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SUMMARY
Polygenic risk scores (PRSs) derived from genotype data and family history (FH) of disease provide valuable
information for predicting disease risk, but PRSs perform poorly when applied to diverse populations. Here,
we explore methods for combining both types of information (PRS-FH) in UK Biobank data. PRSs were
trained using all British individuals (n = 409,000), and target samples consisted of unrelated non-British Eu-
ropeans (n = 42,000), South Asians (n = 7,000), or Africans (n = 7,000). We evaluated PRS, FH, and PRS-FH
using liability-scale R2, primarily focusing on 3 well-powered diseases (type 2 diabetes, hypertension, and
depression). PRS attained average predictionR2s of 5.8%, 4.0%, and 0.53% in non-British Europeans, South
Asians, and Africans, confirming poor cross-population transferability. In contrast, PRS-FH attained average
prediction R2s of 13%, 12%, and 10%, respectively, representing a large improvement in Europeans and an
extremely large improvement in Africans. In conclusion, including family history improves the accuracy of
polygenic risk scores, particularly in diverse populations.
INTRODUCTION

Polygenic risk scores (PRSs) derived from genetic data can pro-

vide information for predicting disease risk, enhancing prospects

for clinical utility.1,2 However, a limitation of PRSmethods is their

poor cross-population transferability.3–7 Family history (FH) of

disease can provide complementary information about disease

risk,8–11 consistent with the rich history of leveraging data from

ungenotyped but phenotyped relatives in analyses of quantita-

tive traits in livestock.11–14 In particular, FH has the potential to

alleviate the poor cross-population transferability suffered by

PRS. Combining PRS and FH information is an appealing para-

digm for predicting disease risk, but it is currently unclear how

to optimally combine these two sources of information. Previous

studies that combined PRS and FH information restricted the

PRS component to genome-wide significant loci,9,15,16 instead

of leveraging genome-wide polygenic signals; did not differen-

tially incorporate FH for each type of relative,9,15–19 to allow for

differential environmental effects20 (in particular, So et al.9 relies

on external narrow-sense heritability estimates); and did not

model contributions of PRS and FH that vary as a function of

the target population,9,15–17 to optimize cross-population trans-

ferability. In addition, So et al.9 did not incorporate covariates;

the study is not applicable to UK Biobank data, in which sibling

history is reported as a binary variable (at least one sibling has

the disease), rather than the number of affected siblings; and re-

lies on external data to estimate model parameters. Other

studies only considered PRS and FH information separately.10,21
This is an open access article under the CC BY-N
Here, we develop a framework for predicting individuals’ risk of

disease conditional on both their PRS and their FH (PRS-FH), us-

ing either a logistic model22 or a liability threshold model.23 We

show via simulations and application to complex diseases from

the UK Biobank24 that incorporating FH using PRS-FH improves

the accuracy of polygenic risk scores, with a particularly large

improvement in diverse populations. The logistic model outper-

forms the liability threshold model in analyses with covariates,

and we thus recommend the use of the logistic model.

RESULTS

Overview of methods
We considered two PRS-FH methods based on a logistic model

(PRS-FHlog) and a liability threshold model (PRS-FHliab), respec-

tively (see STARMethods). Both methods require a large training

sample to estimate SNP effect sizes for the PRS (in this study, we

use European training data), and a small additional training sam-

ple (e.g., Neff R 500; see STAR Methods) from the target popu-

lation to fit PRS-FH model parameters, which are specific to the

target population. Both PRS-FHlog and PRS-FHliab allow for sib-

ling history to be reported as the presence or absence of at least

one affected sibling (together with the total number of siblings),

as in the UK Biobank. Both PRS-FH methods can be extended

to incorporate covariates. We have publicly released open-

source software implementing both methods as well as model

parameters (specific to each target population) for bothmethods

(see data and code availability).
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Figure 1. Overview of PRS-FH methods

We list the 3 steps of PRS-FHlog and PRS-FHliab. Although the PRS-FHlog model coefficients and PRS-FHliab prior covariance shown here are the same for each

parent, they may differ between mother and father. In addition, both methods can incorporate sibling history.
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The PRS-FHlog method relies on a logistic model and consists

of 3 main steps (Figure 1): (1) compute PRS in all target popula-

tion individuals by applying standard methods to training data,

(2) use the training individuals from the target population to esti-

mate logistic model coefficients, and (3) for each target individ-

ual, compute their predicted risk of disease, conditional on their

PRS and the disease status of their first-degree relatives. In step

1, we apply BOLT-LMM25,26 to training data to jointly fit SNP ef-

fect sizes under a non-infinitesimal model, and compute PRS in

target population individuals using these SNP effect sizes. In

step 2, we estimate the contributions of the PRS and the disease

status of first-degree relatives (mother, father, siblings; we allow

different coefficients for each type of relative, to allow for differ-

ential environmental effects20) to the log-odds of disease, mak-
2 Cell Genomics 2, 100152, July 13, 2022
ing a strong assumption that the log-odds of disease depends

linearly on the PRS and disease status of first-degree relatives

(see Discussion). These parameters are specific to the target

population, requiring an extra layer of training data from the

target population; in this study, we use 10-fold cross-validation

in the target population. In step 3, we predict the risk of disease

for each target individual as the log-odds of disease based on

the PRS and disease status of first-degree relatives.

The PRS-FHliab method relies on a liability threshold model23

and consists of 3 main steps (Figure 1): (1) compute PRS in all

target population individuals by applying standard methods to

training data; (2) use the training individuals from the target

population to estimate liability threshold model parameters,

and (3) for each target individual, compute their predicted
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Figure 2. PRS-FHlog and PRS-FHliab increase

prediction accuracy in simulations

We report mean liability-scale R2 across 10 simu-

lations for PRS alone, FH alone (FHlog and FHliab),

and PRS-FH methods (PRS-FHlog and PRS-FHliab)

for different values of disease prevalence. Error

bars denote standard errors. Numerical results are

reported in Table S2.
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risk of disease, conditional on their PRS and the disease sta-

tus of their first-degree relatives. In step 1, we use BOLT-

LMM25,26 (see above). In step 2, we estimate the variance/

covariance matrix for a target individual’s total liability, their

PRS, and the total liabilities of their first-degree relatives (we

allow different covariances for each type of relative, analogous

to above). As above, these target population-specific parame-

ters require an extra layer of training data from the target pop-

ulation. In step 3, we predict the risk of disease for each target

individual as the posterior probability of disease based on the

PRS and disease status of first-degree relatives. The preva-

lence of disease (determined by the liability threshold) among

target individuals may vary as a function of number of siblings,

consistent with empirical data. The PRS-FHliab method is

conceptually related to the method of So et al.,9 but key differ-

ences include the incorporation of genome-wide polygenic

risk scores, the incorporation of different covariances for

each type of relative, the way in which model parameters

are estimated, the incorporation of target population-specific

model parameters, and the way in which covariates are

incorporated.

We compare PRS-FHlog and PRS-FHliab to PRS alone as well

as a predictor based on FH alone. The PRSmethod (and the PRS

used within both PRS-FH methods) can use any PRS algorithm;

in this study, we use BOLT-LMM, which has been shown to

attain high polygenic prediction accuracy in the UKBiobank.25,26

The FH predictor can be constructed using FHlog or FHliab. Under

a logistic model, the disease status of relatives linearly affects

the log-odds of disease for an individual. Under a liability

threshold model, the posterior risk of disease is computed con-

ditional on FH alone. We evaluate all of the methods using liabil-

ity-scale R2 (Lee et al.27). We compute the standard error of lia-

bility-scale R2, and associated p values, via a jackknife across

individuals. Further details of all of the methods are provided in

the STAR Methods section.
Simulations
We simulated genotypes at 100,000 un-

linked SNPs for 400,000 unrelated PRS

training samples and 40,000 unrelated

target samples from the same population.

We simulated case-control status for the

PRS training samples and case-control

status plus FH (parental history for both

parents) for the target samples (we did

not include sibling history in these simula-

tions); we simulated genotypes for both

parents, used these to simulate genotypes

for target samples (offspring), and simu-
lated case-control status for both parents and target samples

using a liability thresholdmodel. PRS training samples and target

samples were not ascertained for case-control status. Our

default parameter settings involved 10,000 causal SNPs, total li-

ability-scale heritability (h2) equal to 50%, liability-scale SNP her-

itability (h2g) equal to 25%, and disease prevalence (K) equal to

1% (very low prevalence), 5% (low prevalence), or 25% (high

prevalence) (implying liability threshold [T] equal to 2.33, 1.64,

or 0.67 and total observed-scale heritability equal to 4%, 11%,

or 27%, respectively), with the same prevalence for parents

and target samples; other parameter settings were also

explored. Further details of the simulation framework are pro-

vided in the STAR Methods section and Table S1. We note

that simulations using real linkage disequilibrium (LD) patterns

are essential for methods affected by LD between SNPs, and

that LD can affect the performance of PRS methods;1 however,

PRS-FHlog and PRS-FHliab are not otherwise affected by LD be-

tween SNPs, as no genotype data are used except for

computing the PRS. We further note that simulations with LD us-

ing a subset of individuals from UK Biobank would not be

feasible, as simulations of FH require genotypes of both target

samples and relatives (to simulate the case-control status of

both target samples and relatives), but genotypes of relatives

are not available for (nearly all) UK Biobank samples.

We assessed the prediction accuracy of PRS, FHlog, FHliab,

PRS-FHlog, and PRS-FHliab by computing liability-scale R2 (Lee

et al.27). Results are reported in Figure 2 and Table S2. PRS at-

tained higher accuracy at higher prevalence, as expected due

to higher observed-scale SNP-heritability (as PRS training sam-

ples were not ascertained for case-control status). FHlog and

FHliab performed similarly, and also attained higher accuracy at

higher prevalence; at lower prevalence, most individuals have

no affected parents, allowing little discrimination of risk based

on FH. PRS and FH methods (FHlog and FHliab) performed simi-

larly at low (5%) prevalence, but PRS outperformed FH at high
Cell Genomics 2, 100152, July 13, 2022 3



Table 1. List of 10 UK Biobank diseases analyzed

Diseases British h2
g British N British K Non-B. Eur. N Non-B. Eur. K S.A. N S.A. K Afr. N Afr. K

Lung cancer 0.096 408,903 0.006 41,842 0.006 7,048 0.002 7,087 0.003

Bowel cancer 0.160 408,903 0.013 41,842 0.011 7,048 0.005 7,087 0.009

Stroke 0.090 408,903 0.024 41,842 0.020 7,048 0.025 7,087 0.025

COPD 0.172 408,903 0.035 41,842 0.035 7,048 0.022 7,087 0.013

Prostate cancer 0.296 187,889 0.038 18,192 0.032 3,811 0.014 3,096 0.050

T2D 0.372 407,565 0.042 41,642 0.040 6,881 0.155 6,961 0.098

Breast cancer 0.204 221,014 0.061 23,650 0.061 3,237 0.036 3,991 0.028

Depression 0.116 408,903 0.073 41,842 0.075 7,048 0.054 7,087 0.044

CAD 0.206 408,903 0.085 41,842 0.077 7,048 0.140 7,087 0.063

HTN 0.311 408,903 0.323 41,842 0.293 7,048 0.377 7,087 0.425

For each disease, we report the SNP-heritability (h2g) in UK Biobank British training data and the number of samples (N) and disease prevalence (K) in

each UK Biobank training (British) and target (Non-British European, South Asian, or African) population. We note that the sample size and prevalence

in British training data includes information from related individuals, but SNP-heritability was estimated using unrelated British individuals. Diseases are

listed in order of disease prevalence in British training data. Our primary focus was on 3 well-powered diseases (type 2 diabetes, depression, and hy-

pertension; denoted in bold) with (liability-scale) prediction R2 > 0.05 for PRS and/or FH in each target population (no additional criteria were applied).

Non-B. Eur., Non-British European; S.A., South Asian; Afr., African; COPD, chronic obstructive pulmonary disease, defined as chronic bronchitis/

emphysema; T2D, type 2 diabetes; CAD, coronary artery disease; HTN, hypertension.
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(25%) prevalence, whichwas the opposite of the results reported

in Do et al.;10 this difference can be explained by the fact that we

analyzed unascertained case-control data.

PRS-FHlog and PRS-FHliab performed similarly, and outper-

formed both PRS and FH methods at all prevalence values.

Given that PRS-FHliab makes assumptions that match the gener-

ative model used in these simulations, the strong performance of

PRS-FHlog is supportive of the flexibility of the logistic model,

even though it imposes a strong linearity assumption (on the

log-odds scale). Differences in prediction R2 between PRS-

FHlog (respectively PRS-FHliab) versus PRS were smaller than

the prediction R2 achieved by FHlog (respectively FHliab), due to

positive correlations between PRS and FH predictions (average

correlation = 0.03, 0.08, and 0.18 at very low, low, and high prev-

alence, respectively). Due to the poor performance (liability-

scale R2 < 0.05) of all methods at very low prevalence, we

restricted all further analyses to low or high prevalence.

We performed five secondary analyses. First, we assessed the

calibration of each method (PRS, FHlog, FHliab, PRS-FHlog, and

PRS-FHliab) by regressing observed disease status on the pre-

dictor (a slope of 1 implies correct calibration28). All of the

methods were well calibrated in both the low and high preva-

lence scenarios (Table S3). Second, we increased the parental

prevalence to twice the offspring prevalence. In these simula-

tions, the predictive accuracy for all of themethods that incorpo-

rate FH (FHlog, FHliab, PRS-FHlog, and PRS-FHliab) increased

(Table S4). Third, we introduced environmental correlation,

considering two scenarios in which the offspring had either the

same or different environmental correlations with the mother

and father. In both scenarios, the predictive accuracy for

methods that incorporate FH (FHlog, FHliab, PRS-FHlog, and

PRS-FHliab) increased (Table S5). Fourth, we decreased or

increased the heritability. Prediction accuracies increased with

increasing heritability, but PRS-FH attained similar improve-

ments (Table S6). Fifth, we decreased or increased the polyge-

nicity (number of causal SNPs) while keeping heritability con-
4 Cell Genomics 2, 100152, July 13, 2022
stant. Prediction accuracies decreased with increasing

polygenicity for methods incorporating a PRS predictor, but

again, PRS-FH attained similar improvements (Table S7).

We conclude that, in these simulations, incorporating FH

(PRS-FHlog and PRS-FHliab) increases the prediction accuracy

as compared to PRS alone. We further conclude that PRS-

FHlog and PRS-FHliab generally perform similarly in these simula-

tions. We note that the generative model in all of our simulations

was the same as the liability threshold model that FHliab and

PRS-FHliab use for prediction, and thus these simulations should

be viewed as a best-case scenario for FHliab and PRS-FHliab.

Analysis of complex diseases from the UK Biobank
We analyzed data for 10 complex diseases from the UK

Biobank,24 consisting of genotype data, case-control status,

and FH information for parents and siblings (Table 1). PRS

were trained using all British individuals (N = 409,000), applying

BOLT-LMM to autosomal genotyped SNPs with missingness

<10% and minor allele frequency (MAF) >0.1% (672,288

SNPs). Target samples consisted of unrelated non-British Euro-

peans (N = 42,000), South Asians (N = 7,000), or Africans (N =

7,000); target samples were unrelated to training samples and

to one another (see STAR Methods). Our primary focus was on

three well-powered diseases (type 2 diabetes [T2D], depression,

and hypertension [HTN]). These 3 diseases were the only dis-

eases of the 10 considered with (liability-scale) prediction

R2 > 0.05 for PRS and/or FH methods in each target population

(no additional criteria were applied); 2 of these diseases (T2D,

HTN) have higher prevalence in South Asians and Africans (Ta-

ble 1). We report averages across the three well-powered dis-

eases.We also report results for each of the 10 diseases, defined

as the set of diseases in the UK Biobank for which (1) FH

(parental and sibling history) was available for most target sam-

ples and (2) prediction R2 was statistically significant (after Bon-

ferroni correction) for PRS and/or FH methods in the largest

target population (non-British Europeans; Table S8).
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We assessed the prediction accuracy of PRS, FHlog, FHliab,

PRS-FHlog, and PRS-FHliab. Results are reported in Figure 3A

and Table S9. Across the three well-powered diseases, PRS at-

tained average prediction R2 of 5.8%, 4.0%, and 0.53% in non-

British Europeans, South Asians, andAfricans, respectively, con-

firmingpoor cross-population transferability.3–7 In contrast, FHlog

attained similar prediction R2 across populations: 8.0%, 8.6%,

and 9.6%, with similar results for FHliab. Notably, PRS-FHlog at-

tained average predictionR2 of 13%, 12%, and 10%,with similar

results for PRS-FHliab. Thus, PRS-FHlog and PRS-FHliab attained

a large relative improvement versus PRS in Europeans (consis-

tent with simulations) and an extremely large relative improve-

ment versus PRS in Africans. For each disease and each target

population, the difference between PRS-FHlog (or PRS-FHliab)

and PRS was statistically significant (p < 2 3 10�6). Differences

in prediction R2 between PRS-FHlog (or PRS-FHliab) and PRS

were generally slightly smaller than the prediction R2 attained

byFH, due to slight correlations betweenPRSandFHpredictions

(average = 0.07 across the 3 well-powered diseases and 0.05

across all 10 diseases; the correlations varied across the 3 pop-

ulations andwas lowest in Africans, likely due to the less accurate

PRS; Figure S1; Table S10). Parameters estimated by PRS-FHlog

and PRS-FHliab are reported in Table S11. Across the three well-

powered diseases, sibling history was assigned a higher weight

than parental history regardless of target population (likely due

to differential shared environmental effects20), whereas the

weight assigned to PRS depended on the target population.

More broadly, PRS-FHlog (and PRS-FHliab) consistently at-

tained higher prediction R2 than PRS across all 10 diseases

(Table S9). The prediction accuracy of PRS increased as a func-

tion of observed-scale SNP-heritability (which is partly deter-

mined by prevalence) (Figure S2), and the prediction accuracy

of FH increased as a function of both the covariance between li-

abilities of target samples and first-degree relatives (which is

largely determined by total narrow-sense heritability) and the

prevalence in first-degree relatives (Figure S2; Tables S4–S6).

The correlations between PRS and FH predictions were low for

all of the diseases (�0.02 to 0.13), but increased as a function

of prevalence and SNP-heritability (Figure S1; Table S10).

We performed eight secondary analyses. First, we assessed

the calibration of each method (by regressing observed disease

status on the predictor; a slope of 1 implies correct calibration28).

We determined that PRS-FHlog attained better calibration than

PRS-FHliab (average regression slope of 0.93 versus 0.60 across

3 well-powered diseases; Table S12). Second, we assessed the

performance of a simplified logistic regression-based method

that used a single binary independent variable for overall

(parental and sibling) FH. We determined that PRS-FHlog at-

tained significantly higher prediction accuracy than this method

(average absolute change in prediction R2: 2.0%, 3.0%, and

3.7% in non-British Europeans, South Asians, and Africans,

respectively, across 3 well-powered diseases; Table S13). This

result demonstrates the advantage of incorporating each type

of relative separately (mother, father, or sibling, as well as the

number of siblings); we specifically note the difference in PRS-

FH model parameters for maternal, paternal, and sibling history

(e.g., the PRS-FHlog coefficient for sibling history is roughly dou-

ble that of parental history for T2D for all three target populations;
Table S11). Third, we compared the performance of both PRS-

FH methods when incorporating parental history only versus

both parental and sibling history. Incorporating both parental

and sibling history attained moderately higher predictive accu-

racy (Table S14). Fourth, we decreased the number of training

samples from the target population used to fit PRS-FHmodel pa-

rameters below its default level (which is based on 10-fold cross-

validation; see overview of methods in Figure 1). For both PRS-

FHlog and PRS-FHliab, the number of training samples from the

target population had little impact on predictive accuracy for

values of Neff R 500 (Figure S3). Fifth, we assessed the potential

benefit to FHlog and PRS-FHlog of including in the logistic model

an interaction term between number of siblings and sibling his-

tory. We determined that there was no significant benefit

(Table S15). Sixth, we assessed whether FHlog and PRS-FHlog

would benefit from incorporating the total number of siblings of

each target individual using indicator variables in addition to a

continuous variable. We determined that disease prevalence

empirically varied non-linearly as a function of the number of sib-

lings (which is known to correlate with socioeconomic factors)

(Table S16), and that accounting for this generally produced

non-significant improvements (Table S17). Seventh, we as-

sessed whether FHliab and PRS-FHliab benefit from allowing the

prevalence of disease (determined by the liability threshold)

among target individuals to vary as a function of the number of

siblings. We determined that FHliab and PRS-FHliab attained

slightly higher prediction accuracy than corresponding methods

that do not allow the prevalence of disease to vary as a function

of the number of siblings (Table S18); we elected to allow the pri-

mary FHliab and PRS-FHliab methods to benefit from this informa-

tion as a conservative choice, as they were not ultimately the

methods of choice (see below). Eighth, for each of the 5

methods, we evaluated the prevalence of disease in each

percentile of predicted disease risk.2 We confirmed that PRS-

FHlog and PRS-FHliab also performed best under this metric

(Figures S4–S6).

We conclude that incorporating FH (PRS-FHlog and PRS-

FHliab) increases prediction accuracy as compared to PRS alone,

particularly in Africans. We further conclude that PRS-FHlog and

PRS-FHliab generally perform similarly in analyses without

covariates.

Incorporation of covariates in UK Biobank analyses
We repeated the analyses of 10 complex diseases from the UK

Biobank by incorporating covariates into each method: PRS+,

FH+
log, FH+

liab, PRS-FH+
log, and PRS-FH+

liab; the covariates

included age, sex, BMI and 20 principal components (see

STAR Methods). PRS+ incorporates covariates by training a lo-

gistic model with PRS and all of the covariates. FH+
log and

PRS-FH+
log incorporate covariates by including them as inde-

pendent variables in the logistic model. FH+
liab and PRS-FH+

liab

incorporate covariates by estimating a disease threshold for

the liability (exclusive of covariates) that varies based on the co-

variates (see STARMethods). We evaluated the predictive accu-

racy of eachmethod using difference in liability-scaleR2 (defined

as liability-scale R2 minus the liability-scale R2 attained using co-

variates alone). As above, our primary focus was on the three

well-powered diseases (T2D, depression, and HTN); the impact
Cell Genomics 2, 100152, July 13, 2022 5
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Figure 3. PRS-FH increases prediction accuracy in analyses of UK Biobank diseases

(A) Analyses without covariates. We report liability-scale R2 for PRS alone, FH alone (FHlog and FHliab), and PRS-FH methods (PRS-FHlog and PRS-FHliab) for

different diseases and target populations.

(B) Analyses with covariates.We report difference in liability-scaleR2 (see text) for the correspondingmethods incorporating covariates (PRS+, FH+, PRS-FH+), for

different diseases and target populations. Error bars denote standard errors; error bars are jittered for PRS-FH (left) and FH (right) for visualization purposes. We

focus on three well-powered diseases with R2 > 0.05 for PRS and/or FH in each target population (no additional criteria were applied). For depression in Africans,

PRS-FHlog performs slightly worse than FHlog (difference in R2 of �0.001 [p = 0.003 for difference] in analyses without covariates and difference in R2 of �0.002

[p = 0.13 for difference] in analyses with covariates). Numerical results are reported in Tables S9 and S20.
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of covariates on these diseases was substantial, as covariates

alone attained average prediction R2 of 20%, 17%, and 15% in

non-British Europeans, South Asians, and Africans, respectively,

with most of the prediction R2 contributed by age and BMI

(Table S19). For example, for T2D, there was a large contribution

of BMI (prediction R2 ranging from 4.5% in South Asians and Af-

ricans to 17% in non-British Europeans, with large differences

across populations analogous to PRS); for HTN, there was a

large contribution of age (prediction R2 ranging from 13% to

21% in the 3 populations, with relatively small differences across

populations in contrast to PRS); and for depression, the overall

contribution of covariates was limited (prediction R2 ranging

from 2.0% to 3.3% in the 3 populations).

We assessed the prediction accuracy of PRS+, FH+
log, FH

+
liab,

PRS-FH+
log, and PRS-FH+

liab. Results are reported in Figure 3B

and Table S20. Across the 3 well-powered diseases, PRS+ at-

tained average prediction accuracy (difference in liability-scale

R2) of 7.4%, 4.7%, and 0.62% in non-British Europeans, South

Asians, and Africans, respectively, again reflecting poor cross-
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population transferability.3–7 In contrast, FH+
log attained similar

prediction accuracy across populations: 8.8%, 8.0%, and 10%

in the 3 populations; results were also similar across populations

for FH+
liab. Notably, PRS-FH

+
log outperformed PRS-FH+

liab, with

prediction accuracies of 15%, 12%, and 11% for PRS-FH+
log in

the 3 populations versus 13%, 9.1%, and 8.0% for PRS-FH+
liab

in the 3 populations (most differences were statistically signifi-

cant: p = 0.0001–0.0007 for T2D, p = 0.05–0.6 for depression,

p = 6 3 10�28–5310�9 for HTN); similarly, FH+
log outperformed

FH+
liab. We note that PRS-FH+

log and FH+
log model the

effects of FH and covariates jointly, whereas PRS-FH+
liab and

FH+
liab model the effects of covariates marginally (see STAR

Methods); as both FN and PRS are correlated with covariates

(Table S21), this may explain the better performance of PRS-

FH+
log and FH+

log. The differences in prediction R2 attained by

PRS+, FH+
log, FH+

liab, PRS-FH+
log, and PRS-FH+

liab versus a

prediction model based on covariates alone were generally

similar to the absolute predictive R2 attained by PRS, FHlog,

FHliab, PRS-FHlog, and PRS-FHliab, with limited exceptions
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(Tables S9–S20). Surprisingly, the relative prediction accuracy of

PRS+ was sometimes larger than the prediction accuracy of PRS

alone, which is mathematically possible under a logistic model.

The pairwise correlations between PRS, FHlog, FHliab, and a pre-

diction based on covariates alone ranged from �0.06 to 0.16

(Table S21).

We performed three secondary analyses. First, we assessed

the calibration of each method (by regressing observed disease

status on the predictor; a slope of 1 implies correct calibration28).

We determined that PRS-FH+
log attained better calibration than

PRS-FH+
liab (average regression slope of 0.92 versus 0.68

across 3 well-powered diseases; Table S22). Second, we as-

sessed the performance of a simplified logistic regression-based

method (incorporating covariates) that used a single binary inde-

pendent variable for overall (parental and sibling) FH. We deter-

mined that PRS-FH+
log attained significantly higher prediction

accuracy than this method (average absolute change in predic-

tion R2: 1.6%, 1.3%, and 3.2% in non-British Europeans, South

Asians, and Africans, respectively, across 3 well-powered dis-

eases; Table S23, analogous to Table S13); again, this result

demonstrates the advantage of incorporating each type of rela-

tive separately. Third, we compared the performance of both

PRS-FH+ methods when incorporating parental history only

versus both parental and sibling history. Incorporating both

parental and sibling disease history attained moderately higher

predictive accuracy for PRS-FH+
log, but results were mixed for

PRS-FH+
liab (Table S24).

We conclude that when covariates are included in the predic-

tions, incorporating FH (PRS-FH+
log and PRS-FH+

liab) continues

to increase prediction accuracy as compared to PRS+ alone,

particularly in Africans.We further conclude that PRS-FH+
log out-

performs PRS-FH+
liab in analyses with covariates.

DISCUSSION

Summary of findings
We have exploredmethods for combining PRS-FH to predict the

risk of disease in diverse populations, using a logistic model or a

liability threshold model. We determined that PRS-FH increases

prediction accuracy as compared to PRS alone across a broad

set of simulations and empirical analyses, including analyses

incorporating covariates. Although PRS and FH in principle

contain overlapping information (PRS reflects genetic risk, and

FH reflects both genetic and environmental factors), correlations

between PRS and FH predictors were low (averaging approxi-

mately 0.05), implying that they provide orthogonal information;

in particular, FH includes an environmental component. (We

note that the correlations between PRS and FH varied across

the three populations; the environmental component of FH

may vary across populations, but in practice FH attained similar

prediction accuracy across the three populations.) We recom-

mend the use of the logistic model, which outperformed the lia-

bility threshold model in analyses with covariates (however, we

note that the liability threshold model has proven valuable in

other settings23,29–33). The logistic model, unlike the liability

threshold model, models the effects of PRS, FH, and covariates

jointly; as both FH and PRS are correlated with covariates, this

joint modeling may explain the better performance of the logistic
model in analyses with covariates. The increase in prediction ac-

curacy attained by PRS-FH was particularly large in non-Euro-

pean populations (e.g., Africans), suggesting that PRS-FH will

be a method of choice for closing the well-documented gap in

disease risk prediction accuracy in diverse populations.3–7

More broadly, PRS-FH increases prediction accuracy in all of

the populations analyzed, enhancing prospects for clinical

utility.2,34 Our findings emphasize the value of collecting and

incorporating FH data, as well as data on clinical covariates,

whenever it is practical to do so.

PRS-FH incorporates each type of relative separately
The main methodological advance of PRS-FH over previous ap-

proaches for combining PRS and FH information9,15–19 is how it

incorporates different types of relatives. Previous methods

incorporate each type of relative equally, but PRS-FH incorpo-

rates each type of relative separately to allow for differential envi-

ronmental effects.20 We have shown that PRS-FH outperforms

an analogous method that uses a single binary independent var-

iable for overall (parental and sibling) FH, both in analyses

without covariates (Table S13) and in analyses with covariates

(Table S23); these results demonstrate the advantage of incor-

porating each type of relative separately. In particular, a recent

study that used a single binary independent variable for overall

(parental and sibling) FH reported no significant improvement

from incorporating FH in prostate cancer analyses of UK Bio-

bank Europeans35 (area under the curve [AUC] = 0.836 versus

0.833; analogous to Table S13), whereas PRS-FH+
log attained

a significant improvement from incorporating FH in prostate can-

cer analyses of UK Biobank Europeans (R2 = 0.100 versus 0.069,

p = 0.029 in analyses without covariates, Table S9; p = 0.0035 in

analyses with covariates, Table S20). We specifically note the

difference in PRS-FH model parameters for maternal, paternal,

and sibling history (e.g., the PRS-FHlog coefficient for sibling his-

tory is roughly double that of parental history for T2D for all three

target populations; Table S11).

Comparison to previous studies
Distinct from methodological advances, our study differs from

previous studies in several ways. First, our application of PRS-

FH leverages genome-wide polygenic signals in the PRS

component (increasing predictive value1), whereas some previ-

ous studies9,15,16 restricted the PRS component to genome-

wide significant loci. Second, PRS-FH optimizes the contribu-

tions of PRS and FH as a function of the target population

(increasing prediction accuracy in diverse populations), whereas

previous studies did not allow these contributions to vary as a

function of the target population9 or did not consider separate

training and target samples;15–19 in particular, PRS-FH differs

from So et al.9 in that model parameters are estimated within

the target population of interest, rather than relying on external

data sources. Third, PRS-FHmodels the effects of FH and cova-

riates jointly, in which some previous studies either did not incor-

porate covariates9 or included covariates but did not model FH

and covariates jointly16 (likewise, the approach for incorporating

covariates discussed as a future direction in So et al.9 did not

model FH and covariates jointly). Fourth, PRS-FH leverages

the information available in UK Biobank data, in which sibling
Cell Genomics 2, 100152, July 13, 2022 7
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history is reported as a binary variable (at least one sibling has

the disease), whereas some previous studies9 cannot be

extended to this type of data as the disease status of each sibling

is required. We further note that many studies15–19 analyzed only

one disease as the primary outcome (and did not incorporate

each type of relative separately; see above).

Limitations of the study
Although PRS-FH increases prediction accuracy, it has several

limitations. First, PRS-FH requires an additional layer of training

data from the target population to optimize the contributions of

PRS and FH to the target population. However, this requires

only a small number of training samples from the target popula-

tion (e.g. Neff R 500; see Figure S3), and the additional training

step can be omitted for the diseases and target populations

that we have analyzed here (for which these model parameters

are reported in Table S11). Second, the logistic model makes a

strong assumption that the log-odds of disease depend linearly

on the PRS and disease status of first-degree relatives—an

assumption that lacks a strong theoretical justification. However,

simulations and empirical results are strongly supportive of the

practical ramifications of this assumption. Third, FH may reflect

a different underlying genetic architecture than case-control sta-

tus, for example, due to differences in the etiology of early-onset

versus late-onset disease or differences in diagnostic criteria

over time; however, we previously reported very high genetic

correlations between case-control and FH phenotypes in the

UK Biobank.33 Fourth, self-reported FH information may be

missing or inaccurate (e.g., due to recall bias). However, the

rate of missing data is fairly low (88%of individuals in the UKBio-

bank report complete parental history, and 93% of individuals in

the UK Biobank report complete sibling history), and we previ-

ously determined that self-reported family history is reasonably

accurate in the UK Biobank (�80% correlation between true

and self-reported FH, based on sibling concordance33); we

caution that certain diseases may be more susceptible to inac-

curacy—for example, depression (67% correlation between

true and self-reported FH) and hypertension (70% correlation

between true and self-reported FH). The imperfect accuracy is

explicitly accounted for by PRS-FH model parameters, and

incorporating self-reported FH clearly improves the prediction

accuracy in our study. Fifth, we did not perform analyses in

which we trained and validated in different cohorts. We antici-

pate that this will become possible in the future with the emer-

gence of large biobanks collecting a rich set of phenotypes,

including FH.36,37 Sixth, the current implementation of PRS-FH

is not designed to include all types of FH information (e.g., all sib-

lings affected); however, the PRS-FH framework can easily be

extended to include other FH information. Seventh, PRS-FHliab

does not account for shared environment between parents,

which can induce correlations between parents. However,

PRS-FHlog models parental disease statuses jointly, allowing

for correlations between parents. Eighth, incorporating FH into

genome-wide association studies (GWASs) increases associa-

tion power,33,38 implying that training the PRS using association

statistics informed by the FH of training samples has the poten-

tial to increase the accuracy of the PRS component of PRS-FH;

exploration of this approach remains as a future research direc-
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tion, distinct from incorporating the FH of target samples via the

FH component. Ninth, we have focused here on autosomal-PRS,

but incorporating sex-chromosomal-PRS remains as a future

research direction. Finally, incorporating training data from auxil-

iary traits has substantial potential to improve polygenic predic-

tion accuracy,39,40 but this was not implemented in our study;

incorporating auxiliary traits into PRS-FH is straightforward un-

der the PRS-FH framework, and remains a future research direc-

tion. Despite these limitations, we anticipate that PRS-FH will

attain large increases in prediction accuracy in future studies,

particularly in diverse populations.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
This work used genotype and phenotype data from the UKBiobank (http://www.ukbiobank.ac.uk/). The SNPweights to construct

the PRS, and the relevant weights for prediction using PRS and family history are available at https://data.broadinstitute.org/

alkesgroup/UKBB/PRSFH/ or Zenodo: https://zenodo.org/record/6598868#.YqD9Mi-B2Ru.

PRS-FH software (and relevant code) is available at https://data.broadinstitute.org/alkesgroup/UKBB/PRSFH/ or Zenodo:

https://zenodo.org/record/6598868#.YqD9Mi-B2Ru.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

PRS-FHlog method
The PRS-FHlog method models the PRS and the disease status of relatives as linearly impacting the log-odds of disease for an in-

dividual, as detailed below.

log
p

1 � p
= a0 +a1Dp1 +a2Dp2 +a3Dsib +a4Nrel:sib +a5PRS (Equation 1)

where Dp1; Dp2; and Dsib are the binary disease status variables for an individual’s parents and siblings, respectively, Nrel:sib is the

number of relevant siblings of an individual (number of total siblings for non-sex-specific diseases, number of sisters for breast can-

cer, and number of brothers for prostate cancer), and PRS is the individual’s PRS. An individual’s PRS is constructed as a weighted

sum of their genotypes:

PRS =
X
i

bb igi (Equation 2)

where gi are an individual’s genotypes at SNP i (0,1,2) and bb i are the per-allele effect sizes of SNP i estimated using training data. We

note that there are multiple algorithms for constructing PRS, however the construction of PRS is not the primary focus of this work.
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We considered a logistic model incorporating the PRS (as a continuous covariate), the three binary indicators for the disease status

of mother, father, and siblings, and a continuous covariate for the number of relevant siblings (see Equation 1). We elected not to use

indicator variables for the number of total siblings an individual has (e.g. IðNsib = 1Þ; IðNsib = 2Þ;.; IðNsib R5Þ) in the primary

method as this generally produced non-significant improvements (Table S17) and increased model complexity.

PRS-FHliab

The PRS-FHliab methodmodels the family history of disease and PRS using a liability threshold model.23 The liability threshold model

assumes an individual has an underlying liability, e, which is normally distribution with a mean of 0 and variance of 1. An individual is a

case (z = 1) if and only if eRT otherwise the individual is a control (z = 0). T determines the disease prevalence K; K = 1� FðTÞ
where FðTÞ is the normal cumulative distribution function, i.e. FðTÞ = PrðNð0; 1Þ %TÞ.

We assume a multivariate normal distribution for the individual’s liability, the individual’s PRS, and the target individual’s relatives’

liabilities. For example, to incorporate the individual’s PRS as well as the parental and a sibling’s disease history we assume,

0
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; (Equation 3)

where eo is the total liability of the target individual, PRSo is the PRS of the target individual, and ep1;ep2, and es are the liabilities of the

parents and the sibling, respectively, ~h
2

p1;
~h
2

p2; and
~h
2

s are the pseudo-heritabilities of the disease on the liability scale of the parents

and the sibling, respectively, andV is the amount of variance the PRS can explain on the liability scale. The pseudo-heritabilities of the

disease reflect a combination of heritability and shared environmental effects (whichmay vary across classes of relatives), and can be

estimated using maximum-likelihood methods (see Methods S1 and Table S25 for justification of pseudo-heritability and details on

its estimation). We can estimate the variance explained by the PRS on the liability scale as

V = corrðPRS;ZÞ2Kð1 � KÞ
4ðTÞ2 ; (Equation 4)

where K is the disease prevalence, Z is the disease status, T = F� 1ðKÞ, and 4 is the normal probability density function. This esti-

mate of V is similar to previous derivations converting between the observed-scale and the liability-scale (see Methods S1).29 After

estimating the liability-scale variance explained by the PRS (V), the raw PRS is scaled to have mean zero and the desired variance

prior to being utilized by PRS-FHliab. Setting ~h
2

p1 = ~h
2

p2 = ~h
2

s = h2 models PRS and family history of disease assuming no environ-

mental correlation.

Using the distribution shown in Equation (1), we can compute the posterior mean and variance of eo, conditional on the individual’s

PRS and the disease status of family members (e.g. if parent 1 is a case we can condition on ep1 RTp1). Given the mean and variance

of the posterior distribution, denoted meoj, and s2
eo j, respectively, we assume normality and compute the posterior risk of disease for an

individual to be:

r = 1 � F

�
Toffspring � meo j,

seo j,

�
; (Equation 5)

where Toffspring is eitherF
� 1ðKoffspringÞ or a function of covariates, depending on themodel being implemented (see below). We note

that the posterior risk of disease is distinct from the posterior mean (and variance) of liability. We elected to use the posterior risk of

disease, rather than simply the posterior mean or variance, as this appropriately weights the mean and variance of the liability for

disease. Conditioning on family history will result in a non-normal distribution, however, this deviation from normality is generally

small.9,23 We elected to have Toffspring depend on the number of total siblings an individual has through the use of indicator variables

(e.g. IðNsib = 1Þ; IðNsib = 2Þ; .; IðNsib R5Þ) as a conservative choice as it optimized the performance of PRS-FHliab (Table S18),

which ultimately was not the recommended method.

Weuse thePearson-Aitken formula, aswell asproperties about truncatednormal distributions, to computeposterior distributions.9,41

Sibling history is reported as a binary condition in UK Biobank; individuals report whether at least one or none of their siblings are
e2 Cell Genomics 2, 100152, July 13, 2022
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affected. For individualswho report at least oneof their siblings is affected, theposteriormeanandvariance is estimatedanalytically (see

Methods S1).

Missing family history for some relatives is not an issue as the posterior distribution is computed conditional on known information,

and therefore the number of relatives being modeled is reduced when missing family history exists. We use estimates of disease

prevalence which differ for mother, father, and offspring as well as estimates of pseudo-heritability which differ for mother and father.

Simulations
We simulated genotypes at 100,000 unlinked SNPs and case-control status for 400,000 unrelated training samples. For computa-

tional simplicity we generated 10 genotype matrices for the training data and given these genotype matrices, can then generate

10 different case-control vectors represent different scenarios of ranging prevalence, h2l , h
2
g, and polygenicity (number of causal

SNPs). To obtain PRS, we computed prediction b for all 100,000 unlinked SNPs using BOLT-LMM.25,26

We simulated genotypes at 100,000 unlinked SNPs and case-control status plus family history (parental history for both parents)

for 40,000 unrelated target samples. We simulated genotypes for both parents using the sameminor allele frequency (MAF) values as

the training data, used these to simulate genotypes for target samples (offspring), and simulated case-control status for both parents

and target samples using a liability threshold model; target samples were not ascertained for case-control status. Again, for compu-

tational simplicity we generated 10 genotype matrices for the testing data and given these genotype matrices, then generated case-

control and family history information under 16 different scenarios; the same 10 scenarios as the training data as well as 4 additional

scenarios in which family members shared environmental correlation and 2 additional scenarios in which the parental disease prev-

alence was double that of the offspring (Table S1). We note that environmental correlation and differing parental prevalence does not

impact our training data as we are using case-control data only (not family history data) to train.

Within the target samples we use 10-fold cross-validation: for each fold we use the remaining 9 folds to estimate relevant model

parameters. Given these parameters, the predicted risk of disease can be estimated for each individual within the held-out fold. For

each simulation scenario, we computed the mean R2
l and standard error (see Quantification and Statistical Analysis; Tables S2 and

S4–S7); calibration of themain simulations was assessed by regressing observed disease status on the predictor (a slope of 1 implies

correct calibration;28 Table S3).

UK Biobank data set
We analyzed 10 complex diseases from the UK Biobank.24 To construct PRS, we computed prediction b for genotyped SNPs using

all British individuals using BOLT-LMM.25,26 These individuals were individuals of European ancestry (based on self-reported white-

ethnicity) and British-ancestry individuals passing principal component analysis filters.24 Our PRS consisted of 672,288 SNPs with

missingness <10% and minor allele frequency (MAF) > 0.1%; we mean normalized PRS based on the allele frequency within the

training population.

We considered three distinct testing sets; these consisted of non-British European, South Asian (Indian, Pakistani, Bangladeshi),

and African individuals (Black or Black British, Caribbean, African, Any other Black background). These testing sets were constructed

through self-reported ethnicity; non-British European were individuals of European ancestry (based on self-reported white-ethnicity;

White, British, Irish, Any other white background) who did not pass British-ancestry principal component analysis filters. We

restricted to unrelated individuals (both unrelated to other individuals within the testing sets as well as unrelated to the training

set). We use 10-fold cross-validation within the three testing sets to estimate relevant model parameters for both PRS-FHlog and

PRS-FHliab. In detail, for individuals in a given fold we estimate the relevant parameters using the remaining 9-folds and use these

parameters to predict risk.

UKBiobank collects family history of disease information for 12 diseases. The rate ofmissing data is fairly low: 88%of individuals in

UK Biobank report complete parental history, and 93% of individuals in UK Biobank report complete sibling history.33 In this work we

focused on the 10 diseases for which PRS or FH produces a positive liability-scale R2 with a p-value less than the nominal 0.05/36

within non-British Europeans (Table 1; Table S8). We primarily focused on three well-powered diseases (type 2 diabetes, depression,

and hypertension) with (liability-scale) prediction R2 > 0.05 for PRS and/or FH in each target population (no additional criteria were

applied; Table S9). We note that depression was included as a well-powered disease despite its low SNP-heritability, because the

contribution of sibling disease history (Table S11) led to prediction R2 > 0.05 for FH in each target population. On the other hand, CAD

was not included as a well-powered disease, due to poor performance of both PRS and FH in the African target population. For any

individuals who reported 0 relevant siblings, disease status of siblings was set to 0.

Application of PRS-FHlog to UK Biobank data
We applied PRS-FHlog to 10 complex diseases from the UK Biobank. Prior to model training and fitting, individuals with missing

parental disease status for a given parental class (mother or father) were assigned themean parental disease status for the respective

parental class across the 9 training folds. Individuals with missing sibling disease status (for whom the number of siblings must be at

least one or unknown) were assigned the mean sibling disease status across all individuals in the 9 training folds if the number of

siblings was unknown, or the mean sibling disease status across individuals in the 9 training folds with at least one sibling if the
Cell Genomics 2, 100152, July 13, 2022 e3
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number of siblings was known. Individuals with missing number of siblings were assigned the mean number of siblings across the 9

training folds if the sibling disease status was unknown, or the mean number of siblings subject to the same sibling disease status if

known.

Model parameters for PRS-FHlog, both averaged across the 10 folds as well as estimated using all training data, are available in

Table S11.

Application of PRS-FHliab to UK Biobank data
We applied PRS-FHliab to 10 complex diseases from the UK Biobank. We used different estimates of disease prevalence for

mother, father, siblings, and offspring; in any fold, when the prevalence of disease was 0 (for mother, father, sibling, or offspring)

we set it equal to 1/(number of individuals within that fold). For all analyses that included sibling history, except when otherwise

specified, the liability threshold for disease used to predict disease risk accounted for number of siblings (indicator variables for

0, 1, 2, 3, 4, R5 siblings), as we generally observed a U-shaped relationship between disease prevalence and number of siblings

(Table S16).

We used estimates of pseudo-heritability that differ for mother, father, and siblings; pseudo-heritability was estimated using

maximum-likelihood (see Methods S1). If there were pairs of individuals with concordant disease status (e.g. both offspring and rela-

tive have disease), pseudo-heritability was set to 0 and the liability was not conditioned on this relative. UK Biobank collects sibling

disease history as a binary ‘‘at least one’’ affected indicator, and as such we could estimate pseudo-heritability either using individ-

uals with exactly one sibling or using all individuals with at least one sibling (see Methods S1). We elected to estimate pseudo-her-

itability using all individuals with at least one sibling, as the number of individuals with exactly one sibling can be prohibitively low (and

may include no concordant disease pairs for diseases of low prevalence). In some of our early experiments in this project, we

observed computational problems when estimated pseudo-heritability > 1.8 (i.e. pseudo-heritability/2 R 0.9). Our software thus

caps estimates of pseudo-heritability at 1.8. However, this did not impact any of the analyses reported in the current manuscript.

We estimated the amount of variance explained by the PRS on the liability scale, V, that varied based on the target population

(Equation 4). For each fold, we ran a permutation test (1,000 permutations) of H0 : V = 0, if we failed to reject the null hypothesis

with p> 0:05 we set V = 0 (i.e. we did not use PRS to inform posterior disease risk).

Model parameters for PRS-FHliab, both averaged across the 10 folds as well as estimated using all training data, are available in

Table S11.

Additional details regarding analysis of complex diseases from the UK Biobank
The correlations between PRS and the two FH prediction methods were computed across the 10 diseases in UK Biobank (Table S10

and Figure S1). The relationship between observed-scale SNP-heritability on accuracy of PRS as well as the impact of pseudo-heri-

tability and disease prevalence in first-degree relatives on accuracy of FH was investigated (Figure S2). Calibration of the 5 considered

prediction methods was assessed by regressing observed disease status on the predictor (a slope of 1 implies correct calibration;28

Table S12). For each of the 5 methods, the prevalence of disease in each percentile of predicted disease risk was computed for three

well-powered diseases (Figures S4–S6). For all secondary analyses, we analyzed mean R2
l , or the difference in R2

l between methods

(see Quantification and Statistical Analysis; Tables S13–S15 and S17–S18).

Decreasing the number of training samples from the target population
Wedecreased the number of training samples from the target population to different values of expected effective training sample size

(Neff,which can vary with the number of cases sampled; see Equation (6)). For a given value of expectedNeff, we constructedmultiple

independent training sample sets of that size by down-sampling individuals from each of the 10 folds, and averaged the resulting

prediction accuracies across the training sample sets of that size (Table S26 and Figure S3).

The effective sample size (Neff) is computed for a training sample as:

Neff =
4

1

Ncases

+
1

Nctrls

:
(Equation 6)
Incorporation of covariates in UK Biobank analyses
We repeated the analyses of 10 complex diseases from the UK Biobank by incorporating covariates into each method. We included

23 covariates: age, sex, BMI, and 20 principal components. Prior to model training and fitting, individuals with missing BMI, age, or

sex were assigned the mean age, sex, and BMI across the 9 training folds. The prediction method based solely on covariates

modeled the 23 covariates linearly impacting the log-odds of disease for an individual; PRS+ (the prediction method based on co-

variates and PRS) models PRS and the 23 covariates (age, sex, BMI, and 20 principal components) linearly impacting the log-odds of

disease for an individual (Table S19). The correlation between PRS and FH predictions and covariate predictions was computed

across all 10 diseases (Table S21).

PRS-FHlog simply adds the 23 covariates into the logistic model incorporating family history of disease (FHlog) or PRS and family

history of disease (PRS-FHlog). For FHliab and PRS-FHliab, covariates were modeled as impacting the threshold for disease; a logistic
e4 Cell Genomics 2, 100152, July 13, 2022
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model for disease as a function of covariates (23 covariates as well as indicators for number of siblings) was used to predict the risk of

disease for an individual, thereby estimating the threshold for disease conditional on covariates.

Calibration of all considered predictionmethodswas assessed by regressing observed disease status on the predictor (a slope of 1

implies correct calibration;28 Table S22). For all secondary analyses, we analyzed mean R2
l , or the difference in R2

l between methods

(see Quantification and Statistical Analysis; Tables S23 and S24).

QUANTIFICATION AND STATISTICAL ANALYSIS

Jackknife standard errors of prediction accuracy and differences in prediction accuracy
We report estimates of liability-scale R2 (R2

l Þ or the difference inR2
l between twomethods (DR2

l ). Given predicted disease risks (rÞ and
observed phenotypes (Z), Ro is estimated as bRo = corrðr;ZÞ and R2

l is estimated as bR2

l = corrðr; ZÞ2Kð1�KÞ
4ðTÞ2 (Lee et al.27) for which

corrðr;ZÞ = maxðcorrðr; ZÞ; 0Þ. (When using 10-fold cross-validation within a testing set to estimate relevant model parameters,bR2

l for a method is computed by concatenating across the 10 folds and computing a single bR2

l , rather than computing the average

of bR2

l across the 10 folds.)

To test for significantly non-zero prediction accuracy or differences between methods we assess whether Ro or DRo (where D de-

notes either the difference between 2 prediction methods, or the difference versus a covariates-only predictor in the setting with co-

variates) is significantly different from zero. We compute both jackknife standard errors as well as jackknife p-values (for H0 : Ro > 0

orH0 : DRo = 0Þ, employing a jackknife across individuals (we note that the alternative of employing a genomic block-jackknife is of

interest for evaluation of PRS methods, but is not applicable to evaluation of FH and PRS-FH methods). We let all individuals in fold i

be represented by Di and we construct n jackknife samples (n = 100 in this study) by deleting each of the n folds as follows, D½i� =

fD1;D2;.;Di� 1;Di + 1;.;Dng Each of theseD½i� are denoted blocks. We then compute bRo on eachD½i�, denoting each such value as

bRo;i. We then define the jackknife variance as varð bRoÞ = n � 1

n

Xn
i = 1

� bRo;i � bRo;,

�2
where bRo;, = 1

n

Pn
i = 1

bRo;i: The jackknife variance

for the difference in Ro (or for R
2
l ) between two methods is computed in a similar manner. We computed a jackknife p-value by con-

structing pseudovalues as bRo;pseudovalue i = n bRo � ðn � 1Þ bRo;i and test the hypothesis H0 : Ro = 0 by using the fact thatffiffiffi
n

p ð bRo;pseudovalue, � RoÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

�P ð bRo;pseudovalue i � bRo;pseudovalue,Þ2
�r /Nð0;1Þ;

where bRo; pseudovalue, = 1
n

P bRo; pseudovalue i. The jackknife p-value for H0 : DRo = 0 between two methods is computed in a similar

manner. (We note the n folds used when computing jackknife standard errors and p-values are unrelated to the 10-folds used during

cross-validation: individuals are concatenated across the 10 cross-validation-folds and then randomly assigned to the n jackknife

folds.)

Jackknife assumes independence between blocks, while individuals are independent (by construction), individual predictions

within a fold could use information from other folds, thus potentially inducing a correlation. To determine the potential effect of

this we assessed the calibration of jackknife standard errors in simulations. For every simulation scenario, we computed an estimated

variance of Ro across the 10 simulation replicates (denoted empirical variance), as well as the average jackknife variance across the

10 simulation replicates (denoted mean jackknife variance). Across all simulation scenarios, the sum of the empirical variance was

0.00063 and 0.00059 while the sum of the mean jackknife variance was 0.00060 and 0.00057 for PRS-FHlog and PRS-FHliab, respec-

tively. This suggests the standard errors are well-calibrated.
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