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ABSTRACT

Methamphetamine (METH) is a potent psychostimulant that increa-
ses extracellular monoamines, such as dopamine and norepineph-
rine, and affects multiple tissue and cell types in the central nervous
system (CNS) and peripheral immune cells. The reinforcing proper-
ties of METH underlie its significant abuse potential and dysregula-
tion of peripheral immunity and central nervous system functions.
Together, the constellation of METH’s effects on cellular targets
and regulatory processes has led to immune suppression and neu-
rodegeneration in METH addicts and animal models of METH
exposure. Here we extensively review many of the cell types and
mechanisms of METH-induced dysregulation of the central ner-
vous and peripheral immune systems.

SIGNIFICANCE STATEMENT

Emerging research has begun to show that methamphet-
amine regulates dopaminergic neuronal activity. In addition,
METH affects non-neuronal brain cells, such as microglia and
astrocytes, and immunological cells of the periphery. Con-
current disruption of bidirectional communication between
dopaminergic neurons and glia in the CNS and peripheral
immune cell dysregulation gives rise to a constellation of
dysfunctional neuronal, cell, and tissue types. Therefore, under-
standing the pathophysiology of METH requires consideration of
the multiple targets at the interface between basic and clinical
neuroscience.

1. Introduction

With overdose deaths escalating 1789% from 1999 to 2017
(Clink, 2017), the potent psychostimulant methamphetamine
(METH) potentiates multiple mechanisms that lead to abuse
potential and health harm. METH pushes biologic systems
into hyperactivation, creating a spiral of dysfunction afflicting
not only the central nervous system (CNS) (Kish, 2008) but
also multiple cell and tissue types in the periphery (Martin et
al., 1971; Kaye et al., 2007). Thereby, METH users experience
a constellation of impairments (Fig. 1) associated with the
CNS and peripheral immune dysfunction, cardiovascular

Douglas Miller and Adithya Gopinath are supported by National Insti-
tutes of Health National Institute of Neurological Disorders and Stroke
[Grant T32-NS082128]. Adithya Gopinath is also supported by National
Center for Advancing Translational Sciences [Grant TL1TR001428] and
[Grant UL1TR001427]. Dr. Habibeh Khoshbouei is supported by National
Institute on Drug Abuse [Grant R01-DA026947] and National Institute of
Neurologic Disorders and Stroke [Grant R01-NS071122]. Dr. Luis R. Marti-
nez is supported in part by National Institute of Allergy and Infectious Dis-
eases [Grant R01-AI145559].

The authors declare no conflict of interest, financial or otherwise.

https://dx.doi.org/10.1124/jpet.121.000767.

disease (Kaye et al., 2007), and immune dysregulation (Gaskill
et al., 2014) involved in amplifying transmission of infectious
disease (Galindo et al., 2012; Salamanca et al., 2015). Direct
effects of methamphetamine by self-evaluation include arousal,
acute improvement of mood and cognition, increased blood
pressure, and respiratory rate (Harris et al., 2003; Newton et
al., 2005; Mendelson et al., 2006).

First synthesized in 1893 by Nagai Nagayoshi (Nagai,
1893), METH, an amphetamine-class drug, was rapidly recog-
nized for its stimulatory properties. Among these, METH pro-
motes wakefulness and impairs inhibitions, which led to its
extensive use during World War II (Defalque and Wright,
2011; Rasmussen, 2011). Today, METH is used clinically for
obesity and attention deficit disorder with hyperactivity under
the trade name Desoxyn (Drugs@FDA: FDA-approved drugs,
n.d.). Despite its clinical efficacy, METH negatively affects
multiple systems, exhibiting a host of side effects.

METH exerts its effects primarily through increasing extra-
cellular monoamine neurotransmitters by multiple mecha-
nisms (Sulzer et al., 2005; Xie and Miller, 2009; Saha et al.,
2014; Lin et al., 2016; Miller et al., 2021). Although METH

ABBREVIATIONS: BBB, blood-brain barrier; CaMKIl, calmodulin kinase Il; CNS, central nervous system; DAT, dopamine transporter; DC,
dendritic cell; HIV, human immunodeficiency virus; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; METH, methamphetamine; MMP,
matrix metalloproteinase; NF-xB, nuclear factor kB; NK, natural killer; PKC, protein kinase C; ROS, reactive oxygen species; TAAR1, trace
amine-associated receptor-1; TLR, toll-like receptor; TNF, tumor necrosis factor; VMAT2, vesicular monoamine transporter 2.
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Fig. 1. Central and perlpheral targets of methamphetamine-induced dysregulation of neuronal and immunologic cells.

affects serotonin and norepinephrine (and epinephrine) release
(Kuczenski et al., 1995; Miller, 2011), dopamine accumulation
remains central to the vast molecular cascades of METH use
and abuse.

METH toxicity is mainly dose-dependent. METH is admin-
istered at relatively low doses (5—20 mg) clinically (Cruick-
shank and Dyer, 2009). Under such circumstances, METH
generally leads to an acute increase in extracellular dopamine,
which subsequently improves mood and cognitive functions,
such as attention and learning (Nieoullon, 2002). However,
METH-induced increases in mesolimbic dopamine release also
produce behavioral reinforcing effects, leading to sustained
self-administered consumption of high METH doses over time.
Under sustained and high doses (>50 mg) (Cruickshank and
Dyer, 2009), METH can produce severe cellular toxicity and
long-term change in both CNS and peripheral nervous system,
and these alterations are also exacerbated by the relatively
long, ~12-hour half-life of the drug in the human (Cho et al.,
2001). Herein, we review the vast literature, starting with
structural interactions with the dopamine transporter and
moving through central nervous and peripheral immunity sys-
tems afflicted in METH use disorder.

2. METH in the CNS

2.1 Entry of METH into the Brain

Metabolized to amphetamine in the liver by CYP2D6 (Wu
et al., 1997; Li et al., 2010), amphetamines and derivatives,
such as METH, are small molecules with high lipophilicity
(Cho and Segal, 1994; Gulaboski et al., 2007), enabling
their rapid diffusion across the blood-brain barrier (BBB)

(de 1a Torre et al., 2012; Turowski and Kenny, 2015). Addition-
ally, METH is a substrate for organic cation transporters
(Wagner et al., 2017, 2018), which are expressed on BBB endo-
thelial cells, further increasing transport of METH across
the BBB (Turowski and Kenny, 2015). Furthermore, METH
increases body temperature and alters the functional proper-
ties of the BBB (Bowyer et al., 1994; Bowyer and Ali, 2006;
Kiyatkin and Sharma, 2009). Specifically, METH modulates
endothelial cell tight junction and adherin networks comprised
of proteins like matrix metalloproteinase-9, claudin-5, occlu-
din, and vascular endothelial-cadherin (Martins et al., 2011;
Gongalves et al., 2017) that become increasingly permeable as
the BBB breaks down, leading to METH accumulation in the
brain parenchyma (Martins et al., 2011).

After crossing the BBB into the CNS, METH activates
reward circuitry by increasing dopamine neurotransmission in
the mesolimbic and mesocortical pathways (Abi-Dargham et
al., 2003; Vollm et al., 2004; Filip et al., 2005). Single-photon
emission computed tomography (SPECT) and positron emis-
sion tomography (PET) imaging in healthy human subjects
found an increase in striatal dopamine release within hours
after low-dose AMPH administration (0.3 mg/kg i.v.). Specifi-
cally, the dopamine response in the ventral striatum corre-
lates with self-reported euphoria, alertness, and restlessness
scores (Laruelle et al., 1995; Drevets et al., 2001). The meso-
limbic pathway, which originates from the ventral tegmental
area and projects to nucleus accumbens, amygdala, and hippo-
campus, critically regulates METH-related memories and
reinforcement learning responses, such as conditioned place
preference (Keleta and Martinez, 2012). The mesocortical
pathway, which includes the ventral tegmental area projection
to the prefrontal cortex, could lead to compulsive drug
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administration seen in illicit users (Volkow and Fowler, 2000).
The increase of dopamine transmission in different cortical
and subcortical regions produces subsequent behavioral rein-
forcement and impulsivity associated with drug abuse, leading
to sustained high-dose self-administration over time. This
user-driven high-dose METH exposure ultimately leads to
cumulative cytotoxicity, which we review in detail in the sub-
sequent sections.

2.2 Neuronal Entry of METH through Biogenic Amine
Transporters and Intracellular Mechanisms of METH-
Induced Neuronal Dysfunction

Once in the brain, METH modulates the activity and reac-
tivity of neurons. As with its passage across the BBB, the pas-
sage of METH across cell membranes inside the CNS is
facilitated by METH’s small size and lipophilicity. However,
the similarity of the chemical structure of METH to endoge-
nous biogenic amines facilitates METH to traffic across the
membrane through neurotransmitter transporters, such as
dopamine transporter, norepinephrine transporter, and seroto-
nin transporter (Raiteri et al., 1977; Fischer and Cho, 1979).
Inside neurons, METH perturbs multiple neuronal processes
that affect function and health, stimulate oxidative stress
pathways, and induce excitotoxicity and apoptosis (Shaerza-
deh et al., 2018).

2.2.1 Regulation of Neurotransmission. Monoaminer-
gic neurons using neurotransmitters, such as dopamine, nor-
epinephrine, and serotonin, are the direct targets of METH
within the CNS (Sulzer et al., 2005). To facilitate neurotrans-
mission, these neurons package neurotransmitters into synap-
tic vesicles via vesicular monoamine transporter 2 (VMAT2)
(Erickson et al., 1992; Eiden et al., 2004). Packaged vesicles
undergo fusion with the plasma membrane during neuronal
activity, enabling monoamines to diffuse into the synaptic cleft
where they activate proximal receptors or diffuse via volume
transmission to affect distal targets (Grace and Bunney, 1984;
Agnati et al., 1995; Cragg et al., 2001; Beckstead et al., 2004;
Rice and Patel, 2015) before the cessation of the signal by the
monoamine transporters (Sulzer et al., 2005; Foster et al.,
2006; Cheng and Bahar, 2015; Gaskill et al., 2017; Bu et al.,
2021).

METH regulates monoaminergic neurons via multiple
mechanisms, in which dopaminergic neurotransmission have
been most extensively studied (Kuczenski and Segal, 1994;
Bennett et al., 1998; Sulzer et al., 2005; Shaerzadeh et al.,
2018). METH competes with dopamine uptake via the dopa-
mine transporter. After the entry into the neurons, METH
increases intracellular calcium levels, alters the activity of
kinases (Kantor and Gnegy, 1998; Khoshbouei et al., 2004;
Foster et al., 2006; Goodwin et al., 2009; Xie and Miller,
2009; Lin et al., 2016), phosphatases (Foster et al., 2002,
2006; Elliott and Beveridge, 2005) or trace amine-associ-
ated receptor-1 (TAAR1) activity (Xie and Miller, 2007, 2009),
and stimulates the reverse transport of dopamine (dopamine
efflux) through the dopamine transporter. METH-stimulated
dopamine efflux leads to a rapid increase in extracellular
dopamine levels in the brain (Mantle et al., 1976; Wall et al.,
1995; Jones et al., 1999; Khoshbouei et al., 2003; Binda et al.,
2005; Kahlig et al., 2005; Sulzer et al., 2005; Fog et al., 2006;
Goodwin et al., 2009; Saha et al., 2014; Lin et al., 2016;
Sambo et al., 2017; Miller et al., 2021). Additionally, METH

interferes with the vesicular storage of dopamine in synaptic
vesicles. Synaptic vesicles exhibit a lower pH than the cytosol,
as established by ATP-driven transport of protons into the
vesicle (Johnson, 1988). The amine/proton antiporter VMAT2
enables dopamine transport into the vesicle while transport-
ing protons to the cytosol (Eiden and Weihe, 2011). The simi-
larity of METH to the structure of dopamine facilitates
competition through VMAT2 (Sulzer, 2011; Freyberg et al.,
2016), disrupting the pH gradient necessary for dopamine
transport into the synaptic vesicles (Freyberg et al., 2016)
and stimulation of the reserpine binding site on VMAT2 to
prevent further dopamine vesicular packaging (Peter et al.,
1994; Pifl et al., 1995; Sulzer et al., 1995; Brown et al., 2000;
Fleckenstein et al., 2007; Eiden and Weihe, 2011; German et
al., 2015). In addition, METH affects the firing properties of
dopaminergic neurons (Ingram et al., 2002; Branch and Beck-
stead, 2012; Lin et al., 2016) in a concentration-dependent
manner (Branch and Beckstead, 2012), further increasing
extracellular dopamine. Inside neurons, METH activity sig-
nificantly increases cytosolic dopamine, dopamine efflux, and
firing activity of dopamine neurons and reduces uptake and
vesicular packaging, leading to elevated dopamine signaling
not found in natural stimuli (Di Chiara and Imperato, 1988).
As a result, METH affects neurotransmission and creates
homeostatic burdens in neurons, leading to the activation of
neurotoxic pathways.

2.2.2 Intracellular Calcium, Oxidative Stress, and
Neurotoxicity. Concordant with changes in neurotransmis-
sion, METH rapidly increases intracellular calcium (Yu et al.,
2016; Sambo et al., 2017). Whereas intracellular calcium is
critical to neurotransmitter release (Berridge, 1998; Beckstead
et al., 2004; Neher and Sakaba, 2008; Borisovska et al., 2013)
and monoamine transporter-mediated efflux (Gnegy et al.,
2004), METH induces calcium release from intracellular stores
(Yorgason et al., 2020) in addition to entry from extracellular
milieu (Suzuki et al., 1992; Johnson et al., 2000; Uramura et
al.,, 2000; Yu et al., 2016; Sambo et al.,, 2017). Calcium
increases create burdens on cellular homeostasis that initiate
oxidative stress pathways, excitotoxicity, and apoptosis.

In a series of papers, Wagner et al. (1980, 1985) showed
that pretreatment with the antioxidant ascorbic acid—attenu-
ated METH-induced dopamine depletion. Later, De Vito and
Wagner showed that oxygen-free radical inhibitors also less-
ened the effects of METH-induced neuronal losses. Specifi-
cally, the inhibition of superoxide dismutase, a potent enzyme
that catalyzes superoxide radicals to dioxygen (Oj) (McCord
and Fridovich, 1969), exacerbates METH-stimulation of oxida-
tive stress (De Vito and Wagner, 1989). In the following deca-
des, the hypothesis that METH increases oxidative stress
burden in the CNS has been extensively examined with con-
sistent reproducibility (Cadet et al., 1994; Cubells et al., 1994;
Ogawa et al., 1994; Jayanthi et al., 1998; Yamamoto and Zhu,
1998; Gluck et al., 2001; Quinton and Yamamoto, 2006; Tata
and Yamamoto, 2007; Kita et al., 2009; Chandramani Shiva-
lingappa et al., 2012; Shin et al., 2012; Solhi et al., 2014;
McDonnell-Dowling and Kelly, 2017). Consequently, in addi-
tion to disrupted calcium homeostasis and oxidative stress,
METH induces excitotoxicity and apoptosis in dopamine neu-
rons (Cubells et al., 1994; Cadet et al., 1997b; Sattler and
Tymianski, 2000; Deng et al., 2001, 2002; Quinton and
Yamamoto, 2006; Cadet and Krasnova, 2009; Chandra-
mani Shivalingappa et al., 2012; Shin et al., 2012; Kim et



al., 2020). Although METH enters neurons through the
monoamine transporters, its affinity is higher for the catechol-
amine transporters [dopamine transporter (DAT) and norepi-
nephrine transporter] than indoleamine transporter (serotonin
transporter) (Howell and Negus, 2014). As a therapeutic option
in treating substance abuse, DAT inhibitors exhibit more effi-
cacy in preclinical assays of stimulant self-administration than
other monoamine transporters and nondopaminergic targets
(Fleckenstein et al., 2000; Sulzer et al.,, 2005; Howell and
Negus, 2014; German et al., 2015). Therefore, we next exten-
sively examine the structural and functional properties of DAT
and METH regulation of DAT activity.

2.3 Structural Interactions with DAT

DAT is an integral membrane protein expressed in dopami-
nergic neurons and the primary target of amphetamines, such
as METH, in the CNS. The electrochemical gradient of the
membrane facilitates the DAT-coupled transport of Na* ions
into the intracellular space, thus regulating dopamine neuro-
transmission in time and space. Multiple studies revealed that
chronic use of METH in humans leads to a significant reduc-
tion of DAT at the striatum and the prefrontal cortex, which
correlates with motor and cognitive impairment (Sekine et al.,
2001; Volkow et al., 2001c; Sekine et al., 2003; McCann et al.,
2008). Recent advances in structural and molecular biology
have made significant progress in elucidating the mechanism
of amphetamine modulation of DAT and dopamine neurotrans-
mission. In this section, we will discuss the three central
mechanisms through which METH modulates DAT activ-
ity: 1) competitive binding to the substrate-binding site,
2) internalization of membrane DAT, and 3) DAT-mediated
dopamine efflux.

The recent resolution of drosophila DAT structure, com-
bined with in silico modeling, permits the elucidation of struc-
tural dynamics of DAT and the direct comparison of the
binding dynamics between dopamine and other psychostimu-
lants (Penmatsa et al., 2013; Cheng and Bahar, 2015; Wang et
al., 2015). The transport cycle starts with the binding of Na*
ions, which breaks the bond between critical residues of the
extracellular gate to reveal the primary binding site (S1)
located at the transmembrane helices, forming an outward-
facing open state. The binding of the substrate at S1 then
prompts the closure of the extracellular gate to create a closed
conformation, which is followed by the opening of the intracel-
lular gate triggered by the dislocation of Na™ ion. The trans-
porter then opens up and becomes inward-facing, which
allows the release of the substrate into the intracellular space.

The S1 site for dopamine binding also functions as an
orthosteric site for psychostimulants, notably amphetamines.
Unlike cocaine, whose binding to the S1 site prevents the con-
formational change of the transporter and arrests it in the out-
ward-facing conformation (Beuming et al., 2008; Xue et al.,
2015), amphetamine-class drugs, such as METH, bind to the
S1 site with a geometry almost identical to dopamine, allowing
the normal conformational change that leads to the reuptake
of amphetamines into the intracellular space (Wang et al.,
2015). The competitive binding of the S1 site by METH leads
to a deficiency in dopamine reuptake. Moreover, intracellular
METH could activate the TAAR1, a G-protein—coupled recep-
tor, leading to DAT-mediated dopamine efflux and DAT endo-
cytosis (Xie and Miller, 2007, 2009).
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2.4 Regulation of DAT Activity and Membrane Association

METH induces the reversal of the transport cycle, leading
to DAT-mediated dopamine efflux through a phosphorylation-
dependent mechanism (Sulzer et al., 1995; Khoshbouei et al.,
2004; Kahlig et al., 2005; Foster et al., 2006). DAT undergoes
both basal and protein kinase C (PKC)-mediated phosphoryla-
tion on its N terminals (Foster et al., 2002). METH increases
DAT phosphorylation in heterologous cell lines and rodent
striatal tissues (Cervinski et al., 2005). Conversely, either
inhibition of PKC activity or truncation of DAT N terminus
could block DAT efflux (Kantor and Gnegy, 1998; Khoshbouei
et al., 2004). Other than PKC, calmodulin kinase II (CaMKII)
was also shown to interact with the DAT C terminus and reg-
ulate phosphorylation of serine residues on the N terminus
(Fog et al., 2006; Steinkellner et al., 2014). Acute inhibition
with CaMKII inhibitor KN93 significantly reduced amphet-
amine-induced dopamine efflux in mouse striatum measured
by chronoamperometry (Fog et al., 2006). However, whether
METH could directly lead to CaMKII activation is unknown.
METH treatment significantly increases Ca®?" influx in pri-
mary neuronal cultures either through DAT dependent mech-
anism or by acting on L-type voltage-gated calcium channels
and stimulates CaMKII (Chen et al., 2016; Sambo et al.,
2017). Paradoxically, in vivo METH injection in rats instead
inhibits CaMKII activity in various brain regions, including
the parietal cortex, striatum, and midbrain (Akiyama and
Suemaru, 2000; Suemaru et al., 2000). The difference between
in vivo and in vitro studies highlights a profound systemic
effect of METH on calcium homeostasis with a complex down-
stream influence beyond DAT regulation.

Sigma-1 receptor, a chaperone protein residing on the endo-
plasmic reticulum, was also shown to regulate METH-induced
DAT efflux (Sambo et al., 2017; Hedges et al., 2018). Sigma
receptor activation significantly attenuated METH-induced
DAT-mediated efflux measured by amperometry in midbrain
neuronal culture but had no effects on DAT-mediated efflux
on its own. Interestingly, sigma-1 receptor antagonist BD-
1063 also significantly reduced METH-induced dopamine
efflux in striatal slices (Hedges et al., 2018). At a higher con-
certation, BD-1063 blocks DAT; therefore, the conflicting
results could be due to the concentration of BD-1063 used in
this study or indirect mechanism of sigma-1 receptor downre-
gulation since the latter study did not examine the effect of
BD-1063 treatment alone in striatal dopamine release and
DAT efflux. However, similar to the data shown in Sambo et
al., at the concentrations specific for the sigma-1 receptor, the
sigma-1 agonist SA 4503 attenuated METH-mediated hyper-
activity at a low dose but enhanced it at higher doses (Rodvelt
et al., 2011) potentially because of an off-target effect of the
drug.

As an integral plasma membrane protein, endocytic traffick-
ing dynamically regulates DAT surface expression. Multiple
studies have demonstrated that amphetamines can robustly
drive DAT internalization in heterologous and endogenous
systems (Fleckenstein et al., 1997; Saunders et al., 2000;
Gulley et al., 2002; Hall et al., 2014; Wheeler et al., 2015;
Fagan et al., 2020). Amphetamine treatment significantly
activates RhoA and Racl in mouse midbrain slices (Wheeler
et al., 2015). Conversely, amphetamine-induced DAT inter-
nalization can be prevented by inhibiting RhoA through PKA
(Wheeler et al., 2015). Activation of RhoA and Racl defines
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an endocytic route that is clathrin-independent and dyna-
min-dependent (Chi et al., 2013). Accordingly, pharmacologi-
cal inhibition of dynamin also blocks amphetamine-induced
DAT internalization (Kahlig et al., 2006). Repeated adminis-
tration of METH in mice also increases the expression of pic-
colo, a presynaptic cytoskeletal matrix protein. Interestingly,
piccolo negatively regulates METH-induced DAT internaliza-
tion, possibly through sequestering membrane phosphatidylino-
sitol 4,5-bisphosphate (Cen et al., 2008).

Another mechanism through which METH may regulate
DAT trafficking and DAT-mediated efflux is through DAT oligo-
merization. DAT assumes different quaternary structures rang-
ing from monomers to oligomers (Hastrup et al., 2003; Sorkina
et al., 2018; Jayaraman et al., 2021), and the formation of
oligomers could enhance both DAT internalization and dopa-
mine efflux (Khoshbouei et al., 2004; Sorkina et al., 2018). Mul-
tiple administration of METH in rats selectively enhances
oligomerization of DAT but not D2 receptors in rat striatum,
whereas in heterologous cells overexpressing DAT, dispersion
of DAT oligomers by dopamine and amphetamine can be dem-
onstrated by Western blot and fluorescence resonance energy
transfer imaging (Chen and Reith, 2008; Siciliano et al., 2018).

Although METH affects multiple systems throughout the
body, the CNS is most notoriously linked to METH use disor-
der. METH intake alters cognitive systems by inducing feelings
of euphoria and wakefulness directly through altered dopami-
nergic signaling. As METH exerts many effects through DAT,
dopaminergic neurons are the primary source of DAT within
the CNS, making dopaminergic neurons especially vulnerable.
METH users exhibit depleted striatal dopamine levels (Wagner
et al., 1980), reduced striatal DAT levels (Volkow et al., 2001c),
and dopamine-associated cognitive dysfunctions (Paulus et al.,
2002; McCann et al., 2008). Furthermore, repeated or long-
term abuse of METH leads to addiction (Meade et al., 2015),
memory deficits (Reichel et al., 2011; Fitzpatrick et al., 2020),
paranoia (Leamon et al., 2010), and increases the likelihood of
dopaminergic neurodegenerative disease such as Parkinson
disease (Callaghan et al., 2012; Lappin et al., 2018). Many of
these effects persist even in prolonged abstinence (McCann et
al., 1998; Volkow et al., 2001b). Specifically, METH damages
dopaminergic neurons by inducing oxidative stress (Cubells et
al., 1994), DNA damage (Cadet et al., 1997a; Deng et al., 2001,
Cadet et al., 2002), excitotoxicity, excitability (Abekawa et al.,
1994; Battaglia et al., 2002; Branch and Beckstead, 2012; Lin
et al., 2016), and activation of apoptotic pathways (Cadet et al.,
1997b; Deng et al., 2002; Larsen et al., 2002). Although dopa-
minergic neurons are the primary direct target of METH in the
CNS, METH use interferes with multiple brain regions, nondo-
paminergic neurons, and non-neuronal cells.

2.5 Other Cellular Targets of METH in the CNS

2.5.1 Nonmonoaminergic Neurons. In vivo microdialy-
sis in animal studies reveals that METH injections also induce
glutamate efflux (Stephans and Yamamoto, 1995). Glutamate
release could subsequently activate N-methyl-D-aspartate
(NMDA) receptor and nitric oxide synthase. Indeed, METH
administration causes overexpression of neuronal nitric oxide
synthase both in vivo and in vitro (Sheng et al., 1996; Deng
and Cadet, 1999). Nitric oxide generation in the CNS after
METH exposure may in turn augment dopamine release and
production of reactive oxygen species and lead to neurotoxicity

(Bowyer et al., 1995). In addition, pharmacological or genetic abla-
tion of nitric oxide synthase could reduce methamphetamine-
induced neurotoxicity and modulate METH-induced behavioral
sensitization (Di Monte et al., 1996; Itzhak and Ali, 1996; Itzhak,
1997). As a corollary, pretreatment with NMDA receptor antago-
nist MK-801 also suppressed the behavior sensitization effect of
METH (Ohno and Watanabe, 1995). These studies highlight an
essential role of glutamate and nitric oxide in the toxic effects of
methamphetamine in the brain.

Although METH directly targets dopaminergic neurons, dys-
regulated spatial-temporal dopamine signaling affects nondo-
paminergic neurons in multiple brain regions. Dopaminergic
neurons project throughout the brain, providing input to local
neurons and distal regions. Consequently, METH exposure
alters both nondopaminergic neuronal networks (Volkow and
Morales, 2015; Miller et al., 2019) as well as target regions,
such as the GABAergic medium spiny neurons of the striatum
(Volkow and Morales, 2015) and corticostriatal synapses (Bam-
ford et al., 2008). In addition to METH-induced striatal dysre-
gulation, both the hippocampus (Thompson et al., 2004; Swant
et al., 2010; North et al., 2013; Dean et al., 2015) and cortex
(Volkow et al., 2001a; Thompson et al., 2004; Kohno et al.,
2014) exhibit deteriorated neural signaling, structural abnor-
malities, and functional connectivity. In sum, METH dysregu-
lates the activity of both dopaminergic and nondopaminergic
neurons and affects multiple brain regions (Volkow and Mora-
les, 2015). However, METH dysregulation extends beyond neu-
ral cell types within the CNS.

2.5.2 Microglia. The two principal homeostatic regulators
and neural protectors in the CNS, the specialized phagocytic
cells, microglia, and the abundant astrocytes, also suffer the
consequences of METH abuse. Microglia rapidly respond to
homeostatic disturbances and neurotoxicity and are thus
referred to as “sensors of pathology” (Shaerzadeh et al., 2018)
and specifically sense dopamine neurotransmission through
dopamine receptors (Kettenmann et al., 2011). High doses of
METH promote microglial activation (Thomas et al., 2004;
Fantegrossi et al.,, 2008). Surprisingly, microglial activation
can occur before the onset of pathology (LLaVoie et al., 2004),
reinforcing the notion of their sensitivity to homeostatic dis-
turbances, such as neuronal loss (Miller et al., 2018). Similarly,
in METH users, microglia are involved in METH-induced
wakefulness (Wisor et al., 2011). Despite responding to METH-
induced dyshomeostasis, microglia are also susceptible to dam-
age by METH. Human and mouse microglial cell lines exhibit
increased mitochondrial apoptotic pathway markers (Shari-
kova et al., 2018) and the Janus kinase (JAK)-signal trans-
ducer and activator of transcription (STAT) pathway cell death
pathway (Coelho-Santos et al., 2012) after METH exposure.
METH reduces the distribution and expression of toll-like
receptor (TLR) 4 on the surface of microglia after exposure to
bacterial lipopolysaccharide (LPS) (Vargas et al.,, 2020). In
addition, METH dysregulates the TLR4/MD2 complex signal-
ing pathways, alters the activation of NF-kB, and lowers the
synthesis of proinflammatory cytokines by microglia after LPS
stimulation. Notably, microglial cells treated with METH and
sensitized with LPS showed significant cellular morphologic
alterations, including enlarged nuclei and ruffled surface. Fur-
thermore, microglia have been implicated in tolerance to
METH (Thomas and Kuhn, 2005), albeit with less-understood
mechanisms (Shaerzadeh et al., 2018).



2.5.3 Astrocytes. Like microglia, astrocytes sense neural
activity, modulate homeostasis (Schipke and Kettenmann, 2004),
and participate in METH use disorder (Narita et al., 2008). In
adult animals, METH exposure often leads to loss of TH-positive
terminals and increased glial fibrillary acidic protein (GFAP)-
containing astrocytes in the striatum (Hess et al., 1990; Broening
et al., 1997). De Vito and Wagner (1989) initially hypothesized
that loss of dopamine terminals increases the oxidation of dopa-
mine and forms free radicals, leading to astrogliosis. However,
Pu and Vorhees (1993) later observed that upregulation of
GFAP-containing astrocyte could occur in the absence of deple-
tion of TH-positive terminals after METH exposure in younger
animals, suggesting METH could have a direct effect on astro-
cytes. Indeed, acute exposure to METH in primary cortical astro-
cytes induces oxidative stress (Lau et al., 2000) and leads to
profound changes in the transcriptional signature (Bortell et al.,
2017). Some of the most enriched pathways include upregulation
of MAP2K5 gene clusters, which contributes to neuroprotection
of dopaminergic neurons in response to oxidative stress
(Cavanaugh et al., 2006) and upregulation of IL2RG, Antigen
peptide transporter 2 (TAP2), and IL1RN, which promote
inflammatory responses.

Astrocytes regulate extrasynaptic glutamate tone via trans-
porter-mediated uptake and efflux (Anderson and Swanson,
2000). In addition to the dopamine system, METH also alters
glutamatergic transmission in the corticostriatal pathway
(Schwendt et al., 2012; Parsegian and See, 2014). Astrocytes
express functional TAAR1, a primary METH target. Concomi-
tant exposure to METH and HIV-1 significantly increased
TAAR1 mRNA level and reduced glutamate clearance (Cisne-
ros and Ghorpade, 2014). Surprisingly, METH self-adminis-
tration does not influence GLT1 expression or glutamate
reuptake in nucleus accumbens core (Sidiropoulou et al., 2001,
Siemsen et al., 2019). This observation contrasts with cocaine
self-administration, which promptly reduced GLT-1 expression
and glutamate uptake (Knackstedt et al., 2010). However,
METH self-administration decreased contacts between astro-
cytes and presynaptic neurons (Siemsen et al., 2019), possibly
inducing connexin internalization in astrocytes and reducing
gap junction communication between astrocytes and neurons
(Castellano et al., 2016). Glutamatergic excitability in the cor-
ticostriatal pathway hypothetically underlies relapse in drug
abuse (Ernst and Chang, 2008), and astrocytes could be a
potential therapeutic target. More research is needed to con-
firm the effect of METH and the mechanisms involved in
astrocyte-mediated glutamate reuptake.

3. Effects of METH on Peripheral Host
Immunity

The medical complications involved in dependence are likely
due to accumulation of METH in most body organs. Previous
work found that METH accumulates differentially in human
body organs; concentrations are particularly high in the kid-
neys and lungs, whereas the stomach, pancreas, liver, and
spleen were intermediate, and the brain and heart were nota-
bly lower than other tissues (Volkow et al., 2010). The use of
METH impairs both innate and adaptive immunity (In et al.,
2005). METH exposure modifies the cellular components of
macrophages, granulocytes, dendritic cells (DCs), T cells, B
cells, and natural killer (NK) cells, indicating that the
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mechanisms of immunosuppression are complex (Harms
et al., 2012). In addition, infection with HIV (Ellis et al., 2003),
hepatitis (Gonzales et al., 2006), tuberculosis (Mankatittham
et al., 2009), and other transmissible diseases (Galindo et al.,
2012) is exacerbated by METH use. Contaminated needles
and syringes used to inject METH enable spread of infectious
diseases to multiple users (Ellis et al., 2003). Here, we discuss
up-to-date data on the negative effects of METH on peripheral
host innate and adaptive immunity and highlight areas for
future investigations.

3.1 Innate Immunity

3.1.1 Macrophages/Monocytes. Macrophages recognize
immunoreactive IgG that accumulates in the amygdala and
hippocampal pyramidal cell region of the mouse brain, result-
ing in intense degeneration due to rapid phagocytosis of neu-
rons. A single injection of a physiologic dose (5 mg/kg) of the
METH followed by bacterial LPS stimulation demonstrates
rapid peripheral migration of these leukocytes to the CNS of
C57BL/6 mice (Salamanca et al., 2015). METH enables macro-
phage polarization from MO to M1. It augments the production
of nitric oxide and proinflammatory cytokines. Particularly,
METH treatment increases tumor necrosis factor (TNF)-c, IL-
12, and IL-18, whereas anti-inflammatory cytokine IL-10
release decreases in coculture with neurons, which intensify
the neurotoxic effects (Li et al., 2018). METH users suffer
from hyperthermia (body temperature >40.5°C), resulting in
BBB permeability (Bowyer and Ali, 2006). METH modifies
macrophage mitochondrial function and temperature-associ-
ated signaling pathways and increases their production of
reactive oxygen species (ROS) (Sanchez-Alavez et al., 2020).
These data suggest that METH-exposed peripheral macro-
phages mediate the amplification of neuronal toxicity and
degeneration.

Microbial CNS translocation and monocyte activation pre-
dict mortality in METH users with treated HIV (Carrico et al.,
2018). METH enhances HIV infection of macrophages, acts as a
cofactor in the pathogenesis of the virus by being a primary
source, and accelerates the progression of AIDS in HIV-infected
users (Liang et al, 2008). METH use downregulates TLR-9
expression (Cen et al., 2013; Burns and Ciborowski, 2016) and
impairs intracellular innate antiviral type I interferon (IFN)
mechanisms in macrophages, contributing to phagocytic cell sus-
ceptibility to HIV infection (Wang et al., 2012). Macrophages
exposed to METH and infected with HIV gp-120 mediate the syn-
thesis of matrix metalloproteinase (MMP)-9 after LPS challenge.
MMP-9 is responsible for the remodeling of the extracellular envi-
ronment facilitating the migration of monocytes/macrophages to
the CNS (Reynolds et al., 2011). Cultures of monocytes incubated
with METH and HIV-Tat promote the release of the MMP acti-
vator urokinase plasminogen activator, which may contribute to
CNS inflammation and neuroAIDS by stimulating the activation
of matrix-degrading proteinases through Gi/Go-coupled signaling
(Conant et al., 2004). METH stimulates the production of dopa-
mine in the CNS, and this neurotransmitter increases the infec-
tion of macrophages with HIV by upregulation of the virus
coreceptor chemokine receptor type 5 (CCR5) regardless of the
initial viral load (Gaskill et al., 2014; Basova et al., 2018). The
effects of METH on the synthesis of dopamine in the CNS, HIV
neuropathogenesis, and immunomodulation and how all these
factors may contribute to neurcinflammation and neuronal
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toxicity/degeneration need further elucidation to manage the
complexity of substance abuse and AIDS.

Macrophages are essential for modulating the effector function
of neutrophils. METH intake by mice substantially increases the
presence of macrophages in necrotic spleens, and tissue injury is
associated with increased quantities of proinflammatory cyto-
kines, IFN-y, TNF-o, IL-6, IL-12, and ROS (Peerzada et al.,
2013). Reduced number of macrophages in the liver of METH-
treated mice resulted in hepatocellular atrophy likely due to
abundant recruitment of neutrophils to hepatic tissue, releasing
elevated levels of ROS and causing extensive tissue damage
(Peerzada et al., 2013). In human blood and murine organs,
observed levels of METH were found to cause apoptotic death in
macrophages, causing users to be more susceptible to infectious
disease (Aslanyan et al., 2019). METH can exacerbate hepatitis
C virus infection and replication in human hepatocytes (Ye et
al., 2008) because users show low numbers of macrophages and
a mixed Th1-Th2 phenotype immune response (Peerzada et al.,
2013). METH may reduce the macrophage response, which may
increase users’ susceptibility to disease and contribute to severe
medical conditions, such as acquisition of blood-borne diseases.

METH also modifies macrophage antimicrobial functions,
such as nitric oxide and TNF-« production (In et al., 2004).
Acidic organelles within macrophages are alkalized by METH,
which inhibits phagocytosis and killing of major AIDS-associ-
ated yeast-like fungal pathogens, Candida albicans, Crypto-
coccus neoformans, and Histoplasma capsulatum (Talloczy et
al.,, 2008; Martinez et al., 2009; Patel et al., 2013). For
instance, METH-mediated immunosuppression during histo-
plasmosis is characterized by altered cytokine secretion in the
lungs of infected mice, abnormal processing of H. capsulatum
within macrophages, and Macrophage-1 antigen (MAC-1)
receptor immobilization on the macrophage surface, which
participates in phagocytosis (Martinez et al., 2009). Incubation
of macrophages with METH increases the MYD88-dependent
TLR4 pathway and decreases macrophage phagocytic capacity
(Pramanik et al., 2020). Activation of TLR4 by METH after
TLRA4 binds to Myeloid Differentiation factor 2 (MDZ2), its core-
ceptor, exacerbates neuroinflammation (Wang et al., 2019).
METH was found to impair complex signaling pathways, such
as TLR4/MD2, activation of NF-xB, and proinflammatory
mediator production in microglial cell lines in context of LPS
stimulation (Vargas et al., 2020). Similarly, dysregulation of
antigen presentation and diminished processing capacity of
macrophages have been observed during METH exposure
(Harms et al., 2012). In tissue culture, macrophages exposed
to METH displayed increases in TNF-x levels without
increases in IL-18 and IL-8 in addition to TNF-« upon LPS
stimulation (Liu et al., 2012). Macrophages excised from mice
injected with METH demonstrate reduced skin tissue mobili-
zation, phagocytosis, antigenic processing, nitric oxide produc-
tion, and bacteria killing (Mihu et al., 2015). These alterations
to the innate immunity by METH compromise inflammatory
responses and the microbicidal functions of these phagocytic
cells, making users prone to infection.

IgM induces macrophage effector responses against opportu-
nistic pathogens in the context of METH abuse. IgM and com-
plement promote phagocytosis and the microbicidal functions
of macrophages against C. neoformans in the presence of the
drug by upregulating the actin polymerization regulator pro-
tein GTPase-RhoA and complement receptor 3 expression on
their surface, respectively (Aslanyan et al., 2017). Cryptococci

incubated with IgM, complement, and METH exhibited more
cells per aggregate, a conceivable justification for their more
significant ingestion by phagocytes. IgM augmented fungicidal
action by macrophages by preventing the alkalization of the
phagosome and inducing intracellular nitric oxide synthesis.
In contrast, METH inhibits IgG1-mediated phagocytosis of C.
neoformans by macrophages and microglia, likely because of
lowered expression of membrane-bound Fecy receptors (Aslan-
yan et al., 2019). Nitric oxide production by macrophages dur-
ing interactions with fungi was associated with diminished
amounts of TNF-«. The conflicting results obtained in these
studies suggest that investigating the role of METH on the
molecular and cellular immunity of users and their suscepti-
bility to acquiring infectious diseases would provide significant
insight.

3.1.2 Granulocytes. The effect of METH on granulocytes
is limited, although these leukocytes are highly associated
with tissue damage if they are not cleared quickly. Neutro-
phils are recruited to the injury site within minutes after
infection or trauma and are the hallmark of acute inflamma-
tion. METH impairs human neutrophil function (Mihu et al.,
2015). This recreational drug has a detrimental impact on
neutrophil migration, phagocytosis, respiratory burst, and kill-
ing of bacteria in a mouse model of cutaneous wound infection
(Mihu et al., 2015). Mice injected with METH for 21 days had
significant neutrophil infiltration in the spleen and liver,
resulting in necrosis and hepatocellular atrophy (Peerzada et
al., 2013), respectively, likely associated with increased forma-
tion of free radicals (Wells et al.,, 2008). Furthermore, rats
chronically treated with METH showed severe regional hem-
orrhage, partial acinal cell necrosis, acinal cells destruction,
abundant neutrophil infiltration, interstitial vessel edema and
dilation, and pancreatic fatty cell invasion (Ito et al., 1997). In
this regard, a postmortem examination of a 53-year-old man
whose death was certified as METH toxicity evinced diverticu-
lum of the duodenum and neutrophilic infiltrate (Sakry and
Kemp, 2020). Neutrophil involvement in METH-mediated
acute kidney injury, a common condition observed in intoxica-
tion, is observed in approximately 10% of the cases (Isoardi et
al., 2020). In addition, acute METH administration and LPS
challenge stimulate the infiltration of macrophages and neu-
trophils into the CNS, which may have significant implica-
tions in users’ neurotoxicity (DiCaro et al., 2019).

In allergic inflammation, basophils, mast cells, and eosino-
phils are primary effector cells, and in innate and adaptive
immunity. Chronic METH use increases the risk of cardiovas-
cular (Islam et al., 1995) and hepatic (Maruta et al., 1997)
lesions characterized by eosinophilic degeneration and disar-
ray. METH contaminated with lead and intravenously adminis-
tered by users interferes with liver function, lowers hematocrit
values, and induces basophilic stippling of red blood cells (All-
cott et al., 1987). Basophilic stippling observed through peripheral
blood smear of erythrocytes indicates disturbed erythropoiesis
and is characterized by the presence of numerous basophilic gran-
ules that are distributed through the cytoplasm. Additionally,
METH regulates cytokine production by mast cells in LPS-
treated mice via the dopamine-3 receptor (Xue et al., 2015). In
mouse bone marrow, mast cell dopamine-3 receptors regulate
TLR4 expression and also regulate mitogen-activated protein
kinase (MAPK) and NF-xB signaling molecules induced by coex-
posure of METH and LPS (Xue et al., 2016). METH also impairs
the activation of mast cells and cytokine production in the murine



intestine after sensitization with LPS (Xue et al., 2018). Although
the presence of granulocytes may serve as markers for METH-
associated complications, additional studies are required to
understand their involvement and organ specificity in the setting
of drug abuse.

3.1.3 Dendritic Cells. DCs are antigen-presenting cells
that serve to present antigens to both innate and adaptive
immune cells. DCs are front-line defenders against HIV and
associated infections. Physiologic METH doses decrease DCs
in mice after a 2-week injection regimen (Harms et al., 2012).
DCs harbor HIV while facilitating the infection of T cells.
METH enhances HIV replication in immature DCs. Addition-
ally, proteins, such as Chemokine receptor 3 (CXCR3), galec-
tin-1, peroxiredoxin, procathepsin B, and protein disulfide
isomerase, are regulated by METH exposure (Reynolds et al.,
2007). This substance of abuse also upregulates the expression
of Dendritic Cell-Specific Intercellular adhesion molecule-3-
Grabbing Non-integrin (DC-SIGN) on the surface of mature
DCs (Nair et al., 2006; Nair and Saiyed, 2011). DCs treated
with METH display differential expression of genes associated
with HIV pathogenesis, including chemokine regulation, cyto-
kinesis, apoptosis, cell cycle regulation and signal transduction
mechanisms (Mahajan et al., 2006). Besides, METH enhances
HIV infection in association with increments in the expression
of coreceptors CXCR4 and CCR 5, which are mediated by
upregulation of dopamine-2 receptors, downregulation of
extracellular signal-regulated kinase 2 (ERK2), and the upre-
gulation of p38 mitogen-activated protein kinase (MAPK)
(Nair et al., 2009). METH also reduces the process of phagocy-
tosis, collapses the acidic pH of phagolysosomes, and inhibits
antigen presentation to splenic T cells by DCs (Talléczy et al.,
2008). Accumulating evidence indicates that METH exerts
immunosuppressive effects on DCs, exacerbating AIDS pathol-
ogy, and increasing the risk of users acquiring coinfections.

3.1.4 Natural Killer Cells. NK cells are cytotoxic lym-
phoid cells critical to the innate immunity in eliminating can-
cerous and virally infected cells without the assistance of
antibodies or Major histocompatibility complex (MHC) mole-
cules. Available data indicate the existence of biologic sex dif-
ferences on the effect of METH in the response of NK cells.
For instance, female cynomolgus monkeys injected with a sin-
gle dose of 3 mg/kg of METH show elevated activity of NK
cells after 6 hours. However, these cytotoxic lymphocytes
reduce by 50% 24 hours postinjection compared with control
animals, and this time interval variation is related to cortisone
levels (Saito et al., 2006). Similarly, single and repeated injec-
tions of 5 mg/kg of METH decreased splenic NK cells and met-
abolic activity, especially in female mice (Saito et al., 2008).
However, METH does not alter the blood viral load in simian
immunodeficiency virus—infected monkeys, but this psychosti-
mulant increases brain viral load while mediating the activa-
tion of NK cells and their production of TNF-« and IFN-y
(Marcondes et al., 2010). Additional studies investigating the
impact of sex differences or viral infection on NK cell activa-
tion in METH users are necessary.

3.2 Adaptive Immunity

32,1 T Cells. T cells are important in coordinating
immune responses because of their predictable activation and
replication cycles and association with other adaptive immune
responses (Anderton, 2006). The fundamental mechanisms
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defining the relationship between cells of the adaptive immune
system and METH are presently limited. Nevertheless, the
data strongly suggest that METH produces negative effects on
adaptive immune responses, increasing host vulnerability to
progressive diseases, in particular HIV (In et al., 2005; Marti-
nez et al., 2009). METH causes tissue injury, induces apoptosis,
and affects both cytotoxic T-cell and helper T-cell recruitment
in mice undergoing immune challenge (Hernandez-Santini et
al., 2021). Surface expression and distribution of CD3 and
CD28 in human Jurkat T cells are diminished by METH (Her-
nandez-Santini et al., 2021). In addition, METH decreases IL-2
production in Jurkat T cells, indicating suppression of activa-
tion and proliferation of T lymphocytes (Hernandez-Santini et
al., 2021).

Rodent models demonstrate that METH alters cell distribu-
tions in both thymus and spleen and modulates peripheral T-
cell populations (In et al.,, 2005; Hernandez-Santini et al.,
2021). High-dose METH administration induces apoptosis in
the rat thymic and splenic lymphocytes and produces acute
immunosuppression, potentially explaining why METH users
experience higher rates of infection (Harms et al., 2012; Peer-
zada et al., 2013). For example, murine studies demonstrate
that METH shifts cytokine response in retroviral infections
(Yu et al., 2002; Liang et al., 2008), alters immune cell gene
expression (Mahajan et al., 2006), and compromises thymic
CD4+/CD8+ T-cell ratios (Yu et al., 2002; In et al., 2005).
METH lowers T-cell recruitment into pulmonary tissue (Her-
nandez-Santini et al., 2021), interfering with T-cell prolifera-
tion and decreasing the ability of these lymphocytes to sustain
a protective immune response against pathogens of the respi-
ratory tract (Martinez et al., 2009). Likewise, METH-treated
mice show elevated early IL-6 and IL-10 levels in tissue homo-
genates, which could imply the development of a maladaptive
Th2 response against pathogenic microbes in the respiratory
tract despite Th1l cytokine production (Peerzada et al., 2013).
For example, individuals who are HIV-infected and abusing
METH in Thailand showed a high risk of coinfection with
Mycobacterium tuberculosis and progression of extrapulmo-
nary tuberculosis due to low CD4+ T-cell counts (Mankatit-
tham et al., 2009). Moreover, METH use interferes with the
benefits of antiretroviral therapy in HIV-infected individuals
by increasing their viral load compared with nonusers (Carrico
et al., 2019).

An alternate explanation for compromised T-cell function
involves that METH alters oxidative stress responses. T lym-
phocytes properties are significantly altered by oxidative
stress. In response to antigenic stimulation during oxidative
stress, T cells exhibit signal transduction suppression, reduced
transcription factor activity, and diminished secretion of cyto-
kine in various model systems (Flora et al., 2003; Shah et al.,
2012). The capability of reactive oxidative free radicals to
affect T-cell function has been demonstrated in humans under
various pathologies, particularly AIDS, in which oxidative
stress can impair the host capacity to control retroviral repli-
cation (Potula et al., 2010).

Interestingly, METH alters intracellular calcium utilization
in T lymphocytes followed by the production of oxidative free
radicals that initiate mitochondrial damage and inhibit T-cell
function (Potula et al., 2010). Mitochondria are a source of
intracellular ROS and ATP, both of which are regulated by
calcium. T-cell incubation with METH increases cytosolic cal-
cium, though, and leads to the saturation of the electron
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transport chain, contributing to significant synthesis of oxida-
tive free radicals. This cascade eventually results in oxidative
alteration of proteins, reduced ATP levels, and mitochondrial
dysfunction in T cells (Potula et al., 2010). A compensatory
downregulation of mitochondrial proteins from chronic METH
treatment can provoke a durable imbalance in cellular redox,
diminishing T cells’ capacity to react to and control opportu-
nistic pathogens (Potula et al., 2010; Chandramani Shivalin-
gappa et al., 2012; Martins et al., 2013).

3.2.2 B Cells. METH accumulates in organs (Shiue et al.,
1993; Fowler et al., 2007) and induces apoptosis (Iwasa et al.,
1996) in the spleen, the organ responsible for humoral or anti-
body-mediated immunity through resident B cells. B cells per-
form multiple functions, such as antigen presentation, plasma
cell differentiation, antibody production and release, and
development of immune memory. METH alters blood and tis-
sue antibody production during infection or antigenic chal-
lenge in rodents (In et al., 2005; Wey et al., 2008; Martinez et
al., 2009). Mice injected with METH and infected with H. cap-
sulatum have shown increased IgG2b levels in lethal histo-
plasmosis (Martinez et al., 2009). Chronic B-cell activation,
excessive systemic inflammation, and increased HIV exposure
accompany high IgG3 production in users that inject the drugs
(Piepenbrink et al., 2016). METH attenuates the production of
ovalbumin (the main component of egg white)-specific class of
antibodies, including IgM, IgG1l, and IgG2a in mice (Wey et
al., 2008). The drug also reduces the production of IL-4 and
IFN-y in splenocytes isolated from METH-treated animals and
exposed to ovalbumin ex vivo (Wey et al., 2008). The activation
of B lymphocytes, which involves T cell-dependent and T cel-
l-independent antigen, was recently explored in C57BL/6
mice to determine the effects of METH on antibody-mediated
immunity to ovalbumin (T cell-dependent) and LPS (T cell-in-
dependent) (Mitha et al., 2021). Pulmonary and splenic tissue
infiltration by B cells was enhanced by METH 7 days post—an-
tigenic challenge. Considerable recruitment of B cells into pul-
monary splenic tissues is not related to interaction with the
antigen, thereby METH may function as the antigen. In sup-
port of this hypothesis, multiple studies have generated
METH-specific antibodies and may provide a viable therapeu-
tic agent to treat addiction to METH (Owens et al., 2011).
Similarly, chronic use of METH exhibit increased B-cell infil-
tration and autoantibodies, leading to development of autoim-
munity (Simonovska et al., 2016). For example, IgM and C3
complement accumulation in the renal system produce chronic
kidney disease in long-term METH users (Jones and Rayner,
2015). Deposition of METH in lung and spleen tissue may be
responsible for prolonged B-cell recruitment and elevated vul-
nerability of other immune cell subtypes to METH. Further-
more, METH may severely disrupt IgM distribution and
expression on the B-cell surface, thereby negatively affecting
the antibody-mediated immune response. Future studies
should interrogate the extent to which METH dysregulates
the relationship between autoreactive antibodies and organ
injury as well as B-cell memory.

4. Conclusion and Future Perspectives

METH use is a challenge worldwide, and its impact on
human health has recently begun to become elucidated.
Although most of these studies have focused on the behavioral
modifications this recreational drug causes in users, limited

data exist describing its effects on peripheral immunity or the
association between the CNS and peripheral inflammatory
responses. Emerging evidence indicates a causal connection
between METH and compromised immunity in users, animals,
and mammalian cells. METH also destroys dopamine receptors
in neurons, making chronic users insensitive to emotions or
pleasure because of permanent defects to the reward system.
However, the role of METH on peripheral cells carrying dopa-
mine receptors has not been investigated. Hence, elucidating
the specific mechanisms of METH abuse and CNS/peripheral
immunity will involve using interdisciplinary techniques and
appropriate animal and cellular systems to recreate the effects
of this drug in human users.

METH use causes deleterious alterations to the CNS
homeostasis. Brain damage has been associated with METH-
induced hyperthermia (Marco et al., 2021) and oxidative stress
(Kim et al., 2020), which are well known consequences of
inflammation, suggesting that studies involving the periph-
eral-brain axis are imperative. For instance, T cells are partic-
ularly susceptible to METH (In et al.,, 2005; Potula et al.,
2018), which may have potential implications in the modula-
tion of the inflammatory response (Mata et al., 2015) in the
CNS (Loftis and Janowsky, 2014) and peripheral organs, espe-
cially those in which METH accumulates for an extended time
(Volkow et al., 2010). Thus, the identification of the underlying
mechanisms by which METH affects innate and adaptive
immunity will enhance the prospects of developing novel ther-
apeutic and prophylactic interventions to manage the conse-
quences of recreational METH use, possibly minimizing brain
damage and addiction in chronic METH users. Although there
is no medication available that counteracts the detrimental
effects of METH, recent efforts have focused on the develop-
ment of anti-METH immunotherapies, such as monoclonal
antibodies and lipid-based vaccines, which act as pharmacoki-
netic antagonists, isolating METH and its metabolites from
the CNS, diminishing the toxic effects of the drug (Peterson et
al., 2014; Collins et al., 2016; Hambuchen et al., 2016). Similar
approaches can be used to neutralize the effector functions of
specific immune or resident cells and inflammatory mediators
stimulated by METH that may cause alteration in behavior
and tissues in humans. These existing challenges and poten-
tial goals are of considerable significance for multiple fields,
including immunology, neuroscience, psychology, health care,
and drug abuse.

Finally, METH abuse disorder is characterized by multisys-
tem dysfunction within the CNS and peripheral targets. Cur-
rent investigations are likely to be only the tip of the iceberg,
such that numerous other diseases, especially neurodegenera-
tive diseases, are likely to be significantly progressed and
altered by METH use. Recent technical advances have enabled
the tracking of neural activity in deep brain structures, partic-
ularly those rich in dopaminergic neurons, which are verified
genetically (Mejias-Aponte et al., 2015; da Silva et al., 2018;
Fernandes et al., 2020; Kremer et al., 2020), that are direct
targets of METH in the CNS. Future work in these areas and
those that receive input from or send projections to the ventral
midbrain will elucidate many of the collective population prop-
erties that predispose and give rise to addiction or failures
that lead to relapse. Furthermore, examination of brain
regions and peripheral tissue types in acute ex vivo slice prep-
arations or cultures of cell types of interest enable dissection
of distinct intrinsic properties of these regions and how they



are affected by METH without confounding of extrinsic brain
region input or ascending sensory signals (Miller et al., 2019,
2021).

METH likely affects multiple areas of the peripheral-brain
axis and exerts dysregulation of a plethora of tissue types. As
these separate areas become dysfunctions, untangling how
these spiraling dysregulations affect each other, either com-
pensatory or exacerbating, demonstrates the need for contin-
ued studies to understand the implications of METH addiction
and immunity. Until the use of METH is severely reduced, the
effects of METH on our society will be substantial.
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