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Liquid–liquid phase separation (LLPS) is emerging as a key physical principle for bio-
logical organization inside living cells, forming condensates that play important regula-
tory roles. Inside living nuclei, transcription factor (TF) condensates regulate
transcriptional initiation and amplify the transcriptional output of expressed genes.
However, the biophysical parameters controlling TF condensation are still poorly
understood. Here we applied a battery of single-molecule imaging, theory, and simula-
tions to investigate the physical properties of TF condensates of the progesterone recep-
tor (PR) in living cells. Analysis of individual PR trajectories at different ligand
concentrations showed marked signatures of a ligand-tunable LLPS process. Using a
machine learning architecture, we found that receptor diffusion within condensates fol-
lows fractional Brownian motion resulting from viscoelastic interactions with chroma-
tin. Interestingly, condensate growth dynamics at shorter times is dominated by
Brownian motion coalescence (BMC), followed by a growth plateau at longer time-
scales that result in nanoscale condensate sizes. To rationalize these observations, we
extended on the BMC model by including the stochastic unbinding of particles within
condensates. Our model reproduced the BMC behavior together with finite condensate
sizes at the steady state, fully recapitulating our experimental data. Overall, our results
are consistent with condensate growth dynamics being regulated by the escaping proba-
bility of PR molecules from condensates. The interplay between condensation assembly
and molecular escaping maintains an optimum physical condensate size. Such phenom-
ena must have implications for the biophysical regulation of other nuclear condensates
and could also operate in multiple biological scenarios.

liquid–liquid phase separation j transcription factor j Brownian motion coalescence j
biomolecular condensates j single particle tracking

Activities performed by living cells are generally achieved through the compartmentali-
zation of their multiple components in space and time. Although traditionally cell com-
partments have been thought to be surrounded by membranes, recent evidence indicate
that cells also organize membrane-less internal compartments through the physical pro-
cess of liquid–liquid phase separation (LLPS) (1–4). LLPS creates transient chemically
distinct compartments, also called biomolecular condensates, which may operate as ver-
satile biochemical “hubs” inside the cell (1, 5). Phase separation is particularly relevant
in the cell nucleus, where the condensation of numerous proteins on chromatin has
been shown to regulate gene transcription and chromatin architecture at multiple tem-
poral and spatial scales (6–8). Transcription factor (TF) condensates are proposed to reg-
ulate transcriptional initiation and amplify the transcriptional output of expressed genes
(5, 7, 9–11). Yet despite its prevalence and biological significance, a quantitative determi-
nation and understanding of the biophysical parameters controlling TF condensation in
the nucleus of living cells is largely missing. Moreover, several recent reports have chal-
lenged the notion that LLPS may indeed be responsible for the apparent condensate-like
behavior of nuclear proteins, including theoretical models that could distinguish the
nature of nuclear condensation based on single molecule–based physical observables
(12–14). Hence, a deeper understanding on the origin of such events is needed.
Nuclear receptors are a family of TFs that have been widely studied as master regula-

tors of gene transcription and genome topology in response to an external stimulus: a
steroid hormone (15–17). Structurally, these TFs contain two intrinsically disordered
regions that favor phase separation, the N-terminal domain and the hinge, as well as
two highly structured regions: the DNA-binding domain and the ligand-binding
domain (18). Ligand stimulation of several members of this family has been shown to
trigger LLPS, forming nuclear condensates with different transcriptional roles (19–21).
Since ligand addition allows accurate control of the onset for nucleation and condensate
coarsening, nuclear receptors represent an ideal system to study inducible phase
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separation and to follow their temporal evolution in well-
controlled and tunable experimental settings.
From the theoretical side, phase separation is usually associ-

ated with the heterogeneous mixing of two components, either
by spinodal decomposition (22) or nucleation (23). In gen-
eral, entropy-based models, such as the Flory-Huggins model
(24, 25), have been commonly used to understand phase-
separated systems in biological scenarios (26). Moreover, in
recent years, several studies have addressed the temporal evolu-
tion of condensate nucleation and growth within the full com-
plexity of living cells. For instance, it has been shown that
biocondensate nucleation and coarsening can be described by
different physical mechanisms such as diffusion-limited growth,
Ostwald ripening, or Brownian motion coalescence (BMC)
(27). The common physical property underlying these mecha-
nisms is a dynamic power–law scaling behavior of the mean
droplet sizes (27), with a final steady-state that results in a
single condensate containing all phase-separated molecules.
However, consistent deviations from these LLPS growing
mechanisms have been also reported and attributed to the
occurrence of active nonequilibrium processes within living
cells, such as RNA transcription (27) or the presence of obs-
tacles such as chromatin (28). Hence, models that can predict
and/or adapt classical phase-separation properties to the living-
cell context are still under development.
Here we investigate the physical properties of LLPS in tran-

scriptional condensates of the nuclear progesterone receptor
(PR) in living cells using an extensive combination of single-
molecule approaches, theory, and simulations. Analysis of single
PR trajectories showed a hormone-dependent bimodal distribu-
tion on the diffusion of the receptor associated with particles
diffusing within and outside condensates. Using a deep-
learning method, we found that diffusion within condensates is
best described by means of fractional Brownian motion (29),
whereas outside condensates, diffusion is anomalous and het-
erogeneous. High-density single-molecule localization maps as a
function of time further revealed a BMC-like growth process at
shorter times but one that markedly deviated at longer timescales,
reaching a growth plateau on the condensate sizes at the nano-
scale. To quantitatively understand our observations, we devel-
oped an extension of the BMC model by including the stochastic
unbinding of particles within condensates. Our model can not
only reproduce the usual BMC behavior, but notably, it also
reaches a steady state with finite condensate sizes. As a whole, our
single-molecule experimental data and theoretical model is consis-
tent with droplet growth dynamics being regulated by the escap-
ing probability of TF molecules from condensates.

Single-Particle Tracking of Nuclear PR in Living
Cells in Response to a Tunable Stimulus

As with most nuclear receptors, PR contains an intrinsically dis-
ordered N-terminal domain region (SI Appendix, Fig. S1) and is
thus prone to phase-separate. We first confirmed the LLPS of
PR in the nucleus of living breast cancer cells after hormone
exposure using confocal microscopy. Condensates visibly formed
minutes after adding the hormone (Video S1). In addition, we
also tested the LLPS behavior of PR condensates by adding 5%
1,6-hexanediol, a treatment known to dissolve liquid–liquid
assemblies (30), and observed that PR condensates readily dis-
solved after exposure to the alcohol (SI Appendix, Fig. S2), con-
sistent with an LLPS process. However, and contrary to a vast
literature in the field, PR condensates remained relatively small
in size, being clearly diffraction-limited. We thus turned to

single-molecule approaches to effectively increase the spatial
(∼20 nm) and temporal (∼15 ms) resolution providing dynamic
information on the behavior of individual PR molecules in the
nucleus. In particular, we applied single-particle tracking (SPT),
which has been widely used over the last decade to evaluate the
lateral mobility of several TFs and DNA binding proteins in the
nucleus of living cells at the single-molecule level (16, 31–35).
We generated a stable MCF7 breast cancer cell line expressing a
SNAP-GFP-PRB (SNAP (trademark), green fluorescent protein
(GFP) and Progesterone Receptor Isoform B (PRB)) (36). PR
molecules were labeled with SNAP-JaneliaFluor 549 (JF549) dye
(37), and their diffusion inside the nucleus of living cells was
recorded under highly inclined illumination at a frame rate of
15 ms, as schematically illustrated in Fig. 1A. Individual JF549
localizations were reconnected to generate trajectories that were
analyzed by computing the time-averaged mean square displace-
ment (tMSD) and the angular distribution over consecutive steps
as shown in Fig. 1B and SI Appendix, Fig. S3 (32, 33). The
instantaneous diffusion coefficients for each trajectory were
extracted by linear fitting of the second to fourth points (D2� 4)
of the tMSD curve (38) and used to build up D2� 4 histograms
of hundreds of trajectories over different cells (Fig. 1B). In addi-
tion, the angular distribution provides information on the type
of diffusion exhibited by a molecule while interacting with its
environment. Whereas the angular distribution is uniform when
molecules diffuse in a homogeneous environment, an asymmet-
ric angular distribution with a preferred occurrence of angles at
180° reflects obstacles to the molecule diffusion, the presence of
confinement, or diffusion in a viscoelastic environment (29, 33).

To investigate the PR lateral mobility in response to hor-
mones, Michigan Cancer Foundation-7 (MCF7) (Comsa et al.,
Anti Cancer Research 2015) cells were treated with a broad range
of concentrations of the progesterone derivative R5020 (10�12 M
to 10�8 M, for 1 h) or with vehicle (ethanol) as a control (39).
As shown in Fig. 1C, we mainly observed two populations in the
distribution of D2� 4 values across different concentrations, simi-
lar to other proteins that interact with chromatin (31, 32). Strik-
ingly, instead of a gradual increase in the bound fraction of PRs
that one would expect from a stochiometric occupancy of TFs to
DNA binding sites with increasing ligand concentration, we
found a sharp transition from free to bound fraction taking place
at a critical ligand concentration of 10�10 M (Fig. 1C). This
sharp transition in PR mobility suggests that LLPS may be regu-
lating the interaction between PR and chromatin.

We further computed the distribution of angles between con-
secutive displacements for each individual trajectory on multiple
cells and for different hormone concentrations. At hormone
concentrations 10�10 M and below, diffusion was mainly
isotropic and PR explored all angles with equal probability
(Fig. 1D). In strong contrast, above the critical concentration
of 10�10 M, the angle distributions became highly anisotropic
with an increased occurrence of angles at 180°, i.e., a higher
probability for PR molecules to bounce back to their prior posi-
tion (Fig. 1D). To better quantify these results, we computed
the degree of anisotropy as the fold increase of angles occurring
at 180° ± 30° with respect to 0° ± 30° (32). A sharp transition
in anisotropy was retrieved above a 10�10 M R5020 concentra-
tion (Fig. 1E), like that at which the D2� 4 sharp transition
took place. We interpreted this preferential backward movement
as evidence of confinement and an indication of the bias in
angles experienced by a particle inside a condensate when being
constrained by the condensate boundaries. Altogether, our SPT
results were consistent with a ligand-tunable and regulated
LLPS process.
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Diffusion Behavior of Individual PR Determined
With Machine Learning

Due to the short length of the SPT trajectories (usually less
than 30 time segments; SI Appendix, Fig. S3), it is challenging
to identify the diffusion behavior of PR inside living nuclei
using conventional data analysis methods. We thus relied on
a recently developed machine learning (ML) analysis (40).
Using a combination of convolutional and recurrent neural net-
works (see Materials and Methods and SI Appendix, Fig. S4), we
1) identified the theoretical model that best describes the diffu-
sion behavior of individual PR trajectories and 2) determined
the corresponding anomalous exponent α, defined as the scaling
factor when fitting the tMSD to a power-law ∼ tα. Here, α = 1
corresponds to Brownian diffusion, α < 1 to anomalous subdif-
fusion, and α > 1 to superdiffusion. A detailed description of
the ML models and their associated errors are presented in
Materials and Methods and SI Appendix, Figs. S4 and S5.
We first trained the algorithm with a set of simulated trajecto-

ries arising from various diffusion models related to many differ-
ent experimental observations (see Materials and Methods).

Remarkably, when applied to our single-molecule experimental
data, the ML algorithm revealed two main types of diffusion,
i.e., the majority of the trajectories were classified as either diffus-
ing according to the annealed transit time model (ATTM) (41)
or exhibiting fractional Brownian motion (FBM) (42). The
ATTM has been associated with the anomalous, nonergodic,
and non-Gaussian motion of particles diffusing in a spatiotem-
poral heterogeneous medium, e.g., on cell membranes (43).
More precisely, the ATTM considers that particles diffuse in a
Brownian fashion but experience random changes of diffusion
coefficients due to their inhomogeneous environment, resulting
in anomalous diffusion behavior (α < 1). FBM has been
described as an extension of Brownian motion where the motion
of the particle exhibits correlated noise and correlated displace-
ments. In the case of negatively correlated displacements, the dif-
fusion is anomalous (α < 1). Such negative correlations have
often been used to describe the motion of particles in viscoelastic
media such as the cytoplasm and nucleoplasm of living cells
(44, 45) (see SI Appendix, Note S1 and Fig. S6 for more details
of both models). Note that since the trajectories were normalized
before entering the ML architecture (see Materials and Methods),
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Fig. 1. Lateral diffusion of individual PR molecules in the nucleus of living cells. (A) Representative frame of a SPT video. Individual PR molecules (bright
spots) were visualized in the nucleus (green outline) of MCF7 breast cancer cells, under a highly inclined illumination at a 15 ms frame rate. Diffraction-
limited single-molecule localizations were tracked in successive frames to generate individual trajectories (superimposed color lines). (B) Schematic represen-
tation of the trajectory analysis. For each trajectory, we extracted the displacement between frames to generate individual tMSD plots as a function of the
time lag and extracted the diffusion coefficients (D2�4) for each trajectory (Left, Bottom) (Error bars, SEM). In addition, we calculated the angles between suc-
cessive steps to create polar histograms (Right, Bottom). (C) Distribution of the D2�4 (μm2/s) values of individual PR trajectories exposed to increasing R5020
concentrations for 1 h. Ethanol corresponds to the control condition, i.e., in the absence of the ligand. The y axis corresponds to the frequency of events.
Vertical dash lines indicate D2� 4 values 0.0061 (left line) and 0.5 μm2/s (right line). Data extracted from at least 1,000 trajectories belonging to at least eight
cells from three independent experiments. (D) Polar histograms of the angle between successive steps of diffusing PR under increasing R5020 concentra-
tions. (E) Anisotropy values as a function of R5020 concentration for at least eight cells analyzed. Results of a one-way ANOVA test are shown as n.s. for not
significant, ***P value< 0.001.
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the ML prediction was independent of the diffusion coefficient
value. For each hormone concentration, we computed the per-
centage of trajectories predicted as ATTM or FBM. At ligand
concentrations below 10�10 M, 60% of the trajectories were
classified as ATTM and 40% as exhibiting FBM (Fig. 2A).
Notably, a sharp change in the diffusion behavior occurred
at > 10�10 M R5020, with ∼80% of the trajectories exhibiting
FBM and ∼20% exhibiting ATTM (Fig. 2A). We further
exploited the powerful discrimination capability of the ML algo-
rithm to compute the D2� 4 values of the trajectories assigned to
each of the theoretical models. We found that FBM trajectories
displayed a much lower lateral mobility as compared to those
assigned to the ATTM (Fig. 2B). Together, the sharp increase in
the number of molecules exhibiting FBM and their lower mobil-
ity at ligand concentrations above 10�10 M suggest that PR dif-
fusion behavior results from viscoelastic interactions between the
receptor and chromatin within a condensate.
Using a different ML architecture as described in Materials

and Methods, we also predicted the α values for each of
the observed trajectories. We found that FBM trajectories
exhibited on average lower α values (0.43 ± 0.07) than ATTM
trajectories (0.72 ± 0.08) (Fig. 2C). To assess the relationship
between D and α, we generated scatterplots of these two
parameters for different ligand concentrations (Fig. 2D). Strik-
ingly, trajectories assigned to either ATTM or FBM formed
two differentiated clusters that could be readily classified
using a support vector machine (SVM), a common supervised

learning technique, known for its robustness and easy applica-
bility in low-dimensional problems (46). The SVM was trained
to predict the diffusion model given the fitted D and the
ML-predicted α. The background color used in Fig. 2D shows
the predictions of the SVM over the whole range of D and α,
demonstrating that they were sufficient to separate the lateral
diffusion behavior of individual PRs as a function of ligand
concentration. Overall, the ML analysis accurately separates
two PR populations diffusing in markedly different media; and
most important, it reflects a critical ligand concentration at
which a transition from unbound (ATTM) to chromatin-
bound (FBM) takes place.

Nanometer-Scale Temporal Evolution of PR
Condensates in Living Nuclei

Our single-molecule mobility analysis was consistent with the
emergence of PR condensates in living nuclei above a critical
ligand concentration, but it did not provide direct information
on the condensate sizes. To inquire on the relevant spatio-
temporal scales involved in PR condensation and its temporal
evolution, we took advantage of the nanometer localization preci-
sion encoded in the SPT data. We used this information to
generate 2-dimensional (2D) density maps of individual PR
localization positions as the receptor dynamically explored the
nuclear region (38). The 2D maps clearly showed that hormone
treatment (10�8 M, 60 min) led to a strong accumulation of

B

C

A
Ethanol

D

Fig. 2. ML analysis of individual PR trajectories in living cells. (A) Percentage of trajectories associated to ATTM (blue) or FBM (yellow) by the ML algorithm
as a function of ligand concentration. The shadowed areas represent the error of the prediction, calculated by means of a confusion matrix (see Materials
and Methods) (B) D2� 4 (μm2/s) distributions for varying ligand concentrations, with trajectories associated to ATTM (blue) and FBM (yellow), as identified
by ML. (C) Corresponding histograms of the ML predicted anomalous exponents. (D) Scatter plot of the D2� 4 vs. anomalous exponent for every trajectory.
Background color represents the prediction of an SVM trained on the data (see Materials and Methods).
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single-molecule localization events in small regions, as compared
to control conditions (Fig. 3A). We further evaluated the lateral
mobility inside condensates by reconnecting the localization posi-
tions over consecutive frames. Remarkably, PR trajectories within
condensates reproduced the mobility, angle distribution, and
FBM diffusion behavior of the slow population retrieved by stan-
dard SPT shown in Figs. 1 and 2 (SI Appendix, Fig. S7). These
results indicate that the slow population retrieved from the SPT
analysis over all trajectories corresponds to the diffusion of PR
molecules inside condensates rather than to the diffusion of the
condensate itself. Interestingly, when we generated the cumula-
tive probability distribution function of square displacements for
these trajectories (see Materials and Methods), we retrieved two
subpopulations with distinct diffusion coefficients (SI Appendix,
Fig. S8 A–C). A large fraction of the trajectories inside con-
densates (∼90%) exhibited slow diffusion (< 0.001 μm2/s)
while ∼10% of the trajectories showed a higher mobility
(D = 0.04 μm2/s, but still slower than molecules outside con-
densates, i.e., D = 0.5 μm2/s). These results suggest that within
condensates, a majority of PR molecules are bound to DNA and
thus exhibit a much lower diffusion coefficient. On the other
hand, the fraction of PR molecules that diffuse faster within
the condensates should then correspond to non-DNA-bound PR
(D = 0.04 μm2/s). Nevertheless, we point out that these data
may be somewhat biased toward the occurrence of a higher frac-
tion of slower-diffusing molecules because they stay longer in
focus and thus are more prone to being detected, as compared to
the faster-diffusing molecules.
To determine the physical mechanism that leads to PR

condensation in the nucleus, we first relied on the fact that the

2D density maps also contain temporal information. We thus
accumulated localizations for time intervals of 4.5 s (300 frames)
to build up the temporal evolution of condensates during an
observation time of 18 s and used a cluster algorithm (47) (see
Materials and Methods) to detect condensates formed by the local
accumulation of individual localizations. We readily observed
merging events of individual condensates in time (Fig. 3B) that
were also confirmed by confocal video imaging at a high temporal
resolution of fully saturated GFP-labeled PR molecules (Fig. 3C).
The merging of condensates is a first indication that its growth is
dominated by a BMC process. BMC is characterized by the
Brownian diffusion of small condensates, which, upon encounter-
ing, fuse to each other to form larger condensates (24) (see also
Materials and Methods and SI Appendix, Fig. S9 for an additional
description of BMC).

Since PR condensation in our system could be accurately
tuned by the time and amount of hormone addition, we
exploited this property to further assess the condensate growth
mechanism. For this, we generated 2D density maps of single-
molecule localizations over a time course of 60 min starting
right after adding the hormone (10�8 M). We cumulated local-
izations over 5-min intervals and used the cluster algorithm to
generate distributions of condensate radii at each 5 min time
point. Interestingly, we found a log-normal distribution of the
condensate radii (Fig. 3D), similar to that described for systems
undergoing LLPS under a BMC mechanism (27). Note that a
similar size distribution was also observed in the absence of hor-
mone (ethanol), indicating a pre-existing population of small
condensates, in agreement with our SPT data. In addition, we
calculated the mean radius size of the condensates over time
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Fig. 3. Nanometer–scale spatiotemporal mapping of PR in living nuclei. (A) 2D density maps of individual PR localizations collected over 75 s on an area of
2.4 × 2.4 μm2, after 1 h ligand stimulation (Top) and control (Bottom). Each map contains 1,000 localizations. (B) Snapshots of two different condensates as
they merge over the indicated time windows. The 2D maps have been generated by accumulating single-molecule localizations in time windows of 4.5 s
(300 frames). (C) Merging events of two different PR condensates (highlighted by orange and green arrows) visualized by confocal microscopy using GFP
labeling conditions. (D) Distribution of PR condensate radius normalized to the mean radius, over a time course of 60 min after 10�8 M hormone stimulation
(see color bar). Each curve corresponds to a 5-min time point. The red curve corresponds to the size distribution in the absence of the hormone. a.u. refers
to arbitrary units. (E) Mean condensate radius as a function of time. At each time point, data correspond to several regions of interest analyzed from two dif-
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(Fig. 3E). Two distinct regimes could be clearly identified.
During the first 30 min, the average radius grew following a
power law, <R> ∼ t β, with a fitted β = 0.3505. After 30 min,
the system reached a steady-state plateau in which the average
size of condensates remained constant. To further confirm this
steady-state plateau using a complementary analysis, we gener-
ated a cumulative MSD plot of all trajectories inside conden-
sates after 60 min hormone exposure (SI Appendix, Fig. S8D).
The MSD plot exhibited a plateau, which is characteristic for
confined diffusion, from which we extracted a confinement size
(∼150 nm), in excellent agreement with the results obtained by
means of the 2D density maps. The initial growth scaling expo-
nent, the log-normal distribution of the condensates’ radii, and
the presence of merging events were all consistent with a BMC-
based condensate growth mechanism (48).
Intriguingly, whereas the classical BMC model predicts that

condensates grow in time until forming a single droplet (48),
our system clearly deviated at longer times from such a predic-
tion, reaching a plateau with condensates sizes of approximately
70 nm in radius (Fig. 3E). To understand such a nanoscale-
arrested growth, we took a closer look at our SPT data. Despite
the short length of the trajectories, we could readily detect the
occurrence of escaping events, i.e., particles being able to exit
the condensate (SI Appendix, Fig. S10), although their statisti-
cal quantification was challenging given the short length of the
trajectories. Such escaping behavior has been also recently
observed on DNA repair condensates in living cells and thor-
oughly quantified by comparing trajectory length displacements
for molecules entering or escaping from condensates (34).
These observations suggest that particle escaping could influ-
ence PR condensate growth at the steady state in the nucleus.

Particle Escaping Leads to Nanoscale-Arrested
Growth of PR Condensates

To investigate whether the presence of escaping events in a
BMC scenario could lead to an arrested growth of condensates
with a plateau on their sizes, we developed a theoretical model
in which particles—PR dimers in our case, or other biological
components in a general context—diffused freely through the
system but also interacted with each other in a nontrivial
way. The model was based on the main principles of BMC:
When two particles coincide (i.e., they contact each other),
they interact together, forming a condensate. Subsequent new
interactions make the condensates grow until reaching a phase-
separated system in which all the particles segregate from the
environment, forming a single condensate. To include the
effect of particle-escaping events in our model, we simulated a
system of particles performing BMC-like condensate growth
but incorporating a probability, Pu, that particles escape from
condensates (see Materials and Methods). Compared to the clas-
sical BMC model (Fig. 4A, Top), the presence of escaping
events (i.e., Pu > 0) prevented the system from reaching the
single condensate state (Fig. 4A, Bottom), resembling our exper-
imental observations.
We performed simulations considering that at each time step

particles have a probability Pu of unbinding and exiting the
droplet in which they are contained, and we calculated the
average size of the condensates <R> as a function of time (Fig.
4B and SI Appendix, Fig. S11). We considered that any particle
inside a condensate may escape, not only the ones in the con-
densate surface. Since a large fraction of the PR molecules inside
the condensates appear to be bound to DNA, as inferred from
their diffusion coefficient (SI Appendix, Fig. S8), we hypothesized

that such a mechanism corresponds to PR molecules unbinding
from their respective DNA binding sites. Nonetheless, the differ-
ence between volumetric or surface escaping is negligible for small
systems, as well as for the small size of the condensates observed
in our experiments (SI Appendix, Fig. S12 and Note S2). For
BMC (Pu = 0), the system grows following the expected relation
<R> ∼ t1/3 with a final single condensate size (horizontal dashed
line in Fig. 4B). For values of Pu > 0, condensate growth follows
the same power law scaling, but notably, the system reaches a pla-
teau with a steady-state mean radius <R>∞ of a smaller size,
akin to our experimental observations. The larger the escaping
probability, the smaller the final radius of the condensates (SI
Appendix, Fig. S12). Using the simulations, we also generated dis-
tributions of the steady-state condensate sizes for different Pu. An
example of such distribution for Pu = 0.2 is shown in the inset of
Fig. 4B, exhibiting the expected log-normal distribution for
BMC processes. Notably, the steady-state size distribution derived
from the simulations was qualitatively similar to that obtained
from our experimentally generated 2D density maps (Fig. 3D).

To further validate our model in terms of predictions that
could be experimentally tested, we calculated from the simula-
tions the percentage of condensed particles as a function of
time, for different Pu. For a standard BMC process (Pu = 0), in
the steady-state regime a single condensate will be formed, and
accordingly, the percentage of condensed particles should reach
∼100%. However, in a scenario in which particles have a certain
probability for escaping a condensate, the balance between coa-
lescing and escaping events should maintain the percentage of
condensed particles as constant after the initial growth period.
Our model predicted that the percentage of condensed particles
increases as ∼ t 0.75 for shorter times and reaches a plateau with a
constant percentage of condensed particles, whose value is again
dependent on Pu (Fig. 4C). To experimentally test this predic-
tion, we extracted the percentage of condensed particles from our
experimental 2D density maps at different ligand exposure times
(10�8 M hormone concentration). Remarkably, our experimental
data showed an increase in particle condensation at early growth
times with a similar exponent to the one predicted by our model,
and most important, it also exhibited a plateau in the percentage
of particles forming condensates after 30 min hormone exposure
(Fig. 4D). Hence, our model of BMC–condensate growth
together with condensate particle escaping could fully recapitulate
our experimental data and make predictions fully testable at the
single-molecule level in living cells.

Finally, we generated diffusion coefficient histograms from
our simulations. Since our experimental data were consistent
with a standard BMC mechanism, i.e., condensate growth scales
with ∼ t1/3, being valid for Brownian diffusion of condensates
(28), we considered in our model the presence of Stokes drag.
Hence, free particles (i.e., outside condensates) would diffuse
with the diffusion coefficient D, while the actual condensates of
size R would diffuse with the diffusion coefficient Dr = D/R.
Moreover, to account for the heterogeneities present in any
biological scenario, we added a small random noise to each
D value. We generated in silico distributions of the D values at
steady state for various Pu (i.e., accounting for the final conden-
sate radius R and the percentage of free vs. condensed particles
at each given Pu). As expected, Fig. 4E shows the appearance of
two distinct distributions, with a peak at D = 1 corresponding
to the diffusion of free particles and a second peak at lower D,
which was an effect of the Stokes drag and hence corres-
ponded to the condensates diffusion. Interestingly, decreasing
Pu effectively increased the number and sizes of the condensates
and reduced the number of free particles, resulting in a similar
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effect to the increase of hormone concentration. Based on these
results, we propose that at low hormone concentrations, the
escaping probability of PR molecules from small condensates is
large, leading to a large number of free, noncondensed particles.
As hormone concentration increases beyond a critical value, the
PR escaping probability reduces so that condensates grow reach-
ing a finite stable size that is ultimately controlled by Pu.

Discussion

We have presented a single-molecule study of the physical
properties of transcriptional condensates in living cells. The
inducibility of our system to undergo phase separation by
means of hormone concentration and exposure time allowed us
to accurately tune the onset of phase separation and thoroughly
investigate the growth dynamics of nuclear PR condensates in
living cells. Interestingly, we found that while growth dynamics
of PR condensates are dominated by BMC at shorter times,
condensates exhibited arrested growth, reaching nanoscale sizes
at longer timescales, clearly deviating from a classical BMC
mechanism. To rationalize our results, we proposed an exten-
sion of the BMC model by including the stochastic unbinding
of particles within condensates, i.e., introducing a probability
that considers particle escaping from condensates. With this
minimal consideration, our model fully reproduces the key fea-
tures of an experimental system undergoing phase separation in
living cells. Moreover, by modulating the probability of particle
escaping, our model can predict the final condensate sizes and
the population of molecules partitioning inside or outside con-
densates as well as their diffusion behavior. Although in our
study we did not pursue further analysis on the occurrence of
particle escaping given the short length of the trajectories,
recent work has experimentally observed similar escaping from

condensates and thoroughly analyzed these events at the single-
molecule level (34). Such statistics are not required in our case
as our model solely relies on their existence. In fact, a low
escaping probability in our model is enough to fully recapitu-
late the experimental data. Nevertheless, it would be interesting
to investigate the statistics of particle escaping and of molecules
crossing the condensate boundaries by following the statistics of
single-molecule displacements as performed by others (49).

As a whole, our experimental data and theoretical model are
consistent with droplet growth dynamics being ultimately con-
trolled by the escaping probability of TF molecules within con-
densates. The interplay between condensation assembly and
single-molecule escaping thus supports a preferred and maxi-
mum physical condensate size. Particle escaping from conden-
sates can account for an exquisite control of the condensate size
in nonequilibrium systems such as the cell, as also recently
observed in other biological scenarios such as DNA repair con-
densates (34). This mechanism may provide a delicate fine-
tuning by the cell that prevents a single phase that would lead
to transcription collapse or chromatin condensation.

Recently, some debate has been raised discussing the exact
mechanism leading to phase separation in the nucleus of
living cells. While most of our experimental data point to an
LLPS mechanism, the presence of two distinct PR diffusing
populations within the condensates can also be related to the
presence of chromatin binding sites. We note that the model
presented in this work is agnostic regarding the binding mecha-
nism causing the formation of condensates and can indeed be
applied to both LLPS and a polymer–polymer binding model.
While differentiating between these two models is beyond
the scope of our contribution, recent work has shed light on
possible single-molecule observables to distinguish between
both (13).
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Fig. 4. Extended BMC model including stochastic unbinding of PR molecules from condensates. (A) Snapshots of two simulations of the theoretical model,
showcasing the temporal evolution of two systems, one with Pu = 0 (Top) and one with Pu > 0 (Bottom). (B) Mean radius size evolution as a function of time,
for a system of n = 80, L = �N/0.01. Each color represents the result for a different Pu. The dotted line shows the expected BMC growth (<R> ∼ t1/3). The hor-
izontal dashed line shows the maximum mean size possible for the simulated system (<R> =�N). The inset shows the steady-state normalized radius distri-
bution for a system of n = 500 and L = �N/0.01 for Pu = 0.2, in arbitrary units (a.u.). (C) Percentage of particles forming condensates as a function of time for
different Pu values. (D) Experimental data showing the percentage of particles forming condensates as a function of time. The data correspond to the same
experiments shown in Fig. 3 D and E. (E) Diffusion coefficient distributions resulting from the simulations, for free particles (centered around Log(D) = 0) and
for condensates (left distribution) for four different Pu values. Y axes for all the histograms correspond to Frequency in arbitrary units
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Recent SPT experiments showed that TFs transiently bind
to DNA with rather short binding times (in the seconds
scale) (16, 17). We propose that condensate formation may
increase the likelihood that individual PRs rebind within
short timescales to their corresponding DNA binding region.
Such a condensate environment will thus increase the effec-
tive time that a given DNA region is bound by TFs (50).
This hypothesis is further substantiated by our experimental
data analyzed by ML, where FBM, traditionally associated
with diffusion within viscoelastic media, was found to
describe best PR low mobility diffusion. In conclusion, the
combination of single-molecule sensitive imaging techniques
together with theory and simulations as reported here con-
tributes a substantial step forward in understanding the
behavior of individual proteins within condensates.
TF condensation has been customarily studied through

ensemble or static measurements, mostly in in vitro settings or
in fixed cells. In contrast, the experiments and theoretical
model presented here provide a general framework to investi-
gate the dynamics of phase separation in living cells at the
single-molecule level. Moreover, our approach can be further
extended to a wide range of biological systems as well as other
soft-matter–based interacting systems. Overall, this work offers
insights into phase separation in soft-matter systems from both
experimental and theoretical perspectives.

Materials and Methods

Plasmids. The original pGFP-PRB was a gift from Gordon Hager (National Can-
cer Institute, NIH, Bethesda, MD). This plasmid expresses the PR isoform B under
a tetracycline controllable promoter (TetOff system, Clontech). To perform the
SPT experiments, a SNAP tag was introduced at the N-terminal to the GFP, using
Gibson cloning (pSNAP-GFP-PRB). A puromycin resistance plasmid (pPUR, Clon-
tech, catalog no. 631601) was used as a selection marker. All plasmids were lin-
earized with ScaI before electroporation.

Cell culture and electroporation. MCF7 Tet-off cells (Clontech, catalog no.
631154) were grown on DMEM high-glucose media supplemented with 10%
Tet-free FBS, 2mM L-glutamine, 1 mM sodium pyruvate, 100 U/mL-1 penicillin,
and 100 μg/mL-1 streptomycin. The cells were cultured at 37 °C in a CO2/air
(5%/95%) incubator. Cells were electroporated simultaneously with the pSNAP-
GFP-PRB and the pPUR, using a 10:1 ratio, respectively. Electroporation was
performed using the Amaxa Cell Line Nucleofector Kit V (Lonza) using the P-20
program, following the manufacturer’s instructions. After 1 week, cells were
selected under 0.6 μg/mL puromycin to enrich for electroporated cells, and they
were then sorted in single-cell wells using GFP as a marker in order to generate
a stable cell line.

Hormone stimulation and SNAP labeling. Two days before the microscopy,
approximately 200,000 cells were seeded in 35-mm glass-bottom dishes. Sixteen
hours before hormone stimulation, cells were washed with PBS solution to elimi-
nate traces of phenol red, and then they were changed to white DMEM media sup-
plemented with 10% charcoal-treated FBS serum, 2 mM L-glutamine, 1 mM
sodium pyruvate, 100 μg/mL-1 penicillin, and 100 μg/mL-1 streptomycin; this
combination is hereafter abbreviated as “charcoalized white DMEM.” The JF549
dye coupled to the SNAP substrate was kindly provided by Luke Lavis (Janelia
Farm, Ashburn, VA). Cells were incubated with 10 nM for SPT and 100 nM for 2D
spatiotemporal maps of the SNAP JF549 dye in charcoalized white DMEM for
30 min at 37 °C. Subsequently the cells were washed three times with PBS and
then placed back in the incubator in charcoalized white DMEM for 1 h washout at
37 °C. After the JF549 SNAP labeling, hormone stimulation was done using
R5020 (promegestone) solubilized in ethanol or using control conditions with this
solvent. To study the response to different concentrations of hormone, a series of
dilutions was made freshly before the microscopy acquisition. Time course experi-
ments were performed at a hormone concentration of 10�8 M, and SPT tracking
data were recorded at intervals of 5 min during a total observation time of 60 min.

1,6-Hexanediol treatment. To test whether LLPS might be regulating the
emergence of PR condensates, we treated R5020-exposed MCF7 cells with 5%
1,6-hexanediol dissolved in R5020 containing cell medium. Using confocal
microscopy, we could observe the dissolution of PR condensates already after
5 min 5% 1,6-hexanediol treatment. In order to maintain cell integrity, we did
not perform the treatment for longer than 15 min.

Experimental setups. SPT and 2D spatiotemporal density maps imaging were
performed in a Nikon N-STORM 4.0 microscope system for localization-based
superresolution microscopy, equipped with a TIRF 100×, 1.49 NA objective
(Nikon, CFI SR HP Apochromat TIRF 100XC Oil). The sample was illuminated by
a continuous 561 nm laser line with a power of 30 mW before the objective in
highly inclined and laminated optical sheet (HILO) configuration. The emission
fluorescence of the JF549 dye was collected through the objective and projected
into an EM-CCD Andor Ixon Ultra Camera at a frame rate of 15 ms. The pixel size
of the camera is 160 nm. During imaging, the temperature was kept at 37 °C in
an incubation chamber. GFP confocal line scanning microscopy was performed
in a Leica TCS SP5 II CW-STED microscope using a 63× Oil, 1.4 NA objective
(Leica HC PL APO 63×/1.40 Oil CS) using a multiline Argon laser at 488 nm for
excitation. The emission fluorescence was detected with a Hybrid detector (Leica
HyD) in photon counting mode, using a 500 to 550 nm filtering. The sample
was kept at 37 °C with 5% CO2 by an incubation chamber. For Fig. 3C and SI
Appendix, Fig. S2, images of 256 × 256 pixels were acquired with a pixel size
of 80 nm and a dwell time of 9 μs. Scanning was performed at 100 Hz, acquir-
ing consecutive frames every 125 ms. For Video S1, images of 322 × 200 pixels
were acquired with a pixel size of 160 nm. Each frame in the video has a total
integration time of 15 s and corresponds to the sum intensity projection from
100 images taken consecutively every 150 ms, scanning at 700 Hz.

Data analysis. To generate SPT trajectories, the nuclear region was segmented
in the GFP channel intensity using Fiji. Individual tracks inside the nuclear region
were analyzed using Trackmate (51). Particle detection was performed with a dif-
ference of Gaussians, with an expected diameter of 0.6 μm and subpixel locali-
zation. Detected particles were first filtered based on the signal-to-noise ratio of
the input image and then based on the quality score. The particles retained
were then linked using a simple linear assignment problem tracker, with a
1-μm linking distance, a 1-μm gap closing maximum distance, and a gap clos-
ing of two frames. Only tracks with more than 10 frames were considered for the
analysis. A histogram of the number of frames for the trajectories used in this
study at every ligand concentration is presented in SI Appendix, Fig. S3A.

To generate 2D spatiotemporal maps, the total single-molecule localizations
of JF549-labeled PR molecules were detected using custom Matlab Software
over 5,000 frames (75 s) and projected into one single frame. Condensates were
detected by applying density-based spatial clustering of applications with noise
(47) over the entire frame with a threshold of 48 nm of interparticle distance
and condensates containing a minimum number of particles of 5. The radius
was extracted by considering the area of the condensate a circle. The percentage
of free particles was estimated by the number of particles not detected within a
cluster divided by the total number of particles within a given area. The
escaping-events analysis was performed by taking PR trajectories and detecting
within each trajectory a cluster by the clustering algorithm. Only trajectories
where there were clear escaping events were considered. Time-evolution 2D den-
sity maps were generated by cumulating localization positions every 4.5 s, corre-
sponding to 300 frames, for a total duration of 18 s.

Given a trajectory whose 2D position (x, y) was sampled at T discrete, regular
time steps ti, its tMSD was calculated using the following equation (52):

tMSDðΔÞ ¼ 1
T � Δ

∑T�Δ
i¼1 ð½xðti þ ΔÞ � xðtiÞ�2 þ ½yðti þ ΔÞ � yðtiÞ�2Þ,

[1]

where Δ is usually referred to as the time lag. Even in the presence of anoma-
lous diffusion, at short times the MSD was well represented by

tMSD ¼ 4DΔþ offset; [2]

where D is the instantaneous diffusion coefficient. To extract D, we fit the tMSD
between Δ = 2 and Δ = 4 and redefined it, as presented in the main text,
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as D2� 4. Examples of tMSD for every ligand concentration are presented in SI
Appendix, Fig. S3 B–G.

To extract the size of the condensates, we generated a cumulative tMSD
plot from all segments of the trajectories inside the condensates (shown in
SI Appendix, Fig. S8D). The cumulative plot was fitted with the following equa-
tion (53):

r2i ðtÞ ¼ aþ L2i
3

� �
1� e

Δt
ti

� � !
, [3]

where a, L, and t are the offset, the size of the confinement, and the average
duration, respectively.

The cumulative probability distribution function of squared displacements at
different time lags was fitted with a two-component Fick’s law–based function (54):

Pðr2, tÞ ¼ 1� s � e
r2

r2s þ ð1� sÞ � e
ð�r2

r2
f

Þ
" #

, [4]

where P(r2,t) is the probability that a particle is diffused within a circle with
radius r at a given time lag t. The fitting yielded the fraction of slowly diffusing
molecules and the tMSD of the slow and fast fractions, which was fitted with:

tMSD ¼ 4DΔþ offset, [5]

to obtain the D2–4 of each fraction.
For a given time, t, and a time between frames, δt, we defined the turn-

ing angle, θt, between consecutive trajectory segments, s
! ðt, tþ δtÞ ¼

r
! ðtþ δtÞ � r

! ðtÞ, as follows (55):

θt ¼ tan�1 s
! ðt, t þ δtÞ × s

! ðt þ δt, t þ 2δtÞ
s
! ðt, t þ δtÞ � s! ðt þ δt, t þ 2δtÞ

 !
: [6]

For our calculations, we considered the particle positions to be in three dimensions
with the z component equal to zero. Using the above expression, the angles are
defined between 0° and 360°. To calculate the anisotropy of the turning angles,
the fold change between the number of angles from 180° ± 30° and 0° ± 30°
was extracted (32). A step-by-step implementation of these calculations is pre-
sented in the public repository accompanying this work (see Data Availability).

ML architecture and analysis. A schematic pipeline of the ML method used
in this study is presented in SI Appendix, Fig. S4. The ML architecture is trained
with a set of simulated trajectories, generated via the ANDI-datasets Python pack-
age (56). This tool allows one to generate trajectories that are assigned to five
different diffusion models. Moreover, trajectories with different anomalous expo-
nents (0 < α < 1) can also be generated. The ML architecture can be trained
separately to perform two different tasks: 1) to classify the trajectories among a
pool of different theoretical models, and 2) to regress the value of the anoma-
lous exponent of each trajectory. Notably, the training is done in a supervised
way, i.e., we feed the trajectories to the machine, together with their correspond-
ing labels (either the diffusion models for the first task, or the exponents for the
second). A detailed description of the use of ML for characterizing anomalous dif-
fusion trajectories can be found in the public repository accompanying this work
(see Data Availability). Moreover, more details on this approach can be found in
reference (56) for a Python version and in reference (57, 58) for a Matlab version.
In this paper, we use as architecture a combination of gated recurrent units
(GRUs) and convolutional neuronal networks (CNNs) merged with a contact layer
made of fully connected neurons as depicted schematically in SI Appendix, Fig.
S4. The GRU layers can learn long-term features, while the CNNs are a good strat-
egy to tackle short-length correlations (59). By combining the two approaches, we
are able to characterize trajectories of only 10 data points in a robust manner.

In order to classify the experimental trajectories according to a given diffusion
model, the last layer of the network consists of K neurons, where K is the number
of models considered. A softmax function is applied to this last layer. The labels
are encoded in a vector of elements, all equal to zero except the one encoding
the model of the trajectory. The cost function to minimize is the Kullback–Leibler
divergence, which, for a set of trajectories X ¼ fx1! , x2

!
,…xi

!g, compares the
output vector of the machine fmðxiÞ to the label vector y! ðiÞ

m using

KL ¼ ∑n
i fmðxiÞlog

y
! ðiÞ

m

fmðxiÞ

0
@

1
A: [7]

To faithfully characterize the set of experimental trajectories, we first trained a
model to classify among four diffusion models: continuous-time random walk
(60), FBM (42), ATTM (41), and the scaled Brownian motion (61). For each
model, we generated trajectories with the anomalous exponent α ∈ ½0:05, 1�
in intervals of 0.05. We created a balanced dataset with 1,000 trajectories per
model and exponent, which in total summed up to 72,000 trajectories. We sepa-
rated the dataset into two: a training set with 57,600 trajectories and a test set
with 14,400 trajectories. The latter was used to calculate the accuracy of the
model, i.e., to prevent the appearance of overfitting. Note that the input size of
the machine was fixed, which means that all the input trajectories should have
the same size. Because the experimental dataset had trajectories of varying size,
from 10 to 1,000 points, we solved such a problem by restricting them to
20 frames long. This procedure ensured that most of the trajectories were consid-
ered, while the length was sufficiently large for the machine to have good accu-
racy. The accuracy was calculated by means of the F1-score, i.e. the harmonic
mean between the precision and recall of the model, averaged over all classes
globally (often referred to as the microaverage). The trained model then had a
microaveraged F1-score of 0.733. When applied to the experimental dataset,
90% of the trajectories were classified as either FBM or ATTM.

Since the vast majority of the trajectories were classified as either FBM or
ATTM, we trained the machine only with these two models. This allowed us to
increase the accuracy of the ML classification for 20-frame long trajectories. In
this case, the F1-score attained was 0.822 (compared to 0.733). The confusion
matrix for this classification is shown in SI Appendix, Fig. S5A. The results of the
prediction on the experimental dataset are presented in the main text.

For the anomalous exponent prediction, the output of the machine is a con-
tinuous value. Hence, the last layer of the neural network is a single neuron with
a rectifier activation function (RELU). The loss function in this problem is the
mean absolute error (MAE),

MAE ¼ ∑N
i¼1jyi � feðxiÞj, [8]

where yi is the label corresponding the trajectory xi, feðxiÞ is the network predic-
tion, and N is the total number of trajectories in the dataset. The sum is done
over the set of trajectories in the training dataset. In order to infer the anomalous
exponent for each individual trajectory, we used a simpler version of the neural
network, containing two GRU layers of 100 and 50 neurons each whose output
entered two fully connected layers of 64 neurons and sigmoid activation func-
tions. The last layer contained a single neuron with a RELU activation function.
Between each fully connected layer, we proceeded with a 25% dropout.

To calculate the prediction error, we simulated 104 ATTM and FBM trajectories
of length 20, with anomalous exponents ranging from 0.1 to 1. The network
showed an MAE of 0.232 in the full dataset. When considering only FBM trajec-
tories, the MAE dropped to 0.158. Moreover, the error distribution was symmet-
ric, as shown in SI Appendix, Fig. S5B, showcasing that the model was unbiased
with reference to the under- or overestimation of the exponent. On the contrary,
the model overestimated the exponent when dealing with ATTM trajectories.
This was primarily caused by the short length of the trajectories and the charac-
teristics of ATTM. As explained, ATTM models the walk of a particle with random
changes of the diffusion coefficient. The distribution of such changes gives rise
to anomalous diffusion and is directly related to the anomalous exponent. When
dealing with short trajectories, the number of changes is very low or even nonex-
istent, making it impossible to distinguish such a trajectory to a Brownian
motion trajectory. In this kind of trajectory, the model predicts an exponent of
1 or close to 1. Such a feature has to be taken into account when analyzing short
ATTM trajectories and finding values close to 1. Nonetheless, we note that such
an error regarding the estimation of the anomalous exponent has no implication
for the classification of the particles as FBM and ATTM (Fig. 2 A and B), which is
the main result of our ML analysis.

Theoretical model and simulations. Our theoretical model is based on the
main principles of BMC but with the addition of the stochastic unbinding of par-
ticles from already formed condensates. In our system, particles diffuse perform-
ing Brownian motion through the system, but they also interact with each
other in a nontrivial way. When two particles coincide (i.e., they contact each
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other), they interact together, forming a condensate. For a standard BMC pro-
cess, subsequent new interactions make the condensates grow until reaching a
phase-separated system in which all the particles segregate from the environ-
ment, forming a single condensate. See SI Appendix, Fig. S9 for a schematic
representation of such a process. However, in our case and motivated by our
experimental observations, we include an unbinding probability Pu such that at
any given time, particles can exit the condensate in which they are contained.

We performed simulations considering that at each time step, particles have
a probability Pu of unbinding and escaping the droplet. As stated in the main
text, we assume a uniform escaping mechanism from the condensate that can
be attributed to PR molecules unbinding their corresponding DNA binding sites.

The simulations consider the following free parameters:

N: total number of particles;
r: effective radius of the particles. We consider that all particles in the system
have the same effective size and that they have a circular shape. If two particles
of size r are closer than a distance 2r, then they coalesce. When the two par-
ticles coalesce, the total area is conserved such that the resulting droplet has
area 2πr2. Then, a droplet containing M particles has a total radius of
RM ¼ ffiffiffiffi

M
p

r and area AM ¼ Mπr2.
L: length of the 2D squared box acting as an environment. The area of the box
is hence L2. We consider in this case periodic boundary conditions—i.e., any
particle traversing one of the borders of the box is immediately transferred to
the opposite side. Similar simulations were performed with reflecting boundary
conditions with analogous results.
D: Diffusion coefficient of single particles. All particles (free particles and the
condensate particles themselves) perform Brownian motion with the same dif-
fusion coefficient D. Justified by the experimental results, as well as the theo-
retical considerations of BMC, we consider the presence of Stokes drag—i.e., a
droplet of radius R will decrease its diffusion coefficient following DR = D/R.
Pu: Unbinding probability. At each time step, particles have a probability Pu of
unbinding from the droplet in which they are contained. We consider that any
particle in the condensate can escape with equal probability. See also SI
Appendix, Note S2 and Fig. S12 for more details.
T: total number of time steps of the simulation.

The legend for Fig. 4 contains the specific values of the parameters used for
the simulations presented.

For simplicity, we usually consider r = 1 and D = 1. At the start of each simu-
lation, all particles are distributed randomly, following a uniform distribution, all
over the environment. The simulation then works as follows:

1. At the beginning of each time step, for every droplet containing more than
one particle, we check how many particles unbind. Each particle has a proba-
bility Pu of escaping from the droplet it is contained in. All particles that have
unbound will not be able to bind until the next time step (i.e., they will not
be considered in step 3 below).

2. Each particle or droplet performs a spatial step, sampled from a Gaussian dis-
tribution of variance

ffiffiffiffiffiffiffi
2Dr

p
, which effectively samples the steps of a Brownian

particle with diffusion coefficient Dr.

3. We iterate over each particle and droplet and find those that are in contact.
These are considered to coalesce, forming larger droplets. We consider that
the center of the resulting droplet is at the center of mass of the coalescing
particles and droplets.

4. Repeat until doing T time steps.

Data Availability. All study data are included in the article and/or supporting
information. A representative set of the experimental data used in this paper, as
well as the necessary tools to reproduce the results presented in this work can
be found in the public repository https://github.com/gorkamunoz/stochastic_
unbinding_droplets. A more detailed version of the use of ML for characterizing
anomalous diffusion trajectories can be found in reference (56) and in reference
(58) for a Matlab version.
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