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Abstract

Image recognition systems offer the promise to learn from images at scale without requiring 

expert knowledge. However, past research suggests that machine learning systems often produce 

biased output. In this article, we evaluate potential gender biases of commercial image recognition 

platforms using photographs of U.S. members of Congress and a large number of Twitter 

images posted by these politicians. Our crowdsourced validation shows that commercial image 

recognition systems can produce labels that are correct and biased at the same time as they 

selectively report a subset of many possible true labels. We find that images of women received 

three times more annotations related to physical appearance. Moreover, women in images are 

recognized at substantially lower rates in comparison with men. We discuss how encoded biases 

such as these affect the visibility of women, reinforce harmful gender stereotypes, and limit the 

validity of the insights that can be gathered from such data.
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Bias in the visual representation of women and men has been endemic throughout the 

history of media, journalism, and advertising (Becker 1974; Ferree and Hall 1990; Goffman 

1967). As Goffman (1976:11) argued, such “public pictures” are a key symbolic arena 

in which gendered “social structure of hierarchy or value” is manifested and reproduced. 

Yet despite their importance, social science research has largely neglected the analysis of 

images as an arena of social and political valuation. Until recently, the complexity of images 

rendered large-scale, systemic analysis a near impossibility.

The advent of automated image labeling and recognition systems has increased the 

importance of images as a form of social data, facilitating their widespread use in 

commercial enterprise (e.g., Greenfield 2018; HG Insights 2020) and, increasingly, for social 

research (e.g., Di Ronco and Allen-Robertson 2020; Garimella and Eckles 2020; Geboers 

and Van de Wiele 2020; Gelman, Mattson, and Simpson 2018; Webb Williams, Casas, and 

Wilkerson 2020; Xi et al. 2019). At the same time, recent research has shown algorithmic 

classification systems to be mechanisms for the reproduction, and even amplification, of 

more general social biases (Friedman and Nissenbaum 1996; Noble 2018). Thus far, several 

recent studies have detailed gender biases affecting supervised image recognition systems. 

For example, image search algorithms, when asked to return images for occupations, 

generated results that reproduced gendered stereotypes, exaggerating gender disparities 

(Kay, Matuszek, and Munson 2015) and featuring women less prominently than men (Lam 

et al. 2018).

Although these studies have shown how image recognition systems produce bias in the 

representation of women and men (i.e., how many appear in photos), less research has 

systematically explored bias in the content of these algorithms’ results (i.e., how images of 

women and men are differently labeled, tagged, and categorized). In this article, we present 

an analysis of bias in both the identification of people and the content labeling of images 

of women and men across a set of popular commercial image recognition systems. To the 

best of our knowledge, this article is the first to systematically evaluate biases across both 

these dimensions of person identification and content labeling. We draw upon data from a 

particularly salient social arena: the visual communications of American politicians. Using 

two data sets of images from members of the 115th Congress, we analyze how Google 

Cloud Vision (GCV)—a widely used service in industry and scientific research—categorizes 

these politicians’ images. We replicate our analysis across other popular off-the-shelf 

alternatives, including Microsoft Azure Computer Vision and Amazon Rekognition. Across 

both data sets and all three platforms, we find consistent evidence of two distinct types 

of algorithmic gender bias. Image search algorithms not only exhibit bias in identification

—algorithms “see” men and women and different rates—but bias in content, assigning 

high-powered female politicians labels related to lower social status.

Following studies of gender, classification, and status inequalities (Ridgeway 2011, 2014; 

Ridgeway and Correll 2004) we suggest that image recognition systems reproduce the 

status inequalities and gender stereotypes at play in wider social structure. These algorithms 

not only lead to differences in the representation of men and women but systematically 

categorize women and men with labels differentiated by status. Empirically, we conclude 

that the systematic nature of such biases in image recognition classifiers renders these 
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classifiers unsuitable for gender-related analyses. The pervasive and not always obvious 

nature of these biases means they may also confound analyses that are not gender focused. 

Theoretically, our findings identify these algorithms as an important case of what Ridgeway 

(2011:40) termed an “amplification process,” that is, a mechanism through which gender 

differentials are reinscribed into novel social arenas and social forms.

Gender Inequality, Categorization, and Algorithmic Bias

Gender inequality is characterized by, and reproduced through, the persistence of gendered 

stereotypes that associate women with lower social status than men (Eagly, Wood, and 

Diekman 2000; Ridgeway 2011, 2014; Ridgeway and Correll 2004). As Ridgeway (2011:11) 

argued, gender is “at root a status inequality,” one based on cultural beliefs about the 

differential hierarchical status between men and women. Widely held and enduring gender 

beliefs characterize women as less agentic, less worthy, and less competent than men 

(Conway, Pizzamiglio, and Mount 1996; Fiske et al. 2002; Lueptow, Garovich-Szabo, 

and Lueptow 2001; Spence and Buckner 2000). Whereas women are typically associated 

with “communal tasks,” men are typically seen as “more competent at the things that 

‘count most’” and that earn the highest esteem (Ridgeway and Correll 2004). These same 

stereotypes have been shown to be at play in the visual representation of men and women 

(Ferree and Hall 1990; Goffman 1976). For instance, in Gender Advertisements, Goffman 

(1976) demonstrated how advertisements systematically portrayed women in an “unserious,” 

childlike fashion. Ferree and Hall (1990) found that even in sociology textbooks, a corpus 

supposedly attentive to gender inequalities, images reflected women’s marginality in the 

domains of politics and the economy.

A great deal of social science research has investigated the puzzling endurance of these 

gender stereotypes over time (Cotter, Hermsen and Vanneman 2011; England 2010; 

Lueptow, Garovich-Szabo, and Lueptow 2001): beliefs that are continually reinscribed “in 

new social forms of social and economic organization as these forms emerge in society” 

(Ridgeway 2011:4). A key mechanism for this persistence is the ability of gendered 

status beliefs to “transfer” to novel social arenas, what Ridgeway termed an “amplification 

process.” This amplification process allows categorical differences associated with gender to 

expand in their range of application, so that preexisting gender beliefs are carried into new 

industries, occupations, or social forms. Status beliefs can even be transferred to “non-status 

elements” (Tak, Correll, and Soule 2019). For example, gendered stereotypes about men 

and women can transfer to evaluations of the products they produce, with women being 

disadvantaged when they produce stereotypically male-typed goods (Tak et al. 2019).

This research has typically focused on how status inequalities are perpetuated through 

gender beliefs: individuals bring either conscious or subconscious gendered classifications 

to novel social arenas (Correll and Ridgeway 2003; Webster and Foschi 1988). The promise 

of machine-learning algorithms has been that they would bypass this aspect of human 

bias, leading to more accurate or equitable results (Cowgill 2018; Gates, Perry, and Zorn 

2002; Kleinberg, Ludwig et al. 2018). Nevertheless, a growing body of research has shown 

that algorithms propagate, and even amplify, existing social structures and biases (Angwin 

et al. 2016; Benjamin 2019; Noble 2018; Sandvig et al. 2016). That is, algorithms are 
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“not cameras onto social realities but engines” (Fourcade and Healy 2017), reproducing 

preexisting categorizations found in the social institutions from which the algorithm 

emerges. For example, natural language processing trained on biased text has been shown 

to strengthen the gendered associations in language, rather than avoiding them (Benjamin 

2019; Bolukbasi et al. 2016; Noble 2018).

Although more research has been conducted on text than images, prior studies of images 

have shown similar patterns (Buolamwini and Gebru 2018). Some scholars, many of them 

computer scientists, have begun to analyze what Ferree and Hall (1990:505) referred to as 

the “first level of representation” in image bias: estimating the systemic absence of images 

of women in particular social arenas. For example, in a study of hundreds of thousands 

of news articles, Jia, Lansdall-Welfare, and Cristianini (2015) found that the representation 

of women varied by topic, with political images featuring primarily men. This bias in 

representation can then be encoded into biases in algorithms. For example, in a study of 

occupations, Kay et al. (2015) found that search engine algorithms returned images that 

overrepresented men compared with their actual numbers in the population.

To date, less research has investigated how image-labeling algorithms categorize, that is, 

how they classify, label, and annotate images of women and men. As Ferree and Hall (1990) 

suggested and Noble (2018) found, the lower social status of women could result in visual 

portrayals of women associated with “demeaning or marginalized social positions” (Ferree 

and Hall 1990:506). The capacity for algorithms to amplify these preexisting biases is the 

subject to which we now turn.

From Bias in the World to Bias in the Algorithm

Images are a powerful medium of communication. They are more likely to be remembered 

than words (Grady et al. 1998; Whitehouse, Maybery, and Durkin 2006) and evoke stronger 

emotions (Brader 2005) and higher levels of social engagement than text (Rogers 2014). 

Despite the enormous social scientific potential of images as data, their analysis remains 

computationally demanding. Algorithms to analyze images often require a high level of 

technical training and knowledge to design and use, as well as large amounts of training data 

and data labels. Gathering tens of thousands or more images, all with labels describing their 

content, remains both costly and time consuming (Chen et al. 2015).

Commercial image labeling services, available to the public from Google, Amazon, 

Microsoft, and other companies since 2016, provide an alternative to this onerous process: 

reducing the cost of labeling images and identifying their content at scale and offering the 

potential to make image analysis readily available to users not trained in designing neural 

networks. These platforms allow users to quickly and easily retrieve labels for any image, as 

shown in Figure 1. A recent study shows just how drastic is the difference in effort between 

human coders and algorithms such as GCV: “the API codified 1,818 images in less than 5 

min, whereas the human coder spent nearly 35 hours to complete the same task” (Bosch, 

Revilla, and Paura 2019).

One widely known dimension of systems such as GCV that rely on machine learning is 

that they seek out and then reproduce patterns in the data on which they are trained. Input 
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data are typically “found data” from the “real world,” containing the biases and cultural 

associations of human societies, which then get reproduced as “objective” and “scientific” 

decisions from algorithms (Benjamin 2019). For example, ImageNet is a database widely 

used to train image-labeling algorithms that maps the categories from Princeton’s WordNet 

to more than 14 million images scraped from the Internet (Crawford and Paglen 2019). 

WordNet is a taxonomy of English terms dating to the 1980s, based on pre-1972 Library 

of Congress taxonomies, that contains numerous racist, ableist, and misogynistic terms 

(Crawford and Paglen 2019). When ImageNet’s designers and human coders linked these 

terms to pictures of people from the Internet, they encoded those biases into the database. 

As Crawford and Paglen (2019) showed, this profoundly shaped algorithms that were trained 

using the database. After their work, ImageNet removed many of the most offensive labels 

(Ruiz 2019).

Input data are not the only social influence on algorithmic systems. Computer engineers’ 

design decisions and tweaking of automated systems also encode biases (Seaver 2018). For 

example, engineers working on music playlist algorithms not only employed users’ behavior 

to code their algorithms but also personally listened to the playlists they generated, tweaking 

the way the algorithms used their input data until the engineers thought the output sounded 

good (Seaver 2018). As Seaver stated, arbitrary preferences and biases outside the code 

therefore became a part of the algorithm:

The essence of a contemporary algorithmic system [is] a steady accumulation of 

feedback loops, little circuits of interpretation and decision knit together into a vast 

textile. Every stitch is held together by a moment of human response, a potential 

rejection shaped by something outside the code, whether it is the arbitrariness of 

personal preference, the torque of structural bias, or the social force of a formal 

evaluation framework. (p. 377)

Notably, the algorithmic systems trained on these input data are increasingly “black boxes.” 

A system is a black box either if its technical design is sufficiently complex that human 

users cannot interpret the meaning of the inner workings or if the details of the system’s 

design and construction are hidden from users, for example, as corporate trade secrets 

(Rudin 2019). This second kind of black box describes GCV and nearly every commercially 

available “algorithm” or scoring system. Only some Google employees know which 

data sets and design decisions went into building and tuning GCV. Therefore, although 

researchers can audit the results of algorithms, they generally cannot recover the true process 

or logic of the black box’s decisions, and attempts to reverse-engineer the decision process 

“are misleading and often wrong” (Rudin 2019:211).

Thus far, scholars working on images have taken some initial steps to avoid the bias 

potentially introduced by these algorithms. For instance, in a study on social media images 

of legislators, Xi et al. (2019) removed all women and members of racial and ethnic 

minority groups from their data in order to sidestep gender and racial biases. Although 

such an approach may be reasonable for specific research questions, it should be a 

last resort: systematically excluding large swaths of the population not only can lead to 

nongeneralizable inferences, it can also bias social scientific research away from pivotal 

research questions on inequities in social, political, and economic visual communication 
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(Rossiter 1993). We suggest that prior to resorting to such data limitations, we should 

develop a better understanding of the systematic nature of such biases. In what follows, we 

draw upon existing literature to examine gender algorithmic bias across two dimensions: 

bias in identification and bias in content.

Two Dimensions of Image Bias

Bias in identification is an analog to what Ferree and Hall termed the “first level of 

representation”: at a very basic level, does the algorithm see people with equal accuracy 

regardless of their gender? For the most part, this has been the primary focus of the 

“algorithmic bias” literature, which has defined algorithmic injustice and discrimination as 

situations where errors disproportionately affect particular social groups (Noble 2018).

Bias in content, by contrast, is possible when algorithms output only a subset of possible 

labels, even if the output is correct. In this case, an algorithm might systematically 

return different subsets of correct labels for different groups of people. We formalize this 

as “conditional demographic parity” (Corbett-Davies et al. 2017). Conditional on image 

content, an algorithm is considered biased if it returns labels at different rates for different 

demographic groups. For instance, if men and women in a sample wear suits at equal 

rates, then an unbiased algorithm would return the label “suit” equally often for each 

gender. Why might the presence or absence of women in a photo affect the identification 

of such seemingly nongendered classifications such as clothing items? Algorithms learn by 

observing associations in the data they are trained on (i.e., data the models are fitted to). If 

we fit an algorithm to a data set in which all men had suits, and no women did, it might 

well learn that the probability of “suit” being the right answer, given that it sees a woman or 

features associated with women like long hair, is extremely low. When later presented with 

images of women in suits, then, it would be unlikely to label them “suit,” even though that is 

a correct label.

Input biases do not need to be that extreme to have these effects, however. Research on word 

embeddings has found that algorithms can pick up far more subtle associations (Kozlowski, 

Taddy, and Evans 2019). For example, one team found that word2vec trained on Google 

News articles produced gendered analogies such as “man is to computer programmer as 

woman is to homemaker.” This is because gender-specific words (such as sister or mother) 
may be statistically associated with gender-neutral words (such as homemaker) in text, and 

thus algorithms that attempt to identify meaning through observed associations amplify 

these biases (Bolukbasi et al. 2016). Similarly, algorithms trained on real-world images may 

convert associations between gender-specific labels and gender-neutral labels into biased 

results for image content.

Data

To identify bias in identification and content in image recognition systems, we use two data 

sets containing images associated with members of the 115th U.S. Congress: a data set of 

official headshots and a set of images tweeted by these members. We have several reasons 

for focusing our analysis on political images. First, politicians’ image use is substantively 

important. The political realm has consistently revealed gender bias in the representation 
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of women in images (Jia et al. 2015). It is important to know whether and how human 

bias in the production and use of images plays out in algorithmic labeling of images. To 

date, politics has been an important domain of social science research on images (e.g. 

Anastasopoulos et al. 2016; Casas and Webb Williams 2019; Webb Williams et al. 2020; Xi 

et al. 2019).

Second, our data sets offered a unique opportunity to study the bias in black-boxed 

image classification algorithms. We compiled two matched data sets: (1) a control data 

set consisting of uniform portraits of the members of Congress (MCs) themselves and (2) a 

found data set of images these politicians tweeted. The control data set limits the variation 

in image content and style, making it easier to detect biases in algorithmic performance, 

while remaining a real-world image data set. It includes social markers of gender, age, 

race, and politics such as clothing, hair, jewelry, and flags that are essential to sociological 

understandings of identity and appearance but that are typically cropped or abstracted away 

in the controlled photographs of laboratory studies. The found data set is composed of 

images shared by the politicians’ official Twitter accounts, which are highly variable in 

content, style, and purpose but which still share a general context. These characteristics 

mirror those of many digital sociology and archival research projects, allowing us to evaluate 

algorithmic bias in a setting relevant to other researchers. Both data sets are linked to the 

same set of politicians, and thus the same demographics, enabling us to compare findings.

Control Data Set

We acquired the control data set by extracting official portraits of MCs from Wikipedia. 

These photos are produced by the U.S. Government Printing Office for the official 

Congressional Pictorial Directory, which contains photos and biographical details for all 

MCs during a given session. The vast majority of these images are taken in front of a 

neutral monochrome background. In many photos, an American flag is positioned to the 

MC’s right, and in a subset of those photos, the flag of the MC’s home state is also 

displayed to that person’s left. Many photos are taken either somewhere in the U.S. Capitol 

or an MC’s office. In every photo, the vast majority of the frame is occupied by the MC. 

Similarly, in all photos, MC’s are clothed in civilian business attire and looking at the 

camera. MCs all have the same occupation, nationality, and motivation for taking their 

portraits. These photographs are as homogeneous as any real-world set of images might be, 

without artificially removing socially meaningful aspects of age, gender, race, and ethnicity, 

such as hair and clothing, which are often removed in laboratory facial recognition data sets. 

All images fall under the public domain and are included in our replication material. We 

merged these photos with information about the MCs from government Web sites as well as 

a public GitHub repository (United States Project 2020).

Found Data Set

Our found data set is composed of images posted on Twitter by MCs between January 

2017 (the start of the 115th Congress) and June 2018 (n = 198,170). We obtained the set 

of images by using the Twitter application programming interface to download each MC’s 

timeline, limited to his or her most recent 3,200 tweets because of data restrictions from 
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the application programming interface. We then downloaded all of the images these tweets 

contained.

From these sets of images, we selected a weighted sample in order to validate GCV’s labels 

with humans’ labeling (n = 9,250). An image’s weight for sampling is calculated using both 

the labels from GCV and the characteristics of the MC posting the image. Image weights 

are inversely proportional to how rare their features are, such that images with uncommon 

labels and coming from MCs from underrepresented groups are more likely to be sampled. 

More details on our sampling strategy are available in the Online Appendix. On average, 

GCV returned 5.3 labels per image, and we selected only labels to which GCV assigned 

≥0.75 confidence (confidence scores from GCV vary between 0.5 and 1.0). In that sense, our 

validation sample can be regarded as conservative; we evaluate only labels GCV considers 

highly likely to be applicable to the specific image.

Methods

Our main analysis is conducted on Google Cloud Vision (GCV). As discussed above, 

GCV is widely used in industry, and unlike its primary competitors, Amazon Rekognition 

and Microsoft Azure Computer Vision, GCV shares its underlying technology with the 

world’s largest Internet image search platform (Google Image Search) and other ubiquitous 

services such as Google Photos (integrated with every Android phone). We also provide 

brief analysis of both other platforms showing that our findings generalize outside of GCV.

Validation

To validate the image labels produced by the algorithm, we hired workers through Amazon’s 

Mechanical Turk (MTurk). This service has become popular with researchers in several 

disciplines over the past decade and allows hiring a readily accessible and diverse population 

of research assistants. Although “MTurkers” have often been a population sampled for 

survey research (Huff and Tingley 2015), these workers have also been employed to assist 

in the research process itself (Shank 2016), as was the case for our project. The use of 

temporary and anonymous workers who lack the labor protections of traditional research 

assistants employed through a higher education institution has been discussed extensively 

by other scholars (see Pittman and Sheehan 2016; Williamson 2016). Aspiring to maintain 

ethical research practices, we paid MTurkers working on our project a “living wage” of 

$15/hour, more than twice the U.S. federal minimum wage at the time of writing.

We presented each worker with 30 images and a set of five potential labels for each. Some 

labels were assigned by GCV for corresponding images (positive labels); others were chosen 

at random from the set of GCV labels assigned to other images but not to the one at hand 

(negative labels). Each image was coded by at least three people.

Workers were presented with an image and two questions. The first question presented all 

labels in random order and asked workers to select all labels that applied to the image they 

were seeing. The second question asked workers to indicate if they saw any men, women, 

children, or none in the image. Each person validated the labels of 30 images, and multiple 
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people saw each combination of labels and images. Overall, respondents had an agreement 

rate of 0.77 with one another.

To identify bias in identification, we evaluate whether GCV recognizes men and women in 

images. With our control data, we have ground truth about the presence and gender of MCs 

depicted. With our found data, we do not know the true gender of people in images. Instead, 

we compare whether GCV recognizes men, women, both, or neither in an image to whether 

human coders do. Human coders and GCV both rely on the same visual gender cues, so our 

research design measures whether those cues influence the algorithm’s person identification.

Bias in content requires a slightly different approach. There are many things that could 

be labeled in any image (“an image is worth a thousand words”), but image labeling 

systems typically return only a handful of labels (an average of 5.3 per image in our data). 

Even if labels a system returns are correct, it is possible to have bias in which subset of 

possible correct labels gets returned for a given image. Thus, we measure bias in content 

as conditional demographic disparity: conditional on actual image contents, we examine 

whether some labels are disproportionately applied to images containing one demographic 

group or another.

To measure bias, we rely on two procedures. First, we use χ2 test statistics with Yates’s 

correction on labels to identify which labels are identified relatively most often in portraits 

of and images tweeted by women compared with men (see the Online Appendix). Second, 

we use negative binomial regressions to obtain the expected counts of GCV labels in each 

of five coded categories for the MCs. A negative binomial distribution allows us to model 

counts while correcting for overdispersion.

Finally, we include several controls. Because recent research suggests that GCV results 

may depend upon race and skin tone (Noble 2018), we control for race (coded as white or 

nonwhite). Women are unequally distributed across parties, and to ensure that results are not 

party dependent, our models also control for party membership (Democrat or Republican). 

Finally, as studies have shown that the performance of image recognition algorithms may 

depend upon the age of individuals in the images (Ngan and Grother 2014; Michalski 

2017), we control for age (see the Online Appendix). Results are robust to the inclusion or 

exclusion of these controls.

Detecting Gender Bias in GCV

Bias differs across image classification systems and changes over time. Because of this, 

researchers using these algorithms will need to do their own evaluations, specific to the 

tool they are using, the time they are using it, and even the location they are accessing 

it from. We propose that such evaluations should measure several components. First, as 

a baseline, researchers should verify the correctness of the labels provided; many applied 

papers already evaluate this dimension (e.g., Bosch et al. 2019) but because accuracy will 

be context dependent, such verification is an important first step every time one uses an 

algorithm. Second, we suggest that researchers identify two forms of algorithmic bias: 

biases in identification, which is the focus of much “algorithmic bias” literature (e.g., 
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Kleinberg, Ludwig et al. 2018), and biases in content. In what follows, we discuss each 

of these components drawing on MCs’ use of images on Twitter as a case study, but the 

procedure we propose is generalizable to other substantive domains.

Evaluating GCV

The first, most general dimension for evaluating any algorithm is determining the 

correctness of its results. There are many different measures for evaluating labeling or 

classification algorithms (Nelson et al. 2018). In general, commercial labeling systems 

present users with only predicted positive labels (e.g., “there are cats in this photograph”) 

and not predicted negative labels (e.g., “there are no children”). This can make calculating 

many measures of correctness difficult. Additionally, calculating measures of correctness 

requires “ground truth” data about what is “correct.” But users typically turn to labeling 

algorithms precisely because they do not already have ground truth information about their 

images.

We address both challenges using our sample of 9,250 human-coded images. Overall, we 

find that human crowd workers have high agreement with the labels the GCV algorithm 

generated, as shown in Figure 2. When presented with an image and a set of potential labels, 

humans typically select the positive GCV labels, but not the negative labels. Moreover, the 

proportion of humans who select a label is strongly correlated with the confidence score 

returned by GCV. That is, GCV’s confidence score is a good measure of whether a human 

would agree that the label applied to a given image. In this sense, GCV is a high-precision 

image labeling system: when GCV says that a label applies to an image, it is generally 

correct.

Bias in Identification

The overall accuracy of an algorithm such as GCV is not the only important measure, 

however. As Nelson et al. (2018) showed, sometimes the measures of correctness for 

individual categories and labels are more important for sociological analysis and can lead to 

further insights about the data. We test this with gender. Although observer-ascribed gender 

is a poor measure of gender identity (Hamidi, Scheuerman, and Branham 2018; Lagos 

2019), it can be a good measure of the gendered stereotypes about appearance that may 

influence GCV.

We use the object recognition module of GCV which, at the time of data collection, detected 

people and differentiated between men or women. This feature has since been removed. We 

conduct this validation using all images from the control data set (results shown in Figure 

3) and all 9,250 images from Twitter that human workers coded (results shown in Figure 

4). As the right panels of Figures 3 and 4 demonstrate, GCV has low false-positive rates 

for detecting people whom our human coders did not identify in the images, regardless of 

gender. The false-positive rate is low for both women (near 0 percent in the Wikipedia image 

data and about 1 percent in the Twitter image data) and men (1.8 percent in Wikipedia 

images and 2.3 percent in the Twitter data). In short, GCV rarely detects people in images 

where humans do not.

Schwemmer et al. Page 10

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, the algorithm’s false-negative rates vary substantially by ascribed gender. In our 

control data set of professional portraits of MCs, women in Congress are recognized in only 

75.5 percent of images of women in Congress in comparison with 85.8 percent for men in 

Congress, a difference of 10 percentage points (see the left panels of Figure 3). Thus, in 

high-quality photos in which only one individual is presented, women are still “seen” by the 

algorithm significantly less than men.

This difference was even more striking in our primary data set of Twitter photos. Here, GCV 

identified 45.3 percent of the men that our human coders saw in the pictures but only 25.8 

percent of the women, a striking 20 percentage point gap (see the left panels of Figure 4). As 

with the label annotation results, GCV object labels for people are high precision: if GCV 

detects a person, it is very likely that humans will agree that there is a person. However, 

these results indicate that GCV has poor recall: if GCV does not tag something, it may still 

nevertheless be in the image (ergo the high false-negative rates in recognizing individuals). 

High precision with low recall is likely an unavoidable feature of labeling images: for any 

given image, the set of possible correct labels that the algorithm could return is theoretically 

enormous. Our findings show, however, that there is substantial gender bias in errors of 

omission: false-negative rates are substantially higher for women than men.

Biases in Content

The second component of evaluating GCV labels concerns bias in content. Our finding 

that positive labels are recognized as correct by humans does not rule out bias in their 

distribution. Positive labels could be both correct and biased, in the sense that they might not 

always meet conditional demographic parity.

To examine this possibility, we used GCV labels from our uniform data set of MCs’ 

professional portraits. If GCV returns gender-biased labels on this set of images, those 

biases could affect any inferences we draw from the algorithm with other data sets, including 

our analysis of whether MCs engage in gendered patterns of communication on Twitter. 

Example images and labels from this set can be seen in Figure 5. Here, GCV labeled 

Congresswoman Lucille Roybal-Allard as a “smiling” “television presenter” with “black 

hair,” whereas Senator Steve Daines was labeled as an “official,” “businessperson,” and 

“spokesperson.”

We then use χ2 tests to identify the key labels by gender for our control dataset (see the 

Online Appendix for additional information). Figure 6 shows the top 25 key labels for both 

men and women, sorted by absolute frequencies. Some labels, for instance “long hair” for 

women, are a clear result of the underlying data we chose: there are no congressmen with 

long hair in the data set, and no congresswomen who wore neckties, so it is unsurprising 

that some of these labels have strong gendered associations. Note, however, that “bald” 

and “short hair” do not appear among the labels GCV returned, indicating a bias in which 

hairstyles the algorithm mentioned. The seemingly neutral label “hairstyle” is given to more 

than half of women but only a minute percentage of men. Similar patterns exist for labels 

such as “black hair” and “brown hair.” By our manual count, 2 percent of women’s portraits 

have no visible hair (because of hats), 3 percent of men’s portraits have no visible hair 

(completely bald heads), and a further 7 percent of men’s portraits have partial hair (hair 
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visible on the sides but not the top of the head). Conservatively, then, women are 1.1 times 

as likely as men in these data to have visible hair, nowhere near the disparity in labels 

returned by GCV. Thus, we conclude that, conditional on hair being in the image, GCV was 

much more likely to comment on it if the hair belonged to a woman.

Labels such as “girl” and “gentleman” encode gender directly, so their correspondence with 

MCs’ gender is unsurprising. However, labeling adult women “girls” while men are labeled 

with more prestigious and age-appropriate titles such as “gentlemen” is an old, sexist trope 

(Durepos, McKinlay, and Taylor 2017) that resurfaces in image recognition algorithms.

Furthermore, we see evidence that confirms gender and occupational bias. That is, although 

all individuals in the data set have the same occupation (MC), GCV labels them with a 

variety of occupations. Notably, the only occupation with which GCV labels women more 

often than men is “television presenter,” while men are labeled with more authoritative 

variants such as “white collar worker,” “spokesperson,” and “military officer.” That is, 

although these labels are ostensibly gender neutral, their highly gendered cultural histories 

emerge clearly in GCV’s differential application of the labels. For instance, Perryman 

and Theiss (2013) showed that the age-diminutive “weather girl” stereotype has developed 

since the 1950s, when television stations began to hire nonexpert women as presenters to 

attract viewers through theatrics and sex appeal. Today, GCV labels women as “television 

presenter” instead of “weather girl,” but the historical gender bias remains evident.

Overall, appearance labels such as “beauty” and “hairstyle” are disproportionately applied to 

women. Labels most biased toward men revolve around professional and class status such 

as “gentleman” and “white collar worker.” None of these individual labels is necessarily 

wrong. Many men in Congress are businesspeople, and many women have brown hair. But 

the reverse is true as well: women are in business and men have brown hair. From the set 

of all possible correct labels, GCV systematically selects appearance labels more often for 

women and high-status occupation labels more for men. Naive analysis using these labels 

may erroneously conclude that images with men or women in them are more focused on, 

respectively, business or fashion, even if they are all professional portraits of people with the 

same occupation.

We conducted further analysis to quantify the different types of labels assigned by GCV 

dependent on gender, race, and party of MCs by manually coding all GCV labels for 

the photographs of MCs into the following categories: “occupation,” “physical traits & 

body,” “clothing & apparel,” “color & adjectives,” and “other.” Three authors of this article 

coded the labels independently, with an intercoder reliability score of 0.88 (see the Online 

Appendix). For each of these labels, we computed regressions to estimate the effects of 

gender on label counts for the MC photographs. We opted for negative binomial regressions 

because dispersion tests for our count-based variables suggested partial overdispersion. We 

control for race, age, and political party of MCs. Figure 7 shows predictions by gender while 

holding party, race, and age at observed values.

Images of women receive about 3 times more labels categorized as “physical traits & 

body” (5.3 for women, 1.8 for men). Images of men receive about 1.5 times more labels 
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categorized as “occupation” (3 for women, 4.7 for men). Images of men also receive more 

labels related to clothing and apparel than women. We found no substantial differences in 

labels related to color or adjective or other types of traits.

These results provide further evidence that images of women contain more labels related 

to physical traits in comparison with images of men. At the same time, labels related to 

occupation, and to a lesser extent clothing and apparel, are more often included in images of 

men. Results of the same analysis for ethnicity as well as for political party do not suggest 

substantial effects (see the Online Appendix). In short, our results indicate that GCV suffers 

from substantial biases related to gender.

To examine how these biases in uniform data manifest in “real world” data, we turn now to 

our “found” data set of MCs Twitter images. Again, we use χ2 tests to identify the labels 

most strongly associated with images tweeted by male versus female MCs. Figure 8 shows 

the top 25 key labels for both men and women, sorted by absolute frequencies.

The results indicate a sharp divide in content of images tweeted by men and women, such 

that women in Congress appear to be much more likely to tweet pictures of women and 

girls, fashion, and other appearance-focused themes (about 5 percent of all images tweeted 

by women received the label “girl,” whereas only 1.5 percent of images tweeted by men 

received that label). Meanwhile, men in Congress appear much more likely to tweet images 

of officials, vehicles, public speaking, technology, military personnel, and business. These 

themes conform to common gender stereotypes, and a reasonable but naive interpretation 

of these results might have been that MCs’ gender substantially influences the content of 

the images they share on Twitter. The results broken out by MCs’ party affiliations show 

similarly gendered distinctions (see the Online Appendix).

However, our evaluation procedure highlighted that many of those specific labels are applied 

with substantial gender bias, which confounds these observed differences. Indeed, when 

considering that women were much more likely to be given labels associated with physical 

traits or the body or were much more likely to be labeled as “girls,” many of the most 

“gendered” findings about images tweeted by MCs are revealed to be artifacts of algorithmic 

bias. The label “girl,” for instance, does not necessarily indicate the presence of a child, as 

we identified the biased application of the label “girl” to our control data set of images of 

adult women. Thus, rather than women tweeting more images of girls than men in Congress, 

all MCs might simply be tweeting images of themselves that are being labeled differently by 

GCV.

Our analysis reveals that GCV’s biases severely limit the kind of inferences that scholars 

interested in gendered political communication could accurately draw from visual evidence 

if they were to use this black-box algorithm. Indeed, among the top labels associated with 

“gendered” images tweeted by MCs, it is clear that very few point toward reliable, unbiased 

differences. We therefore conclude that labels produced by GCV are too biased to yield 

meaningful insights into gender differences in visual political communication patterns.
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Detecting Bias in Other Image Recognition Tools

Although our results so far have focused on examining gender biases of one particular 

system, GCV, we also replicated our analysis of our uniform data set of professional photos 

using two other popular image recognition tools: Amazon Rekognition and Microsoft Azure 

Computer Vision. We found that labels assigned by these tools produce gender biases similar 

to GCV (see Figures 9 and 10). For example, Amazon Rekognition assigns the prestigious 

occupation labels “attorney” and “executive” to photographs of men. Photographs of women 

are labeled “teen,” “girl,” and “kid,” although the youngest age for both men and women 

in our data set is 34 years. In addition, images of women are also labeled with “home 

decor” even when they are from the uniform portrait data set. Unlike GCV and Amazon 

Rekognition, labels from Microsoft Azure Computer Vision do not seem to be of high 

precision in general. The system produces biased labels such as “girl,” “cake,” and “kitchen” 

for portraits of adult women, where no kitchens or food are present. This demonstrates the 

need for users to evaluate the specific biases of the system they are using at the time they are 

doing so.

Discussion

In this article, we have identified systemic and pervasive bias in how images including men 

and women are processed, such that image recognition systems mimic and even amplify 

real-world bias. Specifically, we have shown how bias in identification and bias in content 

skew the results for even uniform political images, labeling photos of women according 

to their appearance and photos of men according to their occupation. In other words, 

image-labeling algorithms “see” American congresswomen through the classic gendered 

stereotypes that have historically beset the visual representation of women, if they see 

women at all (Goffman 1976; Ferree and Hall 1990). For any project seeking to draw 

conclusions from labels that image recognition systems apply with a gender bias, gender 

may further operate as a confounding variable.

Although prior work has sought to either use algorithms (Anastasopoulos et al. 2016; Casas 

and Webb Williams 2018; Xi et al. 2019) or identify biases in them (Buolamwini and Gebru 

2018; Crawford and Paglen 2019; Eubanks 2018), we argue that it is critical for scholars to 

do both at the same time. Furthermore, we demonstrated that this is different from simply 

evaluating the correctness of an algorithm’s output, as many applied studies already do. An 

algorithm such as GCV might be both correct and biased at the same time if it selectively 

reports a subset of many possible true labels. There is an active field of research focused on 

constructing algorithms to avoid specific biases (e.g., Kleinberg, Ludwig et al. 2018). But 

unless algorithms are consciously constructed and tested for that specific purpose, biases are 

likely to taint applications that rely on their output in unforeseen ways.

Although we have addressed algorithms’ classification of men and women here, it is 

important to note that a smaller body of work has begun to examine the systematic exclusion 

of trans and nonbinary people in algorithmic image recognition systems, which relies on 

conceptions of sex and gender as binary, immutable, and visually legible (Keyes 2018). That 

is, such algorithms assume that a person or computer can look at someone and know that 

they are either a man or woman from visual cues such as hairstyle. To be sure, perception 
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by others is a critical dimension of gender and a part of the interactional process of “doing 

gender” (West and Zimmerman 1987). But because gender is an accomplishment, rather 

than a presocial fact, observer perception and other dimensions of gender such as individual 

identity may differ in consequential ways (Lagos 2019). The genders we measure in this 

article are mostly binary and observer ascribed, either by algorithms or by humans tasked 

with validating the algorithms. Here, we demonstrate gender biases and stereotypes even 

within the constrained, binary terms in which the algorithms operate. This complements 

work on who can be represented in these algorithms by critically evaluating how those who 

can be represented by a system’s logic are represented by it in practice.

Our findings are necessarily time and context dependent. New training data and model 

changes will alter these results and may alleviate some of the biases we identified or 

generate new, unmeasured ones. Nevertheless, research using image-labeling algorithms 

must be attentive to such biases when drawing conclusions about image content. Our 

particular results are also specific to the image recognition systems we tested. Among 

the three systems we evaluated—GCV, Microsoft Azure Computer Vision, and Amazon 

Rekognition—there was substantial gender bias in every system, but also variation in the 

specific content and magnitude of biases. Furthermore, the algorithms deployed by Google 

and other technology companies change frequently. To give one example, GCV has recently 

removed its gender identification feature from all of its public-facing services (Ghosh 2020).

Furthermore, some kinds of labels we analyzed are not amenable to our bias measurement 

approach and, we argue, pose substantial measurement reliability challenges. A prominent 

example of this in our data was the label “smile,” which was applied to women much more 

often than men in all three commercial image labeling systems we examined. GCV applied 

the label to congresswomen more than 90 percent of time while applying it to congressmen 

less than 25 percent of the time. It would be tempting to do analysis of gender bias here: 

smiling is a highly gendered behavior, particularly in images of women (Goffman 1976). 

But smiling is far more ambiguous to classify than labels such as “hair,” “outdoors,” “child,” 

and “military officer.” Researchers who try to create metrics for what counts as a smile 

invariably find that age, race, gender, nationality, dental health, and more influence not only 

how people smile but also whether observers see a particular facial expression as a smile 

(Jensen, Joss, and Lang 1999; Liébart et al. 2004). When one of the authors attempted 

to tally the presence of smiles in the congressional portraits data, this ambiguity rapidly 

became apparent: many facial expressions seemed borderline. Was that really a smile? Do 

smirks count? What if teeth are showing, but they do not seem happy? This is why flight 

attendants and other emotional laborers are formally trained not just that they are expected 

to smile, but specifically how they should be smiling (Hochschild 2012). By our count, 

91 percent of women and 86 percent of men were smiling—very far from the ratio of 

smiles in GCV labels and suggestive of substantial gender bias. But our recommendation 

is that researchers and users should avoid labels with this level of measurement ambiguity 

altogether.

Beyond simply calling attention to specific, significant gender biases in GCV, this article 

also serves as a template for future researchers seeking to use commercial algorithms. By 

comparing biases identified in uniform data sets as well as “found data,” researchers will 
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be better able to evaluate the tools they use before drawing firm conclusions from the 

data. Although our examples are primarily concerned with gender bias in image labeling, 

depending on the data set and research question, researchers may use the same procedures to 

test for bias along any trait and automated labeling system. As our crowdsourced validation 

suggests that humans predominantly agree with high-confidence labels by GCV, image 

recognition systems may still be useful for a variety of applications unaffected by gender 

biases. In any case, we recommend thorough validation efforts before using a commercial 

image recognition system. To simplify the process of annotating, validating and analyzing 

images with GCV, one of the investigators of this paper has developed auxiliary open-source 

software in the form of an R package (Schwemmer 2019).

The increased accessibility of computational tools generally, and computer vision 

specifically, presents a novel opportunity for social science researchers to expand the 

study of social life. However, researchers—and practitioners writ large—cannot treat such 

black-box tools as infallible. With tasks such as image labeling, there are nearly infinite 

potential labels to describe an image. If “a picture is worth a thousand words,” but an 

algorithm provides only a handful, the words it chooses are of immense consequence. As 

some academic disciplines find themselves undergoing a “replication crisis,” reliance on 

black-box tools that often change without notice can further exacerbate patterns of incorrect 

inference while even obscuring the methodology used to arrive at these results. As past 

trends in research methodology in the social sciences have illustrated (Shank 2016), research 

tools often grow in popularity before their biases and limitations are widely understood. 

Therefore, our research serves as an injunction to future researchers seeking to break from, 

rather than reinforce, the biased gendered associations of the past.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Laura Adler, Chris Bail, Andrew Ballard, David Barker, Nel Escher, Parker Koch, Ryan T. Moore, Stefan 
Muller, Arvind Narayanan, Matthew Salganik, and Elizabeth Suhay for feedback on this project. We also thank 
participants at the 2018 European Symposium Series on Societal Challenges in Computational Social Science in 
Cologne; the 2019 IC2S2 in Amsterdam; the 2019 PSAI in Maynooth, Ireland; and American University’s School 
of Public Affairs PhD student speaker series for feedback on this project.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication 
of this article: We thank the Summer Institute in Computational Social Science and its funders, the Alfred P. Sloan 
Foundation and the Russell Sage Foundation, for funding and incubating this project. Lockhart received funding 
through a Eunice Kennedy Shriver National Institute of Child Health and Human Development training grant to the 
Population Studies Center at the University of Michigan (T32HD007339). C.S. received funding through a National 
Science Foundation award at the Center for Information Technology Policy of Princeton University (IIS-1763642).

Biographies

Carsten Schwemmer is a postdoctoral researcher at GESIS - Leibnitz Institute for 

the Social Sciences, Computational Social Science Department. His research focuses on 

applying computational methods for ethnic minority and gender studies, digital media, 

Schwemmer et al. Page 16

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



political communication, and sociotechnical systems. He is particularly interested in 

methods related to natural language processing, image recognition, and data mining.

Carly Knight is an assistant professor of sociology at New York University. Her research 

applies computational methods to questions in economic and cultural sociology. She is 

particularly interested in leveraging text and images as data to understand how people and 

organizations make sense of market transitions.

Emily D. Bello-Pardo is pursuing a doctorate in political science at American University 

and is interested in American and comparative politics, specifically public opinion 

and political communication. Bello-Pardo’s dissertation studies the effect of online 

communication on political attitudes, focusing on both textual and visual misinformation.

Stan Oklobdzija is the research director of California YIMBY, where he conducts research 

on interest groups, housing policy, and state and local government. He holds a PhD in 

political science from the University of California, San Diego, and has published research on 

campaign finance and election law.

Martijn Schoonvelde is an assistant professor in the School of Politics and International 

Relations at University College Dublin and cofounder of the Connected_Politics Lab. His 

research interests include political communication, political rhetoric, and text as data.

Jeffrey W. Lockhart is a sociology PhD candidate at the University of Michigan, with 

previous graduate degrees in computer science and gender studies. His research interests 

include gender, sexuality, science, knowledge, and technology.

References

Anastasopoulos LJ, Badani Dhruvil, Lee Crystal, Ginosar Shiry, and Williams Jake. 2016. 
“Photographic Home Styles in Congress: A Computer Vision Approach.” arXiv. Retrieved October 
10, 2020. https://arxiv.org/abs/1611.09942.

Angwin Julia, Larsen Jeff, Mattu Surya, and Kirchner Lauren. 2016. “Machine Bias.” 
ProPublica. Available at: https://www.propublica.org/article/machine-bias-risk-assessments-in-
criminal-sentencing. Accessed October 13, 2020.

Becker Howard S. 1974. “Photography and Sociology.” Studies in Visual Communication 1(1):3–26.

Benjamin Ruha. 2019. Race after Technology: Abolitionist Tools for the New Jim Code. Medford, 
MA: Polity.

Bolukbasi Tolga, Chang Kai-Wei, Zou James Y., Saligrama Venkatesh, and Kalai Adam T.. 2016. 
“Man Is to Computer Programmer as Woman Is to Homemaker? Debiasing Word Embeddings.” 
Advances in Neural Information Processing Systems 29:4349–57.

Bosch Oriol J., Revilla Melanie, and Paura Ezequiel. 2019. “Answering Mobile Surveys with Images: 
An Exploration Using a Computer Vision API.” Social Science Computer Review 37(5):669–83.

Brader Ted. 2005. “Striking a Responsive Chord: How Political Ads Motivate and Persuade Voters by 
Appealing to Emotions.” American Journal of Political Science 49(2):388–405.

Buolamwini Joy, and Gebru Timnit. 2018. “Gender Shades: Intersectional Accuracy Disparities in 
Commercial Gender Classification.” Pp. 77–91 in Proceedings of the 1st Conference on Fairness, 
Accountability and Transparency. Cambridge, MA: MIT Press.

Casas Andreu, and Williams Nora Webb. 2019. “Images That Matter: Online Protests and the 
Mobilizing Role of Pictures.” Political Research Quarterly 72(2):360–75.

Schwemmer et al. Page 17

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1611.09942
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Chen Qiang, Huang Junshi, Feris Rogerio, Brown Lisa M., Dong Jian, and Yan Shuicheng. 2015. 
“Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing Attributes.” Pp. 
5315–24 in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
Piscataway, NJ: Institute of Electrical and Electronics Engineers.

Conway Michael, Pizzamiglio MT, and Mount Lauren. 1996. “Status, Communality, and Agency: 
Implications for Stereotypes of Gender and Other Groups.” Journal of Personality and Social 
Psychology 71(1):25–38. [PubMed: 8709000] 

Corbett-Davies Sam, Pierson Emma, Feller Avi, Goel Sharad, and Huq Aziz. 2017. “Algorithmic 
Decision Making and the Cost of Fairness.” Pp. 797–806 in Proceedings of the 23rd ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: 
Association for Computing Machinery.

Correll Shelley J., and Ridgeway Cecilia L.. 2003. “Expectation States Theory.” Pp. 29–51 in The 
Handbook of Social Psychology, edited by Delamater J. New York: Kluwer Academic/Plenum.

Cotter David, Hermsen Joan M., and Vanneman Reeve. 2011. “The End of the Gender Revolution? 
Gender Role Attitudes From 1977 to 2008.” American Journal of Sociology 117(1):259–89.

Cowgill Bo. 2018. “Bias and Productivity in Humans and Algorithms: Theory and Evidence from 
Resume Screening.” Working Paper. New York: Columbia Business School.

Crawford K, and Paglen T. 2019. “Excavating AI: The Politics of Images in Machine 
Learning Training Sets.” The AI Now Institute, NYU. Retrieved October 10, 2020. https://
www.excavating.ai.

Di Ronco Anna, and Allen-Robertson James. 2020. “Crime, Media, and Culture.” Retrieved October 
10, 2020. http://repository.essex.ac.uk/28271/3/Main%20Document.pdf.

Durepos Gabrielle, McKinlay Alan, and Taylor Scott. 2017. “Narrating Histories of Women at Work: 
Archives, Stories, and the Promise of Feminism.” Business History 59(8):1261–79.

Eagly Alice H., Wood Wendy, and Diekman Amanda B.. 2000. “Social Role Theory of Sex 
Differences and Similarities: A Current Appraisal.” Pp. 123–74 in The developmental social 
psychology of gender, edited by Eckes T and Trautner HM. Mahwah, NJ: Lawrence Erlbaum.

England Paula. 2010. “The Gender Revolution: Uneven and Stalled.” Gender & Society 24(2):149–66.

Eubanks Virginia. 2018. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the 
Poor. New York: St. Martin’s.

Ferree Myra M., and Hall Elaine J.. 1990. “Visual Images of American Society: Gender and Race in 
Introductory Sociology Textbooks.” Gender & Society 4(4):500–33.

Fiske Susan T., Cuddy Amy J., Glick Peter, and Xu Jun. 2002. “A Model of (Often Mixed) Stereotype 
Content: Competence and Warmth Respectively Follow From Perceived Status and Competition.” 
Journal of Personality and Social Psychology 82(6):878–902. [PubMed: 12051578] 

Fourcade M, and Healy Kieran. 2017. “Categories All the Way Down.” Historical Social Research 
42(1):286–96.

Friedman Batya, and Nissenbaum Helen. 1996. “Bias in Computer Systems.” ACM Transactions on 
Information Systems 14(3):330–47.

Garimella Kiran, and Eckles Dean. 2020. “Images and Misinformation in Political Groups: Evidence 
from WhatsApp in India.” arXiv. Retrieved October 10, 2020. https://arxiv.org/pdf/2005.09784.pdf

Gates Susan W., Perry Vanessa G., and Zorn Peter M.. 2002. “Automated Underwriting in Mortgage 
Lending: Good News for the Underserved?” Housing Policy Debate 13(2):369–91.

Geboers Marloes Annette, and Van de Wiele Chad Thomas. 2020. “Machine Vision and Social Media 
Images: Why Hashtags Matter.” Social Media and Society 6(2):2056305120928485.

Gelman Andrew, Mattson Greggor, and Simpson Daniel. 2018. “Gaydar and the Fallacy of 
Decontextualized Measurement.” Sociological Science 5:270–80.

Ghosh Shona. 2020. “Google AI Will No Longer Use Gender Labels Like ‘Woman’ or ‘Man’ 
on Images of People to Avoid Bias.” Business Insider. February 20, 2020. Retrieved 
October 10, 2020. https://www.businessinsider.com/google-cloud-vision-api-wont-tag-images-by-
gender-2020-2.

Goffman Erving. 1976. Gender Advertisements. New York: Macmillan International Higher 
Education.

Schwemmer et al. Page 18

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.excavating.ai
https://www.excavating.ai
http://repository.essex.ac.uk/28271/3/Main%20Document.pdf
https://arxiv.org/pdf/2005.09784.pdf
https://www.businessinsider.com/google-cloud-vision-api-wont-tag-images-by-gender-2020-2
https://www.businessinsider.com/google-cloud-vision-api-wont-tag-images-by-gender-2020-2


Grady Cheryl L., McIntosh Anthony R., Rajah MN, and Craik Fergus I.. 1998. “Neural Correlates of 
the Episodic Encoding of Pictures and Words.” Proceedings of the National Academy of Sciences 
95(5):2703–2708.

Greenfield Sam. 2018. “Picture What the Cloud Can Do: How the New York Times Is Using Google 
Cloud to Find Untold Stories in Millions of Archived Photos.” Google Cloud Blog. Retrieved 
October 10, 2020. https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-
times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos.

Hamidi Foad, Scheuerman Morgan K., and Branham Stacy M.. 2018. “Gender Recognition or Gender 
Reductionism.” Pp. 1–13 in Proceedings of the 2018 Chi Conference on Human Factors in 
Computing Systems. New York: Association for Computing Machinery.

HG Insights. 2020. “Companies Using Google Cloud Vision API, Market Share, Customers 
and Competitors.” Retrieved August 3, 2020. https://discovery.hgdata.com/product/google-cloud-
vision-api.

Hochschild Arlie Russell. 2012. The Managed Heart: Commercialization of Human Feeling. Berkeley: 
University of California Press.

Huff Connor, and Tingley Dustin. 2015. “‘Who Are These People?’ Evaluating the Demographic 
Characteristics and Political Preferences of MTurk Survey Respondents.” Research & Politics 
2(3).

Jensen Jörgen, Joss Andreas, and Lang Niklaus P.. 1999. “The Smile Line of Different Ethnic Groups 
in Relation to Age and Gender.” Acta Medicinae Dentium Helvetica 4:38–46.

Jia Sen, Lansdall-Welfare Thomas, and Cristianini Nello. 2015. “Measuring Gender Bias in News 
Images.” Pp. 893–98 in Proceedings of the 24th International Conference on World Wide Web. 
New York: Association for Computing Machinery.

Kay Matthew, Matuszek Cynthia, and Munson Sean A.. 2015. “Unequal Representation and Gender 
Stereotypes in Image Search Results for Occupations.” Pp. 3819–28 in Proceedings of the 33rd 
Annual ACM Conference on Human Factors in Computing Systems. New York: Association for 
Computing Machinery.

Keyes Os. 2018. “The Misgendering Machines: Trans/HCI Implications of Automatic Gender 
Recognition.” Pp. 1–22 in Proceedings of the ACM on Human-Computer Interaction 2 (CSCW). 
New York: Association for Computing Machinery.

Kleinberg Jon, Lakkaraju Himabindu, Leskovec Jure, Ludwig Jens, and Mullainathan Sendhil. 2018. 
“Human Decisions and Machine Predictions.” Quarterly Journal of Economics 133(1):237–93. 
[PubMed: 29755141] 

Kleinberg Jon, Ludwig Jens, Mullainathan Sendhil, and Rambachan Ashesh. 2018. “Algorithmic 
Fairness.” AEA Papers and Proceedings 108:22–27.

Kozlowski Austin C., Taddy Matt, and Evans James A.. 2019. “The Geometry of Culture: Analyzing 
the Meanings of Class through Word Embeddings.” American Sociological Review 84(5):905–49.

Lagos Danya. 2019. “Hearing Gender: Voice-Based Gender Classification Processes and Transgender 
Health Inequality.” American Sociological Review 84(5):801–27.

Lam Onyi, Broderick Brian, Wojcik Stefan, and Hughes Adam. 2018. “Gender and Jobs in Online 
Image Searches.” Pew Social Trends. Retrieved March 14, 2020. https://www.pewsocialtrends.org/
2018/12/17/gender-and-jobs-in-online-image-searches/.

Liébart Marie-Françoise, Fouque-Deruelle Caroline, Santini Alain, Dillier François-Laurent, Monnet-
Corti Virginie, Glise Jean-Marc, and Borghetti Alain. 2004. “Smile Line and Periodontium 
Visibility.” Perio: Periodontal Practice Today 1(1):17–25.

Lueptow Lloyd B., Garovich-Szabo Lori, and Lueptow Margaret B.. 2001. “Social Change and the 
Persistence of Sex Typing: 1974–1997.” Social Forces 80(1):1–36.

Michalski D 2017. “The Impact of Age-Related Variables on Facial Comparisons with Images of 
Children: Algorithm and Practitioner Performance.” Doctoral dissertation, University of Adelaide.

Nelson Laura K., Burk Derek, Knudsen Marcel, and McCall Leslie. 2018. “The Future of Coding.” 
Sociological Methods & Research 18(4):1–36.

Ngan Mei L., and Grother Patrick J.. 2014. “Face Recognition Vendor Test (FRVT)
—Performance of Automated Age Estimation Algorithms.” NIST Interagency/Internal 

Schwemmer et al. Page 19

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos
https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos
https://discovery.hgdata.com/product/google-cloud-vision-api
https://discovery.hgdata.com/product/google-cloud-vision-api
https://www.pewsocialtrends.org/2018/12/17/gender-and-jobs-in-online-image-searches/
https://www.pewsocialtrends.org/2018/12/17/gender-and-jobs-in-online-image-searches/


Report No. 7995. Available at: https://www.nist.gov/publications/face-recognition-vendor-test-
frvt-performance-automated-age-estimation-algorithms. Accessed October 13, 2020.

Noble Safiya Umoja. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. New 
York: New York University Press.

Perryman Nyssa, and Theiss Sandra. 2013. “‘Weather Girls’ on the Big Screen: Stereotypes, Sex 
Appeal, and Science.” Bulletin of the American Meteorological Society 95(3):347–56.

Pittman Matthew, and Sheehan Kim. 2016. “Amazon’s Mechanical Turk a Digital Sweatshop? 
Transparency and Accountability in Crowdsourced Online Research.” Journal of Media Ethics 
31(4):260–62.

Ridgeway Cecilia L. 2011. Framed by Gender. Oxford, UK: Oxford University Press.

Ridgeway Cecilia L. 2014. “Why Status Matters for Inequality.” American Sociological Review 
70(1):1–16.

Ridgeway Cecilia L., and Correll Shelley J.. 2004. “Unpacking the Gender System: A Theoretical 
Perspective on Gender Beliefs and Social Relations.” Gender & Society 18(4):510–31.

Rogers S 2014. “What Fuels a Tweet’s Engagement.” Twitter Media Blog. Retrieved October 10, 
2020. https://blog.twitter.com/en_us/a/2014/what-fuels-a-tweets-engagement.html.

Rossiter Margaret W. 1993. “The Matthew Matilda Effect in Science.” Social Studies of Science 
23(2):325–41.

Rudin Cynthia. 2019. “Stop Explaining Black Box Machine Learning Models for High Stakes 
Decisions and Use Interpretable Models Instead.” Nature Machine Intelligence 1(5):206–15.

Ruiz Christina. 2019. “Leading Online Database to Remove 600,000 Images after Art Project Reveals 
Its Racist Bias.” The Art Newspaper, September 23.

Sandvig Christian, Hamilton Kevin, Karahalios Karrie, and Langbort Cedric. 2016. “Automation, 
Algorithms, and Politics When the Algorithm Itself Is a Racist: Diagnosing Ethical Harm in the 
Basic Components of Software.” International Journal of Communication 10:19.

Schwemmer Carsten. 2019. “imgrec: Image Recognition.” R Package Version 0.1.0. Available at: 
https://cran.r-project.org/package=imgrec. Accessed October 13, 2020.

Seaver Nick. 2018. “What Should an Anthropology of Algorithms Do?” Cultural Anthropology 
33(3):375–85.

Shank Daniel B. 2016. “Using Crowdsourcing Websites for Sociological Research: The Case of 
Amazon Mechanical Turk.” American Sociologist 47(1):47–55.

Spence Janet T., and Buckner Camille E.. 2000. “Instrumental and Expressive Traits, Trait Stereotypes, 
and Sexist Attitudes: What Do They Signify?” Psychology of Women Quarterly 24:44–62.

Tak Elise, Correll Shelley J., and Soule Sarah A.. 2019. “Gender Inequality in Product Markets: When 
and How Status Beliefs Transfer to Products.” Social Forces 98(2):548–77.

United States Project. 2020. “GitHub Repository for Data on Congress Legislators.” Retrieved October 
10, 2020. https://github.com/unitedstates/congress-legislators.

Nora Webb Williams, Casas Andreu, and Wilkerson John D.. 2020. Images as Data for Social Science 
Research: An Introduction to Convolutional Neural Nets for Image Classification. Cambridge, UK: 
Cambridge University Press.

Webster Murray Jr., and Foschi Martha. 1988. “Overview of Status Generalization.” Pp. 1–20 in Status 
Generalization: New Theory and Research, edited by Webster M and Foschi M. Stanford, CA: 
Stanford University Press.

West Candace, and Zimmerman Don H.. 1987. “Doing Gender.” Gender and Society 1(2):125–51.

Whitehouse Andrew J., Maybery Murray T., and Durkin Kevin. 2006. “The Development of the 
Picture-Superiority Effect.” British Journal of Developmental Psychology 24(4):767–73.

Williamson Vanessa. 2016. “On the Ethics of Crowdsourced Research.” PS: Political Science & 
Politics 49(1):77–81.

Xi Nan, Ma Di, Liou Marcus, Steinert-Threlkeld Zachary C., Anastasopoulos Jason, and Joo 
Jungseock. 2019. “Understanding the Political Ideology of Legislators from Social Media 
Images.” arXiv. . Retrieved October 10, 2020. https://arxiv.org/abs/1907.09594.

Schwemmer et al. Page 20

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nist.gov/publications/face-recognition-vendor-test-frvt-performance-automated-age-estimation-algorithms
https://www.nist.gov/publications/face-recognition-vendor-test-frvt-performance-automated-age-estimation-algorithms
https://blog.twitter.com/en_us/a/2014/what-fuels-a-tweets-engagement.html
https://cran.r-project.org/package=imgrec
https://github.com/unitedstates/congress-legislators
https://arxiv.org/abs/1907.09594


Figure 1. 
Example of the information that Google’s Cloud Vision platform can return when asked to 

label a portrait of former U.S. president Barack H. Obama.
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Figure 2. 
Relationship between Google Cloud Vision (GCV) confidence and human agreement. 

Numbers in parentheses denote observations for corresponding confidence score thresholds.
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Figure 3. 
Accuracy of person detection of Google Cloud Vision (GCV). Percentages shown were 

determined by comparing gender of members of Congress depicted in uniform data 

(professional photographs) with annotations from the object recognition software.
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Figure 4. 
Accuracy of person detection of Google Cloud Vision (GCV). Percentages shown were 

determined by comparing human agreement about the presence of men or women in Twitter 

images with annotations from the object recognition software.
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Figure 5. 
Two images of U.S. members of Congress with their corresponding labels as assigned by 

Google Cloud Vision. On the left is Steve Daines, a Republican senator from Montana. 

On the right is Lucille Roybal-Allard, a Democratic representative from California’s 40th 

congressional district. Percentages next to labels denote confidence scores of Google Cloud 

Vision.
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Figure 6. 
Google Cloud Vision labels applied to control dataset (professional photos). The 25 most 

gendered labels for men and women were identified with χ2 tests (p ≤ .01). Labels are 

sorted by absolute frequencies. Bars denote the percentage of images for a certain label by 

gender.

Schwemmer et al. Page 26

Socius. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Predicted labels counts for images of men and women. Results are based on the Wikipedia 

photographs of U.S. members of Congress and negative binomial regressions, controlling for 

party and ethnicity. Circles describe point estimates, and bars describe 95 percent confidence 

intervals.
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Figure 8. 
Google Cloud Vision labels applied to found data set (Twitter images). The 25 most 

gendered labels for men and women were identified using χ2 tests (p ≤ .01). Labels are 

sorted by absolute frequencies. Bars denote the percentage of images for a certain label by 

gender.
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Figure 9. 
Amazon Rekognition labels applied to professional photographs of members of Congress. 

The 25 most gendered labels for men and women were identified with χ2 tests (p ≤ .01). 

Bars denote the percentage of images for a certain label by gender.
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Figure 10. 
Microsoft Azure Computer Vision labels applied to professional photographs of members of 

Congress. The 25 most gendered labels for men and women were identified with χ2 tests (p 
≤ .01). Bars denote the percentage of images for a certain label by gender.
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