be treated as 
count data, and count data values are usually nonnegative 
with a typically right-skewed distribution, often exhibit-
ing excessive zeros and overdispersion [17, 24, 25]. Dif-
ferent analytic strategies have been used for modeling 
hospital LOS. However, the best way to model LOS and 
other right skewed data has been debated in the litera-
ture. Literature review showed that non-transformed 
or logarithm-transformed count outcome variable are 
often modeled with linear regression [26–28]. Linear 
regression is usually employed for continuous, normally, 
or approximately normally distributed outcomes. LOS 
data rarely adheres to these assumptions. Studies con-
ducted to compare analyses of logarithm-transformed 
count outcome variables have reported several issues 
that might arise with such transformations, including 
zero values not considered, predicted meaningless nega-
tive values for the outcome variable, uninterpretable and 
biased parameter estimates, and inconsistent inferences 
about important policy parameters [29, 30]. Gardner 
et al. [31] showed that when the mean of the count out-
come variable is small, linear regression produces biased 
standard errors and hence biased significance tests. 
Using simulation study, O’Hara [32] found that the log-
transformations of count data often used to satisfy para-
metric test assumptions perform poorly, except when the 
dispersion was small, and the mean counts were large. 
When the mean count is very small and zero is the most 

common value in the data set, the normalization with log 
transformation will not work and the mode will always be 
at the lowest value [33]. Bryk et al. [34] stated, that there 
are important cases for which the assumption of linear-
ity and normality are not realistic, and no transforma-
tion can make them so. An alternative approach that has 
been used as a solution to handle the non-normality of 
LOS outcome variable by researchers is to dichotomize 
LOS and use logistic regression to predict the LOS [35]. 
Dichotomizing count outcome variable lead to loss of 
information. Based on simulated and empirical data anal-
yses, Sroka [36] concluded that more precise odds ratios 
estimates can be obtained using count regression mod-
els with log-odds link function. In summary, using linear 
regression models with or without logarithmic transfor-
mation of a count outcome variable, or logistic regression 
models on a dichotomized count outcome variable are 
subject to criticism for their inadequacy in modeling this 
type of data. This can lead to biased parameter estimates; 
prediction of meaningless negative values; and the loss of 
precision of inferences and important information about 
the underlying counts.

Common statistical methods for analysis of count 
data are Poisson, negative binomial (NB), zero-inflated 
Poisson (ZIP), and  zero-inflated negative binomial 
(ZINB) regressions [24, 37–40]. The results from the 
existing research evaluating the performance of regres-
sion models for count data are conflicting regarding 
which model is preferred. Lambert (1992) compared 
ZIP to NB regression models in an experimental study 
concerning soldering defects on printing wiring boards 
where 81% of the board areas had 0 defects. He found 
that ZIP was better than the NB model in terms of pre-
diction accuracy [37]. Greene (1994) compared Pois-
son, NB, ZIP, and ZINB models on a consumer loan 
behavior empirical data characterized with overdisper-
sion and zero-inflation. In the analysis the author found 
that the NB model was superior to the ZIP model and 
the ZIP model was superior to the Poisson model in 
terms of model fit [41]. Slymen et al. (2006) compared 
Poisson, overdispersed Poisson, NB, ZIP and ZINB 
regression models in assessing predictors of vigorous 
physical activity among Latina women using data with 
82% zeros in the outcome variable. They reported a lit-
tle difference in ZIP and ZINB models’ fits, however, 
overall, the ZIP model fitted best [42]. In overdispersed 
and zero-inflated data of the number of incidents 
involving human papillomavirus infection, Lee et  al. 
(2012) found that ZIP, followed by NB, and ZINB had 
the smallest Akaike’s information criteria (AIC); and 
ZIP model showed the same results as the NB model 
regarding the covariates at a 0. 05 significance level. In 
addition, ZINB model did not always converged [43]. 
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Tuzen et al. (2018) examined the performance in terms 
of fit of Poisson, NB, ZIP, ZINB, Poisson Hurdle and NB 
Hurdle models under various outliers and zero-infla-
tion scenarios of simulated data and found that ZINB 
and NB Hurdle were superior to Poisson, NB, and ZIP 
models. They also reported that in some scenarios, the 
NB model outperformed all models in the presence of 
outliers and/or excess zeros [44]. Tlhaloganyang et  al. 
[45] compared NB with ZIP and ZINB models using 
different real datasets characterized by overdispersion 
and zero-inflation. The authors found that NB provided 
a superior fit in all datasets [45].

Based on the reviewed literature, the question remains 
open to whether the different results in terms of model 
fit may arise from the different proportion of zeros, 
overdispersion, and sample size of the datasets used in 
these studies. In this study we had two objectives. The 
first objective was to compare the performance of Pois-
son, NB, ZIP, and ZINB regression models in simulation 
study. The second objective was to compare the perfor-
mance of Poisson, NB, ZIP, and ZINB regression mod-
els using real life hospital data in assessing the effect of 
age, sex, health insurance status, and type of hospital 
admission on the hospital LOS. This research added to 
previous studies by including additional experimental 
scenarios, such as varying sample sizes, larger dispersion 
levels, various proportions of zero in the outcome vari-
able, and data generated using Poisson and ZIP distribu-
tions, along with NB and ZINB distributions.

Methods
Overview of count data regression models
Poisson model
The most widely used and the most basic model that 
explicitly considers the nonnegative integer-valued aspect 
of the count outcome variable is the Poisson regression 
model [46]. Let Yi, i = 1, . . . , n , be random variables for 
the number of occurrences of the event of interest and 
its realizations yi = 0, 1, 2 . . . . Let X

′

i
= (X1i, . . . ,Xki) be a 

k-dimensional random vector of predictors and its reali-
zation x′

i
= (x1i, . . . , xki), i = 1, . . . , n . Poisson regression 

assumes that the dependent variable Yi, given Xi = xi 
i = 1, …, n, is independently Poisson-distributed with:

and the mean parameter (i.e., the mean number of 
events per period) is given by:

where β is a column vector of parameters.

(1)P
(
Yi = yi|Xi = xi

)
=

e−µiµ
yi
i

yi!
, yi = 0, 1, 2, . . .

(2)µi = ex
′

i
β

In the Poisson regression model the conditional 
mean and the conditional variance of Yi are equal 
(equidispersion):

Poisson regression model is also called log-linear model 
because the logarithm of the conditional mean is linear in 
the parameters:

The marginal effect of a predictor variable Xj is given 
by:

and the interpretation of this effect is that a one-unit 
change in the jth predictor leads to a βj change in the con-
ditional mean E

(
Yi|Xi = xi

)

Real-life count data often exhibit two (related) charac-
teristics: overdispersion and zero-inflation. Overdisper-
sion refers to an excess of variability in the data (i.e., the 
variance exceeds the mean), while zero-inflation refers to 
an excess of zeros [39, 47]. In the presence of overdisper-
sion, the Poisson regression model is not adequate and 
can lead to biased parameter estimates and unreliable 
standard errors estimates [38, 39]. The most commonly 
used model that accounts for overdispersion is the nega-
tive binomial model.

Negative binomial model
The Poisson regression model can be generalized by 
introducing an unobserved heterogeneity term for obser-
vation i. The subjects are assumed to differ randomly in 
a manner that is not fully accounted for by the observed 
covariates. This is formulated as:

where the unobserved heterogeneity term τi = eεi is 
independent of the vector of predictor variables xi. Then 
the conditional distribution of Yi on Xi = xi is Poisson 
with conditional mean and conditional variance µiτi:

The negative binomial distribution is derived as a 
gamma mixture of Poisson random variables [39, 48–50]. 
By letting g(τi) be the probability density function of τi , 
the distribution f

(
Yi = yi|Xi = xi

)
 is obtained by inte-

grating f
(
Yi = yi|Xi = xi, τi

)
 with respect to τi. The 

analytical solution of the integral exists if τi is gamma 

(3)E
(
Yi|Xi = xi

)
= V

(
Yi|Xi = xi

)
= µ

i

(4)ln(E
(
Yi|Xi = xi

)
) = ln(µ

i
) = x

′

iβ

(5)
∂E(Yi|Xi = xi)

∂xji
= βje

x
′

i
β = βjE

(
Yi|Xi = xi

)

(6)E
(
Yi|Xi = xi, τi

)
= µ

i
τi = ex

′

i
β+εi

(7)

f Yi = yi|Xi = xi, τi =
e−µiτi(µiτi)

yi

yi!
, yi = 0, 1, 2, . . .



Page 4 of 21Fernandez and Vatcheva ﻿BMC Medical Research Methodology          (2022) 22:211 

distributed and this solution is the NB distribution. Spe-
cifically, it is necessary to assume that E(τi) = 1, and then 
τi follows gamma (θ, θ) distribution with E(τi) = 1 and 
V (τi) =

1
θ
. It can be shown, that the NB distribution can 

be written as:

where α−1 = θ and θ > 0 is the gamma scale parameter.
The NB conditional mean and conditional variance of 

the outcome variable yi are given by:

The parameter α is defined as the dispersion parame-
ter. As α approaches zero (i.e., the gamma scale param-
eter θ approaches infinity), V

(
Yi|Xi = xi

)
 decreases to µi

=E
(
Yi|Xi = xi

)
, and the NB distribution approaches the 

Poisson distribution. Thus, the Poisson regression model 
is nested within the NB regression model.

Zero‑inflated count models
Zero-inflated count models provide a way to both model 
the excess zeros and the overdispersion (He et al. 2014) 
[51]. In particular, there are two possible data generation 
processes for the number of occurrences of the event of 
interest yi for each observation i = 1,…,n and the result 
of a Bernoulli trial is used to determine which of the two 
to use. For observation i, Process 1 is chosen with prob-
ability ϕi and Process 2 with probability 1− ϕi . Process 1 
generates only zero counts (“structural” zeros). Process 2 
generates counts from either a Poisson model [37] or a 
NB model [41]. P

(
Yi = yi|Xi = xi

)
 can be described as 

follows:

where g(yi) follows either Poisson or NB distributions, 
defined in (1) and (8), respectively, and therefore the 
zero-inflated count models are called either zero-inflated 
Poisson (ZIP) or zero-inflated negative binomial (ZINB) 
regression models, respectively.

Further, if ϕi depends on the characteristics of observa-
tion i, then ϕi = Fi = F(z

′

iγ ) , where zi is a (q + 1)-dimen-
sional vector of zero-inflated covariates and γ is a 

(8)f
(
Yi = yi|Xi = xi

)
=

Ŵ
(
yi + α−1

)

yi!Ŵ
(
α−1

)
(

α−1

α−1 + µi

)α−1(
µi

α−1 + µi

)yi

, yi = 0, 1, 2, . . .

(9)E
(
Yi|Xi = xi

)
= µ

i

(10)V
(
Yi|Xi = xi

)
= µi(1+ αµi) > E

(
yi|xi

)

(11)

P
(
Yi = yi|Xi = xi

)
=

{
ϕi + (1− ϕi)g(0) I(yi=0)

(1− ϕi)g(yi) I(yi>0)

(q + 1)-dimensional vector of zero-inflated regression 
coefficients to be estimated. The function F is called zero-
inflated link function.

In the case of the ZIP regression model, the conditional 
expectation and the conditional variance of the outcome 

variable Yi are given by:

Since V
(
Yi|Xi = xi, zi

)
> E

(
Yi|Xi = xi, zi

)
 , ZIP model 

exhibits overdispersion as well.
In the case of ZINB regression model, the conditional 

expectation and the conditional variance of the outcome 
variable Yi are given by:

Since V
(
Y i|Xi = xi, zi

)
> E

(
Y i|Xi = xi, zi

)
 , the ZINB 

model like ZIP model exhibits overdispersion as well. Just 
as the NB distribution converges to the Poisson distribu-
tion as α approaches zero, the ZINB distribution con-
verges to the ZIP distribution as α approaches zero.

Generalized linear models
Poisson, NB, ZIP, and ZINB are all part of the General-
ized Linear Models (GLMs). The term GLM refers to 
a large class of models first introduced by Nelder and 
Wedderburn [52] and further developed and explained 
by McCullagh and Nelder [53]. GLMs extend stand-
ard linear regression models to encompass non-normal 
response distributions and possibly nonlinear functions 
of the mean [40]. The ordinary linear regression model 
uses linearity to describe the relationship between the 
mean of the response variable and a set of explanatory 
variables, with inference assuming that the response dis-
tribution is normal [40]. GLMs have three components: 
1) A random component, that specifies the response 
variable Yi, for the ith observation and its probability dis-
tribution. 2) A inear component, ηi = X

′

iβ , where β is a 
column vector of parameters and X i is a column vector 
of predictors for the ith observation. 3) A monotonic dif-
ferentiable link function g(.) describing how the expected 

(12)E
(
Yi|Xi = xi, zi

)
= µ

i
(1− Fi)

(13)V
(
Yi|Xi = xi, zi

)
= E

(
Yi|Xi = xi, zi

)
(1+ Fiµi) > E

(
Yi|Xi = xi, zi

)

(14)E
(
Yi|Xi = xi, zi

)
= µ

i
(1− Fi)

(15)
V
(
Yi|Xi = xi, zi

)
= E

(
Y i|Xi = xi, zi

)
[1+ (α + Fi)µi]
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value of variable Yi is related to the linear predictor ηi , 
g[E(Yi)] = g(µi) = X

′

iβ , [40]. The response variable Yi 
are independent for i = 1, 2, and have a probability dis-
tribution for an exponential family. This implies that the 
variance of the response variable Yi depends on the mean 
µi through a variance function V: var(Yi) = φV (µi)

ωi
, where 

φ is a constant, known as dispersion parameter, and ωi is 
a known weight for each observation. The link function g 
for Poisson, NB, ZIP and ZINB regression models is log 
( ηi = log(µi) ). The binary link function h for the model 
of the probability of a zero count in the case of ZIP and 
ZINB regression models, is one of the logit, probit, or 
complementary log–log.

Simulation study
Dataset generation
Several datasets with one dependent variable y and 
two predictor variables x1 and x2 were generated from 
the following four distributions: Poisson, NB, ZIP, and 
ZINB. Variable x1 was continuous and generated from a 
normal distribution with mean µ = 57.3 and a variance 
σ2 = 306.25 representing the distribution of variable age 
observed in the Medical Information Mart for Intensive 
Care (MIMIC-III) dataset for patients with an asthma 
diagnosis [54–56]. The binary variable x2 was generated 
from Bernoulli distribution with probability of success 
p = 0.43, representing the distribution of variable sex in 
the MIMIC-III dataset for patients with an asthma diag-
nosis. The values of the population regression coefficient 
β0, β1, and β2 were pre-specified and obtained by fitting 
a NB regression model for the outcome variable hospi-
tal LOS in the same MIMIC-III dataset. For each of the 
simulated data under Poisson, NB, ZIP, and ZINB distri-
butions, four different sample size scenarios were consid-
ered (50, 200, 600, and 1000). In the cases of count data 
generated with NB distribution or ZINB distribution dif-
ferent levels of dispersion (0.01, 1, 5, and 10) were consid-
ered under each of the sample size simulation scenarios. 
In the cases of count data generated with ZIP distribution 
or ZINB distribution, different proportions of structural 
zero (0.1, 0.3, 0.5, and 0.7) were considered under each 
of the sample size simulation scenario and under each of 
the dispersion levels simulation scenarios for data gener-
ated under ZINB distribution. To minimize the impact of 
simulation error, each scenario was repeated 1000 times. 
A summary of the simulation scenarios considered in the 
study is shown in Table 1.

Models evaluation
Poisson, NB, ZIP, and ZINB regression models with 
dependent variable y and independent variables x1 and x2 
were fitted on the generated data under each of the sim-
ulation scenarios and replications using the maximum 

likelihood estimation (MLE) method [57]. The Quasi-
Newton optimization technique was used to maximize 
the likelihood functions to obtain the regression models’ 
estimates. To assess the performance of the four different 
models under each simulation scenario, we first calcu-
lated the models’ convergence rates. When the MLE pro-
cedure converged, it means it found a unique set of values 
for each parameter, the combination of which returned 
the highest likelihood value of all parameter values exam-
ined [58]. For the converged models, we extracted the 
widely-used Akaike’s Information Criteria (AIC), a model 
selection criterion developed by Hirotsugu Akaike [59].
We also used the Bayesian information criteria (BIC) 
(also Schwarz criterion, SBC, SBIC) first formulated by 
Gideon Schwarz [60]. Smaller values of these criteria 
indicate a better model fit. In addition to the AIC and BIC 
statistics, we calculated the mean absolute error (MAE) 
for the E(yi|xi), defined as MAE =

∑n
i=1|E(yi|xi)−E(ŷi|xi)|

n , 
where n is the sample size. The AIC, BIC, and MAE were 
averaged over the 1000 replications in each of the simu-
lation scenario. All simulations and statistical analyses 
were conducted using Statistical Analysis System (SAS) 
9.4 (SAS Institute, Inc., 2015).

Empirical study
Data description
In the empirical study we used data from the Medi-
cal Information Mart for Intensive Care (MIMIC-III) 
[54–56]. MIMIC-III is a large, single-center database 
comprising information relating to patients admitted 
at the Beth Israel Deaconess Medical Center in Boston, 
Massachusetts. Agreement for data use was obtained. 
For the purposes of our study, we extracted patients with 
International Classification of Diseases, ninth revision 
(ICD-9) Code 49,390, which is related to the diagnosis of 
asthma. The resultant dataset consisted of 2,195 hospital 
patient admission records.

In our study, the outcome variable of interest was hos-
pital LOS, calculated as the difference in days between 
the date of admission and the date of discharge. The pre-
dictor variables considered in the regression analyses 
were age, sex, patient health insurance and type of admis-
sion. Age was measured in years. Sex was a categorical 

Table 1  Simulation scenarios considered in the simulation study

Distribution Sample size, n Proportion of 
Zeros

Level of 
Dispersion

Poisson 50 0.1 0.01

NB 200 0.3 1

ZIP 600 0.5 5

ZINB 1000 0.70 10
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variable with two levels: male and female. Patient health 
insurance was a categorical variable with 5 levels: govern-
ment, Medicaid, Medicare, private, and self-pay. Admis-
sion type was a categorical variable with 3 levels: elective, 
emergency, and urgent.

Statistical analysis
First, we conducted descriptive statistical analysis to 
summarize and describe the study data. Frequencies 
and percentages were used to describe categorical vari-
ables and means, and standard deviations were used to 
describe continuous variables. The distribution of the 
count outcome variable LOS was visually examined 
using histogram. In addition, we calculated the variance 
and the mean of the outcome variable LOS to highlight 
potential Poisson distribution violations and overdisper-
sion in the data. Poisson, NB, ZIP, and ZINB regression 
models were fitted for LOS on the predictor variables 
age, sex, health insurance, and admission type. The Pear-
son dispersion statistic, calculated by dividing the mod-
el’s Pearson Chi-square statistic by the corresponding 
degrees of freedom, was used as a criterion for assessing 
model’s misspecification or an overdispersed response 
variable. When the resultant value is greater than one, 
the model is considered to be overdispersed. AIC and 
BIC were used to compare the models. Furthermore, the 
models estimated coefficients, standard errors and their 
significance where examined, giving special attention 
to the difference in findings and conclusions across the 
models. All regression models were fitted using PROC 
COUNTREG and PROC GENMOD in SAS 9.4 (SAS 

Institute, 2015). Statistical testing was two-sided and per-
formed at a significance (α) level of 0.05.

Results
Simulation study
Data generated with poisson regression model
Table 2 shows the convergence rates of Poisson, NB, ZIP, 
and ZINB regression models for simulated data in four 
different sample size scenarios (n = 50, 200, 600, 1000). 
NB regression convergence rate was between 53.5% and 
58.7% with the largest convergence rate achieved in simu-
lated samples of size 1000 (Table 2). The convergence rate 
for ZINB increased from 90.4% to 94.2% as the sample 
size increased from 50 to 1000. Both Poisson and ZIP 
regression models had 100% convergence rate in all simu-
lation scenarios.

Table 3 shows the averaged AIC and BIC statistics pro-
duced for Poisson, NB, ZIP, and ZINB regression mod-
els across all replications under each of the four sample 
size simulation scenarios. Poisson regression model (true 
model) resulted with the lowest mean AIC and BIC val-
ues, followed by the NB regression model. The difference 
in mean AIC and mean BIC values between the fitted 
Poisson and the fitted NB and ZINB regression models 
increased as the sample size increased.

Table 4 shows the MAE values of the predicted counts 
by the fitted Poisson, NB, ZIP, and ZINB regression mod-
els across all replications under each of the four sample 
size simulation scenarios. Poisson regression model (true 
model) resulted with the lowest MAE followed by the 
ZIP, ZINB and NB regression models.

Table 2  Convergence rates of regression models fitted on data 
generated with Poisson regression model

Sample Size Poisson NB ZIP ZINB

50 100.0% 53.5% 100.0% 90.4%

200 100.0% 53.6% 100.0% 93.4%

600 100.0% 54.9% 100.0% 93.5%

1000 100.0% 58.7% 100.0% 94.2%

Table 3  AIC and BIC of regression models fitted on data generated with Poisson regression model

AIC BIC

Sample Size Poisson NB ZIP ZINB Poisson NB ZIP ZINB

50 260.88 266.12 266.88 267.92 266.6152 273.3131 278.3513 280.1757

200 1032.82 1042.64 1038.82 1040.18 1042.7200 1054.9800 1058.6100 1061.4600

600 3092.07 3107.19 3098.07 3100.35 3105.2600 3123.6300 3124.4500 3128.8100

1000 5151.60 5173.91 5157.60 5160.71 5166.3200 5192.7200 5187.0400 5192.5700

Table 4  MAE values of regression models fitted on data 
generated with Poisson regression model

Sample Size Poisson NB ZIP ZINB

50 0.6201 0.6158 0.6202 0.6202

200 0.3039 0.3055 0.3055 0.3045

600 0.1727 0.1764 0.1736 0.1736

1000 0.1401 0.1420 0.1402 0.1402
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Data generated with NB regression model
In this section we describe the analysis of data generated 
with NB regression model in sixteen different simula-
tion scenarios with varying sample sizes (n = 50, 200, 
600, 1000) and magnitudes of dispersion (0.01, 1, 5, 10). 
Table 5 shows the convergence rates of Poisson, NB, ZIP, 
and ZINB regression models. At very low levels of over-
dispersion (0.01) the NB regression model’s (true model) 

convergence rate ranged from 64.8% in the scenario with 
the smallest sample size to 94% in the scenario with the 
largest sample size. Similarly, in the same scenario of low 
level of overdispersion the ZINB regression model did 
not achieve 100% convergence rate. Overall, the ZINB 
regression model’s convergence rate was slightly bet-
ter than the convergence rate of the NB model, ranging 
between 91% and 99.6% with the increase of the sample 
size. Poisson and ZIP regression models converged 100% 
in all simulation scenarios. In the rest of the scenarios of 
level of dispersion (1, 5, and 10) and all the sample sizes 
(n = 50,200,600 and 1000), all the models achieved 100% 
convergence rate.

Table  6 displays the averaged AIC and BIC model fit 
statistics for Poisson, NB, ZIP, and ZINB regression mod-
els fitted on data generated with NB regression model 
with different magnitudes of dispersion and sample sizes. 
In the simulation scenario with nearly nonexistent over-
dispersion level (0.01), the Poisson regression model had 
the lowest AIC and BIC values regardless of the sample 
size. In all other simulation scenarios, the NB regression 
model (true model) had the lowest AIC and BIC values. 
The model fit of the NB and ZINB models improved as 
the level of dispersion increased; conversely, the model 
fit of Poisson and ZIP regression modes decreased as the 
dispersion level increased.

MAE values of the predicted counts with Poisson, 
NB, ZIP, and ZINB regression models fitted on data 
generated with NB regression model with different 
magnitude of dispersion and sample sizes are shown 

Table 5  Convergence rates of regression models fitted on data 
generated with NB regression model

Sample Size Dispersion Poisson NB ZIP ZINB

50 0.01 100.0% 64.8% 100.0% 91.0%

1 100.0% 100.0% 100.0% 100.0%

5 100.0% 100.0% 100.0% 100.0%

10 100.0% 100.0% 100.0% 100.0%

200 0.01 100.0% 81.2% 100.0% 97.3%

1 100.0% 100.0% 100.0% 100.0%

5 100.0% 100.0% 100.0% 100.0%

10 100.0% 100.0% 100.0% 100.0%

600 0.01 100.0% 90.5% 100.0% 99.5%

1 100.0% 100.0% 100.0% 100.0%

5 100.0% 100.0% 100.0% 100.0%

10 100.0% 100.0% 100.0% 100.0%

1000 0.01 100.0% 94.0% 100.0% 99.6%

1 100.0% 100.0% 100.0% 100.0%

5 100.0% 100.0% 100.0% 100.0%

10 100.0% 100.0% 100.0% 100.0%

Table 6  AIC and BIC of regression models fitted on data generated with NB regression model

AIC BIC

Sample Size Dispersion Poisson NB ZIP ZINB Poisson NB ZIP ZINB

50 0.01 265.51 270.12 271.51 272.78 271.24 277.42 282.98 285.40

1 635.25 341.14 634.90 346.91 640.98 348.79 646.37 360.29

5 1346.69 276.80 858.14 282.22 1352.43 284.45 869.61 295.60

10 1766.50 216.93 956.54 221.37 1772.24 224.58 968.01 234.75

200 0.01 1051.89 1057.24 1057.89 1058.58 1061.79 1069.85 1077.68 1081.01

1 2618.54 1352.80 2612.87 1358.58 2628.44 1365.99 2632.66 1381.66

5 5908.13 1095.27 3712.59 1100.91 5918.03 1108.46 3732.38 1124.01

10 7900.24 862.34 4125.06 866.21 7910.14 875.53 4144.85 889.29

600 0.01 3150.60 3153.55 3156.60 3155.11 3163.79 3170.49 3182.98 3185.66

1 7943.23 4057.43 7671.57 4063.25 7956.42 4075.02 7697.96 4094.03

5 17,923.15 3274.81 11,317.07 3280.08 17,936.34 3292.41 11,343.45 3310.85

10 24,241.73 2571.64 12,792.10 2575.34 24,254.92 2589.23 12,818.48 2606.12

1000 0.01 5250.77 5251.31 5256.77 5253.24 5265.49 5270.52 5286.21 5287.51

1 13,213.43 6753.31 12,743.07 6758.97 13,228.15 6772.94 12,772.52 6793.33

5 29,964.16 5455.19 18,966.36 5460.53 29,978.88 5474.82 18,995.81 5494.89

10 40,391.38 4273.81 21,385.72 4277.43 40,406.10 4293.44 21,415.17 4311.78
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in Table  7. In the simulation scenario with the small-
est sample size (n = 50), the Poisson regression model 
resulted with the smallest MAE regardless of the disper-
sion level. When the sample size increased to (n = 200) 
and at very small levels of overdispersion (0.01), both 
Poisson and ZIP regression models produced the small-
est MAE, followed by NB regression model. When the 
dispersion level was 10 and sample seizes were greater 
than 200, NB, followed by ZIP regression model pro-
duced the lowest MAE. In the scenarios with sample 
sizes greater than 200 the true model (i.e., NB regres-
sion model) produced the smallest MAE regardless of 
the level of dispersion.

Data generated with ZIP regression model
Table 8 shows the convergence rates of Poisson, NB, ZIP, 
and ZINB regression models fitted on data generated 
with a ZIP distribution in simulation scenarios with dif-
ferent levels of structural zeros and sample sizes. Poisson 
and ZIP regression models achieved 100% convergence 
rate across all the simulation scenarios. NB regression 
model achieved 98.4% and 99.9% convergence rate in 
data simulated with 10% proportion of structural zeros 
and sample sizes n = 50 and n = 200, respectively, and 
achieved 100% convergence rate in all the combination 
of scenarios for sample sizes and proportion of structural 
zeros greater than 30%. ZINB regression model conver-
gence rate varied between 94.4% to 99.4% across all the 
simulation scenarios.

Table 9 shows the AIC and BIC fit statistics values for 
the fitted Poisson, NB, ZIP, and ZINB regression mod-
els on data generated with ZIP regression model. When 
the proportion of structural zeros was 10%, the ZINB 
regression model had the smallest AIC and BIC values 
rather than the true ZIP regression model. In simula-
tion scenarios with a higher proportion of structural 
zeros in the data (30%, 50%, 70%), the true ZIP regres-
sion model had the smallest AIC and BIC values followed 
by the ZINB regression model. In addition, the Poisson 
regression model produced the largest AIC and BIC val-
ues in all the scenarios. Another finding was that Poisson 
models fit became worse as the proportion of structural 
zeros increased from 10 to 50%, then slightly improved 
when the proportion of structural zeros reached 70%; 
contrary to the rest of the models, where the fit consider-
ably became better as the proportion of structural zeros 
increased.

The MAE values of the predicted counts based on 
Poisson, NB, ZIP, and ZINB regression models fitted 
on data generated with the ZIP regression model in dif-
ferent simulation scenarios are shown in Table  10. ZIP 
model had the lowest MAE in the scenarios with the 
smallest sample size (n = 50) and proportion of struc-
tural zeros of 10% and 30%. Both ZIP and ZINB had the 
lowest MAEs in the scenario with the smallest sample 
size (n = 50) and 50% proportion of structural zeros. 
ZINB had the lowest MAE in the scenarios with sam-
ple sizes 200 and 1000 and 70% proportion of structural 

Table 7  MAE values of regression models fitted on data 
generated with NB regression model

Sample Size Dispersion Poisson NB ZIP ZINB

50 0.01 0.6457 0.6501 0.6501 0.6477

1 2.0766 2.0981 2.0808 2.1070

5 4.3471 4.7621 4.4190 4.7984

10 6.0011 7.4481 6.2916 7.5888

200 0.01 0.3263 0.3297 0.3263 0.3267

1 1.0397 1.0384 1.0412 1.0402

5 2.2255 2.2529 2.2250 2.2651

10 3.2408 3.0910 3.1349 3.3494

600 0.01 0.1836 0.1828 0.1836 0.1839

1 0.6050 0.6020 0.6057 0.6024

5 1.2813 1.2810 1.2853 1.2935

10 1.8427 1.8309 1.8340 1.8844

1000 0.01 0.1430 0.1427 0.1430 0.1429

1 0.4701 0.4677 0.4696 0.4683

5 0.9983 0.9959 0.9972 1.0025

10 1.4665 1.4614 1.4629 1.4951

Table 8  Convergence rates of regression models fitted on data 
generated with ZIP regression model

Sample Size Proportion 
of Zeros

Poisson NB ZIP ZINB

50 0.1 100.0% 98.4% 100.0% 96.8%

0.3 100.0% 100.0% 100.0% 97.9%

0.5 100.0% 100.0% 100.0% 96.0%

0.7 100.0% 100.0% 100.0% 95.0%

200 0.1 100.0% 99.9% 100.0% 95.6%

0.3 100.0% 100.0% 100.0% 98.3%

0.5 100.0% 100.0% 100.0% 96.7%

0.7 100.0% 100.0% 100.0% 94.4%

600 0.1 100.0% 100.0% 100.0% 95.0%

0.3 100.0% 100.0% 100.0% 97.4%

0.5 100.0% 100.0% 100.0% 97.9%

0.7 100.0% 100.0% 100.0% 94.9%

1000 0.1 100.0% 100.0% 100.0% 95.2%

0.3 100.0% 100.0% 100.0% 99.4%

0.5 100.0% 100.0% 100.0% 96.2%

0.7 100.0% 100.0% 100.0% 95.0%
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zeros. The ZIP model produced the lowest MAEs in 
scenarios with sample sizes 200 and 1000 and 10% pro-
portion of structural zeros. When the sample size was 
600 and the proportion of structural zeros was 30%, the 
ZINB had the highest MAE while Poisson, NB and ZIP 
had the same MAE. In all other scenarios, NB produced 
the lowest MAE.

Data generated with ZINB regression model
In this section, we present the results from the analysis 
of the data generated with the ZINB regression model 
on sixty-four different simulation scenarios with vari-
ous proportions of zeros, magnitudes of dispersion, and 
sample sizes. Tables  11, 12, 13, 14 present the conver-
gence rates of Poisson, NB, ZIP, and ZINB regression 

Table 9  AIC and BIC of regression models fitted on data generated with ZIP regression model

AIC BIC

Sample Size Proportion of 
Zeros

Poisson NB ZIP ZINB Poisson NB ZIP ZINB

50 0.1 330.55 309.147 325.14 294.95 334.992 315.629 335.50 306.43

0.3 433.015 307.129 261.57 298.20 437.754 315.322 273.83 311.98

0.5 475.166 256.639 204.79 235.84 479.329 263.507 215.14 244.69

0.7 431.434 179.094 144.05 156.10 434.473 186.103 154.85 166.43

200 0.1 1316.84 1225.51 1314.41 1109.70 1329.63 1239.56 1338.93 1130.06

0.3 1749.24 1215.96 970.82 1138.99 1756.33 1229.85 990.56 1160.73

0.5 1936.33 1009.57 798.26 880.09 1942.94 1020.93 815.54 902.58

0.7 1782.48 698.492 559.00 568.73 1793.98 714.057 580.31 590.12

600 0.1 3960.45 3674.16 3703.56 3219.10 3969.41 3690.25 3719.15 3256.71

0.3 5250.21 3641.94 2902.96 3292.35 5267.11 3657.86 2926.41 3308.48

0.5 5834.42 3016.79 2381.02 2516.09 5845.18 3032.01 2404.95 2553.38

0.7 5387.17 2084.75 1664.94 1666.35 5410.3 2107.83 1695.38 1698.18

1000 0.1 6596.51 6120.87 5475.69 5298.91 6611.8 6140.44 5520.85 5324.98

0.3 8756.95 6066.9 4846.20 5902.66 8782 6084.58 4866.44 5907.23

0.5 9735.86 5026.48 3966.62 3995.33 9745.98 5047.67 3996.49 4027.83

0.7 8987.2 3469.05 2768.75 2770.02 9004.26 3487.81 2799.32 2801.99

Table 10  MAE values of regression models fitted on data 
generated with ZIP regression model

Sample Size Proportion 
of Zeros

Poisson NB ZIP ZINB

50 0.1 1.2051 1.2175 1.2041 1.2056

0.3 3.1300 3.1366 3.1202 3.1296

0.5 5.2026 5.2005 5.1954 5.1954

0.7 7.2560 7.2425 7.2506 7.2345

200 0.1 1.0618 1.0624 1.0616 1.0638

0.3 3.1064 3.1057 3.1061 3.1059

0.5 5.1843 5.1827 5.1841 5.1791

0.7 7.2264 7.2231 7.2261 7.2265

600 0.1 1.0350 1.0350 1.0348 1.0347

0.3 3.1078 3.1078 3.1078 3.1104

0.5 5.1784 5.1784 5.1786 5.1814

0.7 7.2242 7.2238 7.2241 7.2256

1000 0.1 1.0299 1.0298 1.0297 1.0301

0.3 3.0995 3.0994 3.0995 3.1000

0.5 5.1630 5.1628 5.1630 5.1633

0.7 7.2381 7.2378 7.2380 7.2381

Table 11  Convergence rates of regression models fitted on data 
generated with ZINB regression model, n = 50

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 100.0% 98.3% 100.0% 97.4%

0.3 100.0% 100.0% 100.0% 98.6%

0.5 100.0% 100.0% 100.0% 97.3%

0.7 100.0% 100.0% 100.0% 94.6%

1 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 99.9%

5 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 99.8% 99.0%

10 0.1 100.0% 100.0% 99.9% 100.0%

0.3 100.0% 100.0% 99.9% 99.8%

0.5 100.0% 100.0% 99.9% 99.4%

0.7 100.0% 100.0% 98.9% 95.0%
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models fitted on the simulated data across different simu-
lation scenarios. In the scenario where data were simu-
lated with the smallest sample size (n = 50), the Poisson 
model achieved 100% convergence rate regardless of the 
magnitudes of dispersion or structural zero proportions 
(Table  11). The convergence rates for the other models 
were unstable across the simulation scenarios and varied 

between 94.6% and 100%. For instance, ZIP model con-
vergence rate was 100% for dispersion levels 0.01, 1, and 
5 regardless of the proportion of structural zeros; and 
varied between 98.9% and 99.9% in the scenario with the 
largest overdispersion (dispersion = 10). When the sam-
ple size was 50, the convergence rate of ZINB slightly 
reduced as the proportion of zeros increased. Only in 
the scenarios with dispersion levels of 1 and 5 and pro-
portion of structural zeros of (10%, 30%, and 50%), the 
ZINB model achieved 100% convergence rate. However, 
the trend observed in the convergence rate of ZINB in 
scenarios with sample size 50 changed as the sample size 
became larger (Tables 11, 12, 13, 14). With the increase 
of the sample size all the models achieved 100% con-
vergence rate in all simulation scenarios except for the 
NB and ZINB regression models, where in simulation 
scenarios with the smallest level of dispersion (disper-
sion = 0.01) the models’ convergence rates were slightly 
below 100%.

The AIC and BIC fit statistics of Poisson, NB, ZIP, and 
ZINB regression models fitted on data generated with 
the ZINB regression model and with different magni-
tudes of dispersion, zero proportions, and sample sizes 
are displayed in Tables  15, 16, 17, 18. In the simulation 
scenarios with the smallest dispersion level of 0.01 and 
10% structural zeros, ZINB produced the lowest AIC 
and BIC fit statistics values regardless of the sample size, 
except for the case with the smallest sample size, where 
NB model had the lowest AIC values. However, ZINB 
had the lowest BIC values across all scenarios. When 

Table 12  Convergence rates of regression models fitted on data 
generated with ZINB regression model, n = 200

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 100.0% 99.8% 100.0% 98.8%

0.3 100.0% 100.0% 100.0% 98.8%

0.5 100.0% 100.0% 100.0% 98.6%

0.7 100.0% 100.0% 100.0% 96.4%

1 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 99.9%

5 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

10 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

Table 13  Convergence rates of regression models fitted on data 
generated with ZINB regression model, n = 600

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 100.0% 99.8% 100.0% 99.3%

0.3 100.0% 100.0% 100.0% 99.8%

0.5 100.0% 100.0% 100.0% 98.9%

0.7 100.0% 100.0% 100.0% 98.2%

1 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

5 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

10 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

Table 14  Convergence rates of regression models fitted on data 
generated with ZINB regression model, n = 1000

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 100.0% 99.8% 100.0% 99.8%

0.3 100.0% 100.0% 100.0% 99.9%

0.5 100.0% 100.0% 100.0% 99.6%

0.7 100.0% 100.0% 100.0% 99.1%

1 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

5 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%

10 0.1 100.0% 100.0% 100.0% 100.0%

0.3 100.0% 100.0% 100.0% 100.0%

0.5 100.0% 100.0% 100.0% 100.0%

0.7 100.0% 100.0% 100.0% 100.0%
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the proportion of structural zeros was greater than 10% 
ZIP model produced the lowest AIC and BIC statistics 
in all simulation scenarios with a dispersion level of 0.01 
regardless of the sample size. When the dispersion level 
reached 1, the regression model that produced the lowest 
AIC values was the ZINB model in nearly all the scenar-
ios of different sample sizes and proportions of structural 

zeros, except for the scenario with sample size 50, where 
NB produced the lowest AIC values in scenarios with a 
proportion of structural zeros up to 50%. ZINB produced 
the lowest AIC in the simulation scenarios with propor-
tion of structural zeros greater than 50% and dispersion 
equal to 1. Similarly, at level of dispersion equal to 1 the 
model that produced the lowest BIC was the NB model 

Table 15  AIC and BIC of regression models fitted on data generated with ZINB regression model, n = 50

AIC BIC

Dispersion Proportion of 
Zeros

Poisson NB ZIP ZINB Poisson NB ZIP ZINB

0.01 0.1 334.99 310.68 328.98 314.61 340.73 318.27 340.46 311.05

0.3 436.35 307.02 264.63 283.63 442.09 314.67 276.10 312.97

0.5 476.33 256.23 207.07 230.73 482.07 263.88 218.54 249.45

0.7 432.29 178.85 145.33 161.01 438.02 186.50 156.80 168.90

1 0.1 662.56 328.90 599.90 331.82 668.30 336.55 611.37 348.00

0.3 684.04 288.86 451.98 289.87 689.77 296.51 463.45 306.57

0.5 648.66 231.54 332.12 231.72 654.39 239.19 343.59 246.58

0.7 516.19 159.30 206.90 158.71 521.93 166.95 218.37 172.42

5 0.1 1299.27 257.12 761.95 260.82 1305.00 264.77 773.42 275.50

0.3 1152.80 212.91 573.34 216.00 1158.54 220.56 584.81 230.27

0.5 955.49 165.12 396.99 167.50 961.23 172.77 408.46 181.53

0.7 651.92 109.17 207.29 110.38 657.66 116.81 218.76 124.04

10 0.1 1642.30 199.36 822.90 202.74 1648.04 207.01 834.37 216.88

0.3 1401.83 163.20 580.56 166.20 1407.56 170.84 592.04 180.44

0.5 1103.92 125.17 380.16 128.91 1109.65 132.82 391.63 145.11

0.7 757.17 83.21 178.00 85.78 762.91 90.84 189.47 103.55

Table 16  AIC and BIC of regression models fitted on data generated with ZINB regression model, n = 200

AIC BIC

Dispersion Proportion of 
Zeros

Poisson NB ZIP ZINB Poisson NB ZIP ZINB

0.01 0.1 1333.77 1229.97 1332.39 1227.46 1343.66 1243.15 1352.18 1148.42

0.3 1761.76 1215.33 984.06 1067.55 1771.66 1228.53 1003.85 1164.05

0.5 1942.31 1008.44 806.91 852.92 1952.21 1021.64 826.70 910.07

0.7 1786.95 697.77 564.36 645.10 1796.84 710.96 584.15 594.94

1 0.1 2742.24 1303.87 2488.31 1303.70 2752.14 1317.07 2508.10 1332.46

0.3 2833.77 1140.65 1820.51 1133.77 2843.66 1153.84 1840.30 1166.58

0.5 2705.47 914.06 1386.86 904.33 2715.37 927.26 1406.65 933.00

0.7 2236.29 624.40 892.96 619.49 2246.18 637.60 912.75 636.68

5 0.1 5706.66 1016.90 3372.84 1020.43 5716.55 1030.09 3392.63 1045.04

0.3 5072.56 839.10 2614.08 841.96 5082.46 852.29 2633.87 865.30

0.5 4292.57 646.81 1890.03 649.02 4302.47 660.00 1909.82 672.33

0.7 3147.23 429.58 1125.24 431.35 3157.12 442.78 1145.03 453.84

10 0.1 7469.74 794.21 3702.48 797.88 7479.63 807.40 3722.27 820.93

0.3 6449.26 648.03 2850.89 651.08 6459.15 661.23 2870.68 674.50

0.5 5226.10 490.72 1996.52 493.30 5235.99 503.91 2016.31 516.53

0.7 3693.37 322.88 1158.69 324.77 3703.26 336.07 1178.48 347.56
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in all the simulation scenarios of proportion of struc-
tural zeros and a small sample size 50. When the sample 
size increased from 50 to 1000, the NB regression model 
produced the lowest BIC statistics in the simulation sce-
narios with proportion of structural zero below 50%. The 
ZINB regression model produced the lowest BIC fit sta-
tistics in the scenarios with a proportion of structural 

zeros exceeding 50%. In summary, based on AIC and BIC 
statistics NB regression model consistently produced the 
best fit in all simulation scenarios with a dispersion level 
exceeding 1 regardless of the proportion of structural 
zeros and sample size.

The MAEs values of the predicted counts based on 
Poisson, NB, ZIP, and ZINB regression models fitted on 

Table 17  AIC and BIC of regression models fitted on data generated with ZINB regression model, n = 600

AIC BIC

Dispersion Proportion of 
Zeros

Poisson NB ZIP ZINB Poisson NB ZIP ZINB

0.01 0.1 4012.44 3687.82 3762.22 3645.61 4025.63 3705.40 3788.60 3307.96

0.3 5291.04 3640.69 2944.29 3009.53 5304.23 3658.28 2970.67 3330.99

0.5 5858.06 3013.56 2408.92 2441.63 5871.25 3031.15 2435.30 2565.70

0.7 5404.04 2082.93 1681.98 2019.25 5417.23 2100.52 1708.36 1712.98

1 0.1 8325.06 3907.52 7023.07 3898.82 8338.25 3925.11 7049.45 3942.95

0.3 8638.02 3424.71 5545.94 3388.55 8651.21 3442.29 5572.33 3458.18

0.5 8249.33 2739.12 4230.17 2700.33 8262.52 2756.71 4256.56 2744.53

0.7 6855.00 1865.19 2742.46 1851.60 6868.19 1882.78 2768.84 1851.36

5 0.1 17,280.45 3039.27 10,264.64 3042.69 17,293.64 3056.86 10,291.02 3074.23

0.3 15,597.37 2517.53 8119.98 2520.66 15,610.56 2535.11 8146.36 2550.90

0.5 13,165.60 1934.56 5896.48 1936.43 13,178.79 1952.15 5922.86 1966.15

0.7 9776.28 1278.72 3616.01 1280.44 9789.47 1296.31 3642.39 1309.09

10 0.1 22,968.65 2366.89 11,539.50 2370.34 22,981.84 2384.48 11,565.88 2401.25

0.3 19,981.48 1934.71 9021.47 1937.67 19,994.67 1952.29 9047.85 1968.43

0.5 16,344.06 1466.35 6497.22 1473.33 16,357.25 1483.94 6523.60 1499.15

0.7 11,566.87 955.61 3866.63 962.28 11,580.06 973.20 3893.01 987.91

Table 18  AIC and BIC of regression models fitted on data generated with ZINB regression model, n = 1000

AIC BIC

Dispersion Proportion of 
Zeros

Poisson NB ZIP ZINB Poisson NB ZIP ZINB

0.01 0.1 6684.63 6143.38 5565.15 6052.92 6699.35 6163.02 5594.60 5420.31

0.3 8824.90 6064.34 4915.65 4924.89 8839.63 6083.97 4945.10 5931.34

0.5 9777.68 5020.98 4015.15 4043.07 9792.40 5040.61 4044.60 4073.87

0.7 9023.63 3466.21 2799.39 3385.59 9038.36 3485.85 2828.84 2833.13

1 0.1 13,858.97 6504.03 11,178.92 6486.14 13,873.70 6523.66 11,208.37 6544.02

0.3 14,382.64 5698.27 9230.42 5630.25 14,397.36 5717.90 9259.87 5724.47

0.5 13,733.09 4553.36 7032.62 4490.56 13,747.81 4572.99 7062.07 4518.57

0.7 11,386.64 3105.34 4560.08 3089.41 11,401.36 3124.97 4589.52 3062.81

5 0.1 28,903.48 5055.91 17,208.02 5059.30 28,918.20 5075.55 17,237.47 5094.76

0.3 26,089.74 4186.58 13,612.61 4189.29 26,104.46 4206.21 13,642.06 4223.62

0.5 21,943.54 3211.80 9862.55 3213.03 21,958.27 3231.43 9891.99 3244.95

0.7 16,243.74 2112.63 6053.74 2114.34 16,258.46 2132.26 6083.19 2145.26

10 0.1 38,248.13 3928.96 19,291.56 3932.52 38,262.85 3948.59 19,321.01 3966.42

0.3 33,318.61 3211.97 15,134.62 3215.36 33,333.33 3231.60 15,164.07 3248.79

0.5 26,982.05 2431.72 10,754.37 2434.39 26,996.77 2451.35 10,783.82 2467.68

0.7 19,259.10 1582.60 6502.62 1592.23 19,273.82 1602.23 6532.07 1618.24
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data generated with the ZINB regression model and with 
different magnitudes of dispersion, zero proportions, and 
sample sizes are displayed in Tables 19, 20, 21, 22. In sce-
narios with a small sample size of 50 and dispersion levels 
of 0.01 and 1, the ZIP model provided the smallest MAEs 
in nearly all simulation scenarios of proportion of struc-
tural zero, except for the scenarios with structural zero 

proportion of 70% and dispersion level of 0.01. Another 
exception were the scenarios with structural zero pro-
portion of 10% and dispersion level of 1, where ZINB 
and Poisson regression models had the smallest MAEs, 
respectively. In the rest of the simulation scenarios within 
the small sample size of 50, the Poisson model provided 
the lowest MAEs (Table 19). As the sample size increased 

Table 19  MAE values of regression models fitted on data 
generated with ZINB regression model, n = 50

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 1.2283 1.2316 1.2274 1.2307

0.3 3.1310 3.1385 3.1209 3.1402

0.5 5.2114 5.2070 5.2052 5.2102

0.7 7.2429 7.2286 7.2366 7.2279

1 0.1 2.2478 2.2833 2.2567 2.2882

0.3 3.4686 3.5042 3.4598 3.5167

0.5 5.2457 5.2841 5.2352 5.3016

0.7 7.2643 7.3470 7.2495 7.3034

5 0.1 4.4559 4.8665 4.5330 4.9490

0.3 5.0453 5.8211 5.1587 5.9835

0.5 6.2162 7.2657 6.3823 7.1108

0.7 7.6836 19.0239 20.2636 22.7636

10 0.1 6.0659 8.2687 6.6112 9.1112

0.3 6.4278 11.9930 7.0274 9.5274

0.5 7.2752 14.5155 7.0274 9.5274

0.7 8.3214 15.8751 14.0274 16.5274

Table 20  MAE values of regression models fitted on data 
generated with ZINB regression model, n = 200

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 1.0586 1.0591 1.0585 1.0565

0.3 3.1008 3.1002 3.1007 3.1018

0.5 5.1761 5.1744 5.1759 5.1707

0.7 7.2169 7.2130 7.2165 7.2146

1 0.1 1.3805 1.3837 1.3802 1.3876

0.3 3.1443 3.1463 3.1426 3.1504

0.5 5.1854 5.1823 5.1841 5.1840

0.7 7.2180 7.2091 7.2166 7.2132

5 0.1 2.3519 2.3926 2.3592 2.4141

0.3 3.4632 3.5050 3.4640 3.5303

0.5 5.2182 5.2268 5.2143 5.2361

0.7 7.2641 7.2626 7.2581 7.2598

10 0.1 3.1613 3.2489 3.1768 3.3383

0.3 3.9775 4.0793 3.9982 4.1287

0.5 5.4267 5.5666 5.4403 5.5871

0.7 7.3654 7.5561 7.3998 7.7825

Table 21  MAE values of regression models fitted on data 
generated with ZINB regression model, n = 600

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 1.0242 1.0242 1.0239 1.0243

0.3 3.0994 3.0993 3.0994 3.1010

0.5 5.1722 5.1722 5.1723 5.1716

0.7 7.2237 7.2233 7.2236 7.2253

1 0.1 1.1257 1.1240 1.1248 1.1245

0.3 3.1168 3.1164 3.1165 3.1168

0.5 5.1761 5.1760 5.1761 5.1772

0.7 7.2476 7.2467 7.2474 7.2470

5 0.1 1.5891 1.5964 1.5911 1.6048

0.3 3.1700 3.1734 3.1694 3.1776

0.5 5.2008 5.1966 5.2002 5.1975

0.7 7.2388 7.2288 7.2372 7.2304

10 0.1 1.9827 2.0020 1.9896 2.0355

0.3 3.2512 3.2606 3.2539 3.2740

0.5 5.1940 5.1913 5.1934 5.1893

0.7 7.2050 7.1947 7.2016 7.1881

Table 22  MAE values of regression models fitted on data 
generated with ZINB regression model, n = 1000

Dispersion Proportion 
of Zeros

Poisson NB ZIP ZINB

0.01 0.1 1.0317 1.0316 1.0316 1.0317

0.3 3.1048 3.1048 3.1049 3.1056

0.5 5.1641 5.1639 5.1641 5.1643

0.7 7.2360 7.2357 7.2359 7.2351

1 0.1 1.0590 1.0588 1.0583 1.0590

0.3 3.0980 3.0979 3.0980 3.0990

0.5 5.1694 5.1688 5.1692 5.1694

0.7 7.2343 7.2338 7.2343 7.2340

5 0.1 1.2959 1.2958 1.2943 1.3004

0.3 3.1097 3.1079 3.1089 3.1095

0.5 5.1660 5.1646 5.1658 5.1644

0.7 7.2351 7.2316 7.2341 7.2313

10 0.1 1.6692 1.6708 1.6680 1.6957

0.3 3.1550 3.1544 3.1542 3.1567

0.5 5.1485 5.1454 5.1479 5.1441

0.7 7.2436 7.2350 7.2432 7.2339
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from 200 to 1000, the Poisson regression model no longer 
resulted with the smallest MAEs. In simulation scenarios 
with sample sizes 200, 600, and 1000, and a small disper-
sion of 0.01, the NB produced the lowest MAEs in nearly 
every scenario of proportion of structural zeros, with the 
exception when the proportion of structural zeros was 
10% where the ZINB in (n = 200), ZIP in (n = 600) or 

either NB or ZIP in (n = 1000) regression models resulted 
with the lowest MAEs. Another finding was that in simu-
lation scenarios with large sample size (n = 1000), and 
dispersion level of 1, the NB model produced the lowest 
MAEs regardless of the proportion of structural zeros. 
In simulation scenarios with large sample size (n = 1000) 
and dispersion level greater than 1, ZIP model produced 
the lowest MAEs when the proportion of structural 
zeros did not exceed 30%; and ZINB produced the low-
est MAEs when the proportion of structural zeros was 
greater than 30%.

Empirical study
Description of the study population
The empirical study population consisted of 2,167 
patients admitted in hospitals with a diagnosis of Asthma 
selected from MIMIC dataset using ICD-9 code 49,390. 
Table  23 presents the main demographic characteris-
tics of the study population. Sixty percent of the admit-
ted patients were females. The mean age was 62.3 
(SD = 40.66). It should be noted that in the MIMIC data, 
patients of under89 years old were merged into the same 
age group. 80.66% of the study population were admit-
ted due to emergency, 17.44% were electively admit-
ted, and just 1.89% of the patients had an urgent type of 
admission. Most patients had either Medicare (44.35%) 
or private health insurance (36.41%) (Table  23). The 

Table 23  Demographic and clinical characteristics of the study 
population with asthma diagnosis, n = 2,167

Characteristic

Age (years), mean (SD) 62.3 (40.66)

Sex, n (%)

  Male 864 (39.87)

  Female 1303 (60.13)

Hospital admission type, n (%)

  Elective 378 (17.44)

  Emergency 1748 (80.66)

  Urgent 41 (1.89)

Health insurance type, n (%)

  Government 96 (4.43)

  Medicaid 304 (14.03)

  Medicare 961 (44.35)

  Private 789 (36.41)

  Self-Pay 17 (0.78)

LOS, mean (SD) 8.0 (6.56)

Fig. 1  Histogram of hospital length of stay for patients with asthma diagnosis, n = 2,167
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distribution of the variable hospital LOS was positively 
skewed, with values ranging from 0 to 40  days (Fig.  1). 
The mean LOS, 8.0 days, was much lower than the vari-
ance of 43.10. The larger sample variance compared to 
the sample mean suggested a deviation from the Poisson 
regression model’s assumption for equal variance and 
mean [61].

Comparison of fitted poisson, NB, ZIP, and ZINB regression 
models
Table 24 presents the results of fitted Poisson, NB, ZIP, 
and ZINB regression models for the outcome variable 
LOS on the patient level predictor variables age, sex, 

type of hospital admission, and health insurance status. 
In the zero-inflated models the same predictors were 
used to fit both the count model and the logistic (zero) 
model. Based on the results in Table 24, the NB regres-
sion model provided the best fit to the data since it 
resulted the smallest AIC and BIC values. The second-
best model was ZINB, followed by the ZIP model. The 
Poisson regression model resulted with the worst fit to 
the data according to the AIC and BIC values. The Pear-
son dispersion statistic in Poisson regression model was 
5.3016, greater than 1, suggesting overdispersion. The 
fitted NB regression model had the smallest dispersion 
statistic of 1.1815. The regression coefficient estimates 

Table 24  Findings from fitted multivariable Poisson, NB, ZIP, and ZINB regression models for hospital LOS, n = 2,167

Parameter Poisson NB ZIP ZINB

Estimate (SE) P-Value Estimate (SE) P-Value Estimate (SE) P-Value Estimate (SE) P-Value

Age -0.001 (0.0002)  < .0001 -0.001 (0.0004) 0.0546 -0.001 (0.0002) 0.0002 -0.001 (0.0004) 0.0561

Sex

  Female 0.03 (0.02) 0.1086 0.03 (0.03) 0.4651 0.02 (0.02) 0.1247 0.03 (0.03) 0.4414

  Male reference reference reference reference

Health insurance

  Government 0.32 (0.11) 0.0045 0.32 (0.21) 0.1228 0.26 (0.11) 0.0215 0.26 (0.21) 0.2129

  Medicaid 0.49 (0.11)  < .0001 0.49 (0.20) 0.0131 0.44 (0.11)  < .0001 0.43 (0.20) 0.0319

  Medicare 0.46 (0.11)  < .0001 0.46 (0.19) 0.0189 0.41 (0.11) 0.0001 0.40 (0.20) 0.0445

  Private 0.41 (0.11) 0.0001 0.40 (0.19) 0.0372 0.35 (0.11) 0.0009 0.35 (0.20) 0.0796

  Self-pay reference reference reference reference

Admission type

  Elective -0.30 (0.05)  < .0001 -0.29 (0.12) 0.0159 -0.29 (0.05)  < .0001 -0.29 (0.12) 0.0160

  Emergency -0.17 (0.05) 0.0011 -0.16 (0.12) 0.1649 -0.16 (0.05) 0.0025 -0.16 (0.12) 0.1667

  Urgent reference reference reference reference

Zero Model Estimate (SE) P-Value Estimate (SE) P-Value Estimate (SE) P-Value Estimate (SE) P-Value

Age 0.003 (0.004) 0.5015 0.07 (0.13) 0.5722

Sex

  Female -0.09 (0.43) 0.8437 18.10 (4082.56) 0.9965

  Male reference reference

Health insurance

  Government -14.35 (528.33) 0.9787 -22.23 (16,904.72) 0.9990

  Medicaid -1.55 (1.23) 0.2057 -34.36 (4533.48) 0.9940

  Medicare -1.56 (1.17) 0.1800 -37.75 (4039.53) 0.9925

  Private -2.22 (1.19) 0.0662 -22.36 (5537.88) 0.9968

  Self-pay reference reference

Admission type

  Elective 12.99 (810.38) 0.9871 1.81 (20,295.23) 0.9999

  Emergency 12.72 (810.38) 0.9873 17.23 (19,158.48) 0.9993

  Urgent reference reference

Pearson Chi-Square 
(value/degrees of free-
dom)

5.3016 1.1815 4.9001 1.1868

AIC 17,675.4989 13,134.7955 17,560.4274 13,150.2305

BIC 17,726.6288 13,191.6065 17,662.6872 13,258.1713
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and their respective standard errors differed across the 
models (Table 24). It is quite noticeable in Table 24 the 
tendency for the Poisson, and ZIP regression models 
to produced smaller standard errors of the regression 
coefficient estimates than NB and ZINB regression 
models. Overdispersion may cause standard errors of 
the regression coefficient estimates to be underesti-
mated and therefore contributing to discrepancies in 
significant regression coefficients findings between 
the models [39, 43]. For instance, at a 5% significance 
level, only based on the fitted Poisson and ZIP regres-
sion models there were significant association between 
age and log LOS, controlling for the effect of sex, health 
insurance type, and admission type variables included 
in the models (Table 24). In relation to the logistic part 
(zero-model), none of the variables in both ZIP and 
ZINB regression models had significant contribution to 
the structural zero-generating process of LOS.

Discussion
Simulation and empirical studies were conducted to 
compare performance in terms of convergence rate and 
model fit of the Poisson, NB, ZIP, and ZINB regres-
sion models. This research added to previous studies 
by including additional experimental scenarios, such as 
varying sample sizes, larger dispersion levels, various 
proportions of zero in the outcome variable, and data 
generated using Poisson and ZIP distributions, along 
with NB and ZINB distributions. Our motivating real-life 
example was the analysis of the count outcome variable 
hospital length of stay.

Based on the simulation study, when the data were gen-
erated with a Poisson regression model (i.e., there was no 
overdispersion or zero-inflation present in the data), the 
results showed that regardless of the sample size of the 
simulated data, the Poisson and ZIP regression models 
did not have convergence problems. Both NB and ZINB 
model did not converge 100% in all the sample size simu-
lation scenarios. Compared to NB, ZIP, and ZINB regres-
sion models, the Poisson regression model (true model) 
resulted with the smallest AIC, BIC, and MAE. Our find-
ings slightly differ from the findings reported by Nekesa 
et  al. (2019) where in simulated data with fixed sample 
size of 500 with no zero-inflation and very low levels of 
overdispersion, the fitted NB model had the lowest AIC. 
However, in Nekesa’s study the response variable was 
generated with a negative binomial distribution [62]. 
By allowing the variance in the data to be greater than 
the mean, we generated overdispersed data with a NB 
regression model varying the level of dispersion and the 
sample size. We found that when the data have very low 
overdispersion, the Poisson regression model provided 
the smallest AIC and BIC statistics values regardless the 

sample size and fitting a NB or ZINB model may encoun-
ter convergence problems especially in  situations where 
the data have low overdispersion. This was expected 
since as the dispersion parameter approaches zero, the 
NB distribution approaches the Poisson distribution 
[63]. When the dispersion was greater than 1, the NB 
model (true model) provided the best fit in terms of AIC 
and BIC, regardless of the sample size. These results are 
in line with Gardner [31] and Saffari [64], who showed 
that NB regression should be used when there is over-
dispersion in the data. In the scenarios with large sam-
ple sizes (200, 600 or 1000) the NB model produced the 
smallest MAE regardless of the dispersion level present 
in the data. Interestingly, when the sample size was 50, 
the Poisson regression model produced the smallest 
MAE. The reason for this could be that the small sample 
size affected the accuracy of the estimation [65]. When 
manipulating the sample size and the proportion of 
structural zeros in the data generated with a ZIP regres-
sion model, we found that ZINB had less than 100% con-
vergence rate regardless of the sample size or proportion 
of structural zeros in the data. However, the NB model 
convergence rate was better than the ZINB regression 
model convergence rate since NB reached 100% in most 
of the simulation scenarios. It is important to note that 
the ZINB regression model is more complex than NB, 
which may influence the performance of the Quasi-
Newton algorithm used for MLE estimations [66]. Other 
researchers have reported similar convergence issues 
in fitting the ZINB regression model. Lee et  al. (2012) 
reported that the model did not always converge, or a 
model diagnostic indicated that the estimated model was 
not reliable. Another finding was that in scenarios with 
proportion of zeros of 30% or greater, the ZIP regres-
sion model (true model) had the best fit since it had the 
smallest AIC and BIC statistic values regardless of the 
sample size. This is in line with the findings reported by 
Nekesa et  al. (2019), where in simulated conditions of 
very small overdispersion and proportion of zeros equal 
or greater than 20% ZIP model had smaller AIC than 
Poisson, NB and ZINB regression models [62]. An inter-
esting finding of our study was that in the simulation 
scenario with 10% proportion of structural zeros, ZINB 
regression model had the best fit both in terms of AIC 
and BIC and regardless of the sample size. With respect 
to MAE, the performance of the models was very simi-
lar. In addition, our findings indicated that in scenarios 
with the smallest sample size the ZIP regression model 
had smallest MAE in most of the proportion of zeros sce-
narios (10%, 30%, 50%). However, when the sample size 
increased to 1000, the NB had the smallest MAE in most 
scenarios of proportion of zeros (30%, 50%, 70%). When 
varying the sample sizes, proportion of structural zeros 
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and level of dispersion in the data generated with ZINB 
regression model, the ZINB model had convergence 
issues in the scenarios with small sample sizes. We found 
that at very low level of dispersion, 0.01, the model that 
produced the best fit both in terms of AIC and BIC was 
the ZIP regression model, regardless of the sample size, 
or proportion of structural zeros. This is not surprising, 
since, just as the NB distribution converges to the Pois-
son distribution as the dispersion parameter approaches 
zero, the ZINB distribution converges to the ZIP distri-
bution as the dispersion parameter approaches zero [63]. 
In simulation scenarios with sample size greater than 50 
and dispersion level fixed at 1, AIC suggested that the 
best model was ZINB (true model) regardless the pro-
portion of structural zeros in the data. Research based on 
simulation studies on the use of AIC and BIC for model 
selection reported that BIC performed better in model 
selection in the case of large heterogeneity in data due 
to stronger penalty afforded [67]. In our study, according 
to the smallest BIC, the NB regression model fit the data 
better than ZINB in many of the scenarios, depending on 
the proportion of structural zeros and levels of overdis-
persion in the data. For instance, when the proportion of 
structural zeros exceeded 50% and the sample size was 
greater than 50, and with larger levels of overdispersion 
both BIC and AIC suggested that NB regression fits the 
data better. Similar findings were observed in a recent 
study conducted by Tlhaloganyang et al. [45] that showed 
that zero inflated models are not always necessary even 
if the data are characterized by both overdispersion and 
zero-inflation. Tlhaloganyang et al. [45] reported that the 
NB model provided a reasonable fit in all datasets when 
compared to ZIP and ZINB models in over-dispersed 
and zero inflated data. Similarly, Nekesa et  al. (2019) 
reported results from simulation study and real data 
analysis of exposed infant diagnosis, showing the nega-
tive binomial emerging as the best performing model 
when fitting data with both structured and non-struc-
tured zeros under various settings. Tüzen et  al. (2018) 
reported simulation scenarios, where the NB model out-
performed other count models in the presence of outli-
ers and/or excess zeros. Allison (2012) noted that some 
applications exist in which a compelling case could be 
made for a zero-inflated model and suggested the use of 
ZINB instead of ZIP when modeling zero-inflated count 
data. He stated that the zero-inflated negative binomial 
model may sometimes fit better than the conventional 
negative binomial, but for many applications it does not 
[68]. He recommended that in these cases, it’s important 
to test for the significance of the difference [68]. Lastly, 
Hilbe (2014) suggested that the model having substan-
tially lower information test statistic should be preferred, 
other considerations being equal. In the situations when 

there is just a slight difference between which models fit 
statistics, the decision of which model to select should 
be based on context and how the models are to be inter-
preted [39].

The results from the empirical data analysis agreed 
with the findings based on the simulation study. The 
empirical data were not zero-inflated, and the data had 
overdispersion based on the Pearson dispersion statistic. 
The fitted NB regression model had the smallest AIC and 
BIC values followed by the ZINB regression model. This 
is in line with the findings of our simulation study, where 
NB was found to be the best model when dealing with 
overdispersed data. The Poisson and ZIP models under-
estimated the standard errors and overstated the signifi-
cance of some covariates.

Since this study focused on regression analysis meth-
ods for count data, in this paper we do not fully discus 
the findings from the analysis of MIMIC-III data. How-
ever, the results from the NB regression analysis of the 
empirical data demonstrated, that health insurance type 
and admission type were significantly associated with 
the log transformed hospital LOS. Patients with elective 
admission had lower expected number of days of hos-
pital stay compared to patients with urgent admission; 
and patients with Medicaid, Medicare, or private health 
insurance had longer expected number of days of hos-
pital stay compared to self-pay patients, controlling for 
the effect of age and sex. Based on NB regression analy-
sis, Soyiri et  al. [69] reported significant associations of 
sex, age, admission type, ethnicity, week day of admission 
with asthma LOS in hospitals in London. Based on sur-
vey linear regression analysis of asthma Nationwide Inpa-
tient Sample (NIS), collected between 2001 and 2010, 
Arora et  al. [70] reported that white race and private 
insurance  were significantly associated with longer and 
shorter LOS, respectively. However, the results across 
these studies are not fully comparable due to difference 
in variables’ definitions, covariates included in the regres-
sion models, type of regression methods, or potential dif-
ference in hospitals managements.

Different optimization procedures can produce dif-
ferent results and different rates of convergence. There 
is no perfect optimization procedure that finds the best 
solution within the most reasonable amount of time for 
all sets of data (SAS Institute, 2000). For the SAS pro-
gramming language, the count regression models would 
typically be analyzed using PROC COUNTREG, PROC 
GENMOD, or PROC NLMIXED. The default optimi-
zation procedure here is usually the Quasi-Newton or 
Newton–Raphson. In this study, we used Quasi-New-
ton method that use iterative approximation and does 
not require computation of second order derivatives. 
Hence, it has the advantage of finding solutions quickly. 
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However, this method does not consider the boundary 
constraints present in the zero-inflated data. Other opti-
mization methods that are often used to fit zero inflated 
data (as in the case of R software) are the Nelder-Mead 
Simplex Optimization for ZIP regression models. The use 
of different optimization methods in the regression mod-
els across different software packages may explain some 
of the differences across studies conducted to evaluate 
regression methods.

AIC and BIC were used to determine the best model fit-
ted to the data. When comparing the models, it is impor-
tant to note that the best model will not be necessarily 
the one with the best fit. Rather, it will be the one that 
leads to correct inferences, interpretations, and decisions. 
Although one may not always know the exact model spec-
ification that will result in enhanced statistical conclusion, 
it is still possible to maintain a core principle that the ideal 
model should be simple and parsimonious [71].

Models’ performance measures were assessed based 
on the entire sample, but not based on models’ internal 
and/or external validation. The goal of our study was not 
to derive predictive modeling function for hospital LOS. 
The purpose of our study was to illustrate the choice of 
the count data regression model based on varying com-
binations of magnitudes of overdispersion, proportions 
of zeros, and sample sizes. In this research, we did not 
explore other count data regression models, such as Pois-
son and zero inflated Poisson inverse Gaussian, two-part 
Hurdle models, zero truncated model, mixture of a bino-
mial and discretized gamma/beta distributions analysis, 
and others. Hurdle model is a modified count model in 
which the two processes generating the zeros and the posi-
tives are not constrained to be the same. The basic idea is 
that a binomial probability governs the binary outcome 
of whether a count variate has a zero or a positive reali-
zation. If the realization is positive, the “hurdle is crossed,” 
and the conditional distribution of the positives is gov-
erned by a truncated-at-zero count data model [38]. For 
example, the Hurdle model may be appropriate to analyze 
hospital length of stay if the data consisted of patients who 
were not hospitalized (i.e., zero days of hospital stay) and 
patients who were hospitalized. In this case, the prob-
ability of being hospitalized will be predicted by the logis-
tic regression model and expected LOS will be predicted 
by the zero-truncated Poisson or NB regression models. 
Hospital LOS data are rarely zero-inflated. However, stud-
ies have reported rising in zero days hospital admissions 
(i.e., hospital stays of less than 24 h) in pediatric patients 
and in admissions with URTI/viral infection, gastroenteri-
tis, croup, bronchiolitis, asthma, tonsillitis, non-specific 
abdominal pain, constipation, febrile convulsion, and rash 
diagnoses [69, 72, 73]. This may reflect a combination of 
factors including availability of more rapid assessment 

and effective treatment of acute presentation and declin-
ing hospital expertise and resources [72]. Further research 
should be conducted for scenarios of different data gen-
erating mechanisms in inpatient hospital LOS. Also, in 
this research we did not explore underdispersion. Even 
though is not as common to find underdispersed data in 
real life datasets, it would be interesting to evaluate the 
performance of count regression models in modeling such 
distributions. LOS can be analyzed as right-censored time-
to-event data using survival analysis methods, where the 
event of interest is time to hospital discharge, or time to 
clinical stability, or time to death [74, 75]. If the interest is 
in estimating the probability of a patient reaching clinical 
stability or hospital discharge by a given day, Brock, et al. 
(2011) argued about right-censoring or disregarding the 
data for individuals who die prior the events. An alterna-
tive approach to analyze LOS time-to-event data with 
multiple events is to treat the events as a competing risk 
[75, 76]. Competing risk analyses extend survival analysis 
methods to situations with multiple possible events, where 
the occurrence of one either precludes the others or sub-
stantially alters the probability of other events [75, 76]. If 
additional measures such as, vital signs to monitor patients 
during hospitalizations or possible destinations after the 
first day of admission are obtained, Markov models can 
be utilized to capture the temporal sequences of events 
[77–79]. In this study we did not evaluate the extensions 
of the class of GLMs for analysis of count correlated data 
collected from multiple observations on individuals or 
count data that are clustered due to clustered survey data, 
family studies, or nested experimental designs. The gen-
eralized estimating equations (GEEs) [80] and the gener-
alized linear mixed models (GLMMs) [81], also known as 
random effects models, multilevel, or hierarchical mod-
els, are used to deal with such clustered data and produce 
accurate regression coefficients and standard errors esti-
mates. The technique of multilevel modeling incorporates 
cluster specific random effects to accounts for this within 
cluster dependency by partitioning the total data variance 
into between and within cluster variation [82]. For exam-
ple, multilevel modeling will be appropriate if LOS data 
are collected from various participating hospitals with 
available hospital level variables and there is a systematic 
between-hospital variation in patient outcome; or LOS 
data are collected for the same subjects at multiple time 
points and there is a systematic between-subject variation 
in patient outcome. Whether a multilevel model is needed 
can be inferred from either the intraclass correlation coef-
ficient (ICC) and/or the significance of the random effect 
variance component for the clustering variable in the null 
model. GEE methods account for correlation by incor-
porating predefined “working” correlation structures to 
describe the nature of within-clusters dependencies [80].
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Concussions
The Poisson and ZIP regression models performed poorly 
in over-dispersed data. ZIP outperformed the Poisson, 
NB, and ZINB regression models when there is just zero-
inflation but no overdispersion in the data. NB model 
provided the best fit in over-dispersed data and outper-
formed ZINB model in many cases of both zero-infla-
tion and overdispersion. Just a slight difference existed 
between the fit statistics of NB and the more complex 
to fit and interpret ZINB model. The researcher should 
decide if a zero-inflated regression model is more appro-
priate to model the data. If the researcher believes there 
are two different data generating mechanism producing 
zeros, then the NB regression model may not capture the 
different characteristics of the two groups generating the 
zeros and, in this case, the ZINB regression model could 
provide greater flexibility when modeling the zeros. In 
addition, NB and ZINB regression models faced substan-
tial convergence issues when incorrectly used to model 
equidispersed data. It is important to check for ovedis-
persion. Fitting incorrect models to overdispersed data 
leaded to incorrect regression coefficients estimates and 
overstated significance of some of the predictors.

Although the work presented here is based on the 
analysis of hospital LOS, the findings from the simulation 
study are generalizable to other count outcome variables. 
Our findings can guide in the selection from the studied 
generalized linear models in the development of hospital 
and public health analytical applications for the compu-
tation of risk-adjusted LOS.
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