Skip to main content
. 2022 Aug 4;17(8):e0269826. doi: 10.1371/journal.pone.0269826

Table 24. Comparison of accuracy between the proposed system and existing systems.

Authors Models Dataset Batch Size Epochs Optimizer Learning Rate Accuracy
Ameri A. CNN HAM10000 dermoscopy image database (3400 images) 30 40 SGDM 0.0001 84%
Lequan Yu et.al. FCRN ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge 4 3000 SGD 0.001 85.5%
Andre Esteva et. al. CNN The Stanford University Medical Center and undisclosed Online Databases (129,450 clinical images) - - - - - - - - - - - - - - - - 96%
Shunichi Jinnai et. al. FRCNN 5846 clinical images from 3551 patients. 4 100 SGD - - - - 91.5%
Joakim Boman, et. al. CNN ISIC Dermoscopic Image Dataset (23,647), DermQuest (16,826), Dermatology Atlas (4,336), a total number of 1,948 images had been taken from DermaAmin, Dermoscopy Atlas, Global Skin Atlas, Hellenic Dermatological Atlas, Medscape, Regional Derm, Skinsight and the pH2 database. 100 30 - - - - 0.001 91%
Rehan Ashraf et. al. CNN DermIS: 3176 images
DermQuest: 1096 images
- - - - 10 - - - - Small rate 97.9%
97.4%
Manu Goyal et. al. Faster-RCNN International Symposium on Biomedical Imaging ISBI—2017 testing dataset - - - - - - - - ——- - - - - - 94.5%
Abder-Rahman Ali et. al. F-MLP ISIC 2018: Skin Lesion Analysis Toward Melanoma Detection” grand challenge datasets - - - - 20 FGD 0.001 95.2%
Yasuhiro Fujisawa et. al. CNN ILSVR2012 dataset: Containing 1.2 million images within 1,000 classes 30 -—-—- - - - - - - - - 92%
Proposed model
SCNN_12
CNN Kaggle skin cancer image ISIC archive dataset consisting of 3297 skin cancer images (1800 Benign and 1497 Malignant). After augmentation: 16485 images 64 200 Adam 0.001 98.74%