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Abstract: Plaque erosion is one of the most common underlying mechanisms for acute coronary
syndrome (ACS). Optical coherence tomography (OCT) allows in vivo diagnosis of plaque
erosion. However, challenge remains due to high inter- and intra-observer variability. We
developed an artificial intelligence method based on deep learning for fully automated detection
of plaque erosion in vivo, which achieved a recall of 0.800± 0.175, a precision of 0.734± 0.254,
and an area under the precision-recall curve (AUC) of 0.707. Our proposed method is in good
agreement with physicians, and can help improve the clinical diagnosis of plaque erosion and
develop individualized treatment strategies for optimal management of ACS patients.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Acute coronary syndrome (ACS) remains a major cause of morbidity and mortality worldwide
[1]. Intracoronary thrombus caused by plaque rupture and erosion are recognized as the main
pathological mechanisms of ACS [2]. Previous studies reported that about 35% of thrombotic
sudden coronary deaths and 25% of acute myocardial infarction were caused by plaque erosion
[3,4]. Different from plaque rupture, plaque erosion usually occurs over pathological intimal
thickening, fibrous plaque, or lipid plaque with intact fibrous caps which are rich in smooth
muscle cells and proteoglycans, and lack for inflammatory cells such as macrophages and T
cells [5]. Pathologically, plaque erosion is defined as the loss of endothelial cells in the absence
of fibrous cap ruptures [6], and is typically characterized by insignificant coronary narrowing
and residual thrombus due to apoptosis or denudation of superficial endothelial cells and is
rich in platelets but less in fibrin [7,8]. Recent studies have shown that patients with plaque
erosion might be treated conservatively with anti-thrombotic therapy without coronary stenting
[9,10]. Therefore, the identification and analysis of plaque erosion are of great significance for
developing the optimal treatment strategy.

Optical coherence tomography (OCT) is a light-based interferometric imaging modality
that can provide three-dimensional depth-resolved microstructure of coronary arteries with
micron-level resolution [11]. OCT is currently the only clinically available imaging modality
that can diagnose plaque erosion in vivo [12]. In 2013, Jia et al. for the first time characterized
and categorized the OCT-defined plaque erosion in vivo as definite OCT-erosion and probable
OCT-erosion [13]. Definite OCT-erosion is defined as an intact fibrous cap with thrombus and
clearly visualized underlying plaque structure. Probable OCT-erosion is either an intact fibrous
cap with no thrombus in and around the culprit lesion and with irregular luminal surface, or there
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is thrombus at the culprit lesion site resulting in obscuring of the underlying plaque structure,
without superficial lipid pool or calcification found proximal or distal to the thrombus [13].
Figure 1 shows plaque erosion (Fig. 1(a)) with a comparison with typical fibrous (Fig. 1(b)),
lipid (Fig. 1(c)), and calcified plaques (Fig. 1(d)). More than half of plaque erosion occur on
fibrous plaques, and about 40% occur on stable lipid plaques with small lipid cores and intact
thick fibrous caps, while calcified plaques are less common [14]. Additional examples of plaque
erosion can be found in [15].

Fig. 1. Plaque erosion and typical atherosclerotic plaques on intravascular OCT images. (a)
Plaque erosion. (b) Fibrous plaque from the same vessel 9.8 mm proximal from the erosion
site in Fig. 1(a). (c) Lipid plaque. (d) Calcified plaque.

Currently, the challenges of real-time in-procedure diagnosis and decision making, the difficulty
of image interpretation along with significant inter-observer variability, and massive image
overload (hundreds of images in a pullback) have suggested a high demand for automated image
analysis. Artificial intelligence (AI) can be useful to standardize and automate intravascular OCT
image analysis. Deep learning is a data-driven AI algorithm with the advantage of automatically
and hierarchically extracting features directly from images, which has already made a profound
impact on computer vision and image analysis applications, such as image classification [16],
image segmentation [17], image completion [18] and so on. Deep learning methods have also
shown significant improvement over classic methods [19] for medical image processing tasks
such as disease classification [20] and tumor segmentation [21].

There are multiple reports of automated intravascular OCT image analysis using deep learning
techniques, mainly including lumen segmentation, plaque characterization, stent analysis, and
image based fractional flow reserve (FFR) calculation [22,23]. Miyagawa et al. [24] evaluated
three CNN architectures for lumen segmentation. Huang et al. [25] proposed a deep residual
lumen segmentation network with multi-scale feature fusion based on attention mechanism and
achieved good robustness and accuracy. Li et al. [26] proposed a spatial-temporal encoder-decoder
network for segmenting calcified plaques from intravascular OCT pullbacks, which achieved
state-of-the-art performance and allowed for comprehensive assessment of coronary calcification
for facilitating PCI planning. There are also many studies on automating the assessment of other
major types of atherosclerotic plaques, such as fibrous plaques, lipid plaques, etc [27–29]. Chu
et al. [30] developed and validated an automatic framework for plaque characterization using AI,
which is the largest study so far to validate OCT-derived plaque composition by AI. For stent
analysis, Guo et al. [31] proposed a local-global refinement network to integrate local-patch
information with global content for strut detection, and achieved promising performance on
a clinical dataset of 7000 intravascular OCT images. Yang et al. [32] proposed an U-shaped
neural network for automated detection of stent struts with both thin and thick tissue coverage,
and enabled stent classification and stent area measurement for single and multiple implanted
stents. For computational FFR, Ding et al. [33] proposed a novel method for fast computation of
FFR from OCT images, termed Optical Flow Ratio (OFR), which employed deep learning as
pre-processing steps for image segmentation, and demonstrated that OFR had good diagnostic
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concordance with FFR wire measurements. Although all of the aforementioned studies are
promising, few studies have focused on plaque erosion, where currently the in vivo diagnosis
mainly relies on physicians’ visual assessment of intravascular OCT images, which could lead to
significant inter-observer variability. Our group previously reported computer-aided detection
of plaque erosion [34], where the algorithm was semi-automated requiring the user to draw a
region of interest (ROI). Fully automated detection of plaque erosion can significantly reduce
inter-observer variability and improve clinical workflow, and is an unmet clinical need.

In this study, we propose a fully automated AI method using convolutional neural networks
(CNNs) for the detection of definite OCT-erosion in intravascular OCT images. To enhance
plaque erosion detection, we extended the Mask RCNN architecture [35] which achieved leading
performance in many computer vision and medical image analysis tasks [36], into a shape-encoded
CNN architecture. We further proposed a post-processing algorithm based on domain knowledge
to optimize the detection results and improve the algorithm precision. We conducted extensive
ablation experiments comparing different CNN architectures, as well as validation studies against
human analysts to evaluate the performance of the proposed method.

2. Methods

2.1. Dataset

We collected 83 OCT pullbacks from 83 ACS patients with culprit plaque erosion who had
undergone pre-intervention OCT imaging of culprit lesions. All data were acquired at The
2nd Affiliated Hospital of Harbin Medical University (Harbin, China), using a commercially
available OCT system (Abbott C7-XR). The dataset of one pullback consisted of hundreds of
cross-sectional images, and the distance between adjacent frames is 200 µm. The initial images
were acquired and stored in polar representation with a resolution of 976×504 pixels in grayscale,
then were transformed into Cartesian coordinates with a size of 1024×1024 pixels before image
analysis.

If a vessel had received previous stent implantation, the stented vessel segments were excluded
and the remaining images were included for analysis. In total, 29914 cross-sectional images
were included for analysis, of which 3275 images were with definite OCT-erosion. Probable
OCT-erosion was not assessed in this study, and definite OCT-erosion was simply referred as
plaque erosion in subsequent descriptions. One experienced physician (Physician 1) labeled all the
plaque erosion using Amira software (Thermo Fisher Scientific). The entire datasets were divided
at a ratio of 3:1:1 into a training set containing 51 pullbacks and 18519 images, where 2015
images were with plaque erosion, to train CNN models, a validation set containing 16 pullbacks,
5842 images, where 655 images were with plaque erosion, to optimize the hyperparameters of
the model, and a test set containing 16 pullbacks, 5553 images, where 605 images were with
plaque erosion, to evaluate the performance of the final model. For training and validation, only
the 2670 images with plaque erosion in the training set and validation set were utilized, but all
the 5553 images in the test set were used for evaluation. Two other physicians (Physician 2 and
3) only labeled the test set blinded to physician 1, which was used for evaluating inter-observer
agreement. In addition, 1600 randomly selected images from the training set were divided into a
training and a validation set at a ratio of 3:1 for training a vessel lumen segmentation algorithm
for facilitating shape feature extraction employed in the AI algorithm, and 400 randomly selected
images from the test set were used for validating the lumen segmentation algorithm.

2.2. Plaque erosion detection algorithm overview

To identify plaque erosion on intravascular OCT images is a challenging task because currently
available OCT imaging system does not have sufficient resolution to directly visualize the loss of
endothelial cells. Physicians usually utilize two domain knowledge for making a diagnosis: the



Research Article Vol. 13, No. 7 / 1 Jul 2022 / Biomedical Optics Express 3925

presence of OCT image features such as superficial mural thrombus and the lack of fibrous cap
rupture, and clinical interpretation of plaque erosion with exclusion of other types of plaques. The
detection system should preferably be able to provide interpretable information to clinicians for
decision making. As shown in Fig. 2, our proposed detection system consists of two components.
First, predicting the region (mask) of plaque erosion based on a shape-encoded CNN, which
we termed Mask RCNN-CK (Mask RCNN with convexity and curvature). The convexity and
curvature features are specifically designed to capture the mural thrombus present in plaque
erosion. However, the presence of such feature is not specific to erosion, as plaque rupture,
residual blood and thrombus may also have similar features. Second, refine the initial prediction
by implementing a classification algorithm to exploit clinically interpretable features of the
underlying plaque using a support vector machine (SVM) [37] classifier and a three-dimensional
processing module. Next, we introduce the key elements of the plaque erosion detection
algorithm.

Original image

Shape features

Mask

Plaque erosion

Mask RCNN

Shape-encoded convolutional neural network Mask RCNN-CK

Post-processing based on domain knowledge

Region of interest 
extraction

Classification using clinically 
interpretable features

Three-dimensional 
processing module

Enlarged view

Curvature

Convexity 

Fig. 2. Artificial intelligence (AI) based plaque erosion detection algorithm. The original
image and two key shape features convexity and curvature are input into a shape-encoded
convolutional neural network. The preliminary detected mask is fed to the second module,
where post-processing based on domain knowledge is performed to generate the final output.

2.3. Shape-encoded convolutional neural network

The shape-encoded CNN model was formulated as a multi-input CNN by combining two shape
features convexity and curvature as additional input branches into the Mask RCNN architecture
[35]. The details of the framework are presented in the following sections.

Shape features. CNNs are more concerned with textural features of images [38], but shape
feature is the more obvious signature of plaque erosion in intravascular OCT. We chose convexity
and curvature to express luminal surface irregularity (Fig. 3). In fact, adding the shape features is
essential as we found most existing state-of-the-art CNN models struggled for plaque erosion
detection (see Table 3). We first segmented the lumen boundary using another state-of-the-art
CNN model U-Net [39]. Based on the segmented vessel lumen boundaries, curvature was
computed as the rate of change of slope of the lumen boundary curve [40,41], and convexity was
computed as the difference between the convex hull of the lumen and the lumen itself [42](Fig. 3).

Network model. The entire network contains three input branches, the original image, the
convexity and curvature input (Fig. 4). Convexity and curvature undergo two independent feature
extraction modules (see Table 1) to obtain shape feature maps. The main branch features are
exacted with a Feature Pyramid Networks (FPN) [43], and are then served as the input of the
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Fig. 3. Characterization of convexity and curvature of plaque erosion. From left to right
are the original image, enlarged view of the lumen, convexity and curvature. Convexity:
computed as the difference between the convex hull of the lumen and the lumen itself, labeled
in cyan. Curvature: defined as the rate of change of slope of the lumen boundary curve,
labeled in a continuous colormap.

Table 1. Comparison of different shape encoder modules

VGG Module Residual Module Inception Module

Input 1024× 1024× 1

Conv_1
3× 3, 64, stride 1

7× 7, 64, stride 2
3× 3, 64, stride 2

3× 3, 64, stride 1 3× 3, 64, stride 1

2× 2 max pool, stride 2 3× 3 max pool, stride 2

Conv_2
3× 3, 256, stride 1 3× 3 max pool, stride 2 ⎡⎢⎢⎢⎢⎣

1 × 1 1 × 1 pool 1 × 1

3 × 3 5 × 5 1 × 1

⎤⎥⎥⎥⎥⎦3× 3, 256, stride 1 ⎡⎢⎢⎢⎢⎢⎢⎣
1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤⎥⎥⎥⎥⎥⎥⎦ × 12× 2 max pool, stride 2 Filter concatenation

Output 256× 256× 256

Table 2. List of the clinically interpretable features

Features Representations

Optical features

Intensity

Contrast

Histogram

Gradient of averaged A-line

Morphological features
Protrusion area derived from the convex hull of ROI

Variations of the distances between the ROI boundary and the convex hull
of the ROI

Geometric features Distance between the ROI and the image center point

Three-dimensional continuity The above features of the previous and the next frames
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Table 3. Quantitative comparison with state-of-the-art CNN methods

Methods Precision Recall

Faster RCNN No convergence

U-Net (ResNet-50) 0.140± 0.123 0.468± 0.312

DeepLabv3+ (Xception-65) 0.065± 0.069 0.531± 0.387

TransUNet 0.097± 0.077 0.878± 0.234

nnUNet 0.106± 0.082 0.936± 0.134

V-Net 0.064± 0.065 0.587± 0.381

SOLOv2 0.141± 0.094 0.830± 0.208

Mask RCNN (ResNet-50) 0.180± 0.119 0.982± 0.080

Mask RCNN-CK (ResNet-50) 0.362± 0.206 0.924± 0.124

Mask RCNN-CK+domain knowledge
classification

0.530± 0.252 0.888± 0.126

Mask RCNN-CK+domain knowledge
classification + three-dimensional

processing module

0.600± 0.279 0.949± 0.129

second stage of the network to generate potential ROIs of erosion via Region Proposal Network
(RPN). The rest of the network simply follows the design in Mask RCNN [35].

ResNet50 + FPN
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Fig. 4. Shape-encoded CNN model for plaque erosion detection in intravascular OCT. The
original image, convexity and curvature are fed into feature extraction modules to generate
ROIs via Region Proposal Network (RPN). The RCNN Head and Mask Head output the
detection results.

Encoder modules of shape features. The feature extraction modules of convexity and
curvature play an essential role to extract the key features of plaque erosion. Representations of
shape features are simple binary images with obvious features, which do not require very deep
convolutional layers for feature extraction. We designed and compared the VGG module [44],
Residual module [35] and Inception module [35]. Table 1 shows the details of the three shape
encoder modules with an output size of 256×256 as an example.

2.4. Post-processing based on domain knowledge

Classification using clinically interpretable features. CNNs are the intuitive reflection based
on input/output, and there still exists a gap in terms of professional medical domain knowledge
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compared with human experts. Therefore, clinically interpretable features were further extracted
from the output of the shape-encoded CNN, and input into a SVM [37] model for plaque erosion
classification. As shown in Fig. 5, the area corresponding to the predicted mask of plaque
erosion was extracted as ROIs from the original image based on the output of the shaped-encoded
CNN. The clinically interpretable features extracted from each ROI were designed to capture
the characteristics of the underlying plaque and help differentiate erosion from other tissues or
artifacts.

                                                     SVM Model

Region of interest extraction

Mask Original Image Region of interest

Optical features

Three-dimensional continuity

Morphological features

Feature Vector

Plaque erosion

Others

Plaque erosion

Others

Geometric features

Fig. 5. Schematic diagram of the classification model using clinically interpretable features.
The area corresponding to the mask output from the shape-encoded convolutional neural
network in the original image is used to extract clinically interpretable features, which are
input into a SVM model to obtain the classification results of plaque erosion.

As shown in Table 2, the clinically interpretable features mainly include optical features,
morphological features, geometric features and three-dimensional continuity [45]. The optical
features include the intensity, gradient, contrast, histogram and optical attenuation of tissue
[46,47]. The morphological features include the tissue protrusion area and roughness of the tissue
surface. The geometric features were used to prevent the guide wire artifacts from obscuring
plaque erosion detection.

Three-dimensional processing module. Based on the three-dimensional continuity of plaque
erosion, we further refined the plaque erosion detection results from the CNN. 26-connectivity
neighborhood system [48] was used to label 3D connected regions. Any lesion spanning less
than 3 frames was removed. Further, if there was any overlap between the connected regions
in the consecutive 3 frames, the middle image was labeled with the interpolated intersection
between the detected erosion of the previous and the next frames.

2.5. Implementation details

The proposed CNN method (Mask RCNN-CK) was implemented using the Keras 2.2.4 framework
based on Tensorflow 1.9.0. We used 4 Nvidia Titan XP GPUs with 12*4= 48GB memory for
training the CNNs. Due to memory constraint, we made the batch size to 4. We set the optimizer
to Stochastic Gradient Descent (SGD), the momentum to 0.9, and the loss function to cross
entropy. We trained the model with pre-trained weights with MS COCO datasets [49] and an
initial learning rate of 0.001. The model was trained in 260 epochs which took around 23h. For
lumen segmentation, the implementation details were the same as that in the original publication
[39].

The algorithm performance for plaque erosion detection was evaluated on a plaque-level instead
of pixel-level, where the detected plaque erosion was classified as true positive (TP), false positive
(FP) and false negative (FN) with the physician annotated ground truth as the gold standard. True
negative (TN) was not informative for this study since any regions other than plaque erosion fit in
this category, and was therefore not collected. Unlike typical image segmentation tasks, plaque
erosion usually does not have clear borders except for the part coincident with the lumen, and
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it is not realistic to precisely delineate the plaque erosion boundary even for physicians. We
therefore required the algorithm-detected plaque erosion to have at least 50% overlap with the
human annotation to be counted as TP. Specifically, if the Dice Coefficient (DIC) [50] between
the detected mask and any of ground truth was higher than 0.5, the predicted plaque erosion was
classified as TP. The detection accuracy was evaluated using the two widely accepted metrics
precision and recall [51]:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

.

Precision-recall (PR) curve was further extracted. Lumen segmentation accuracy was evaluated
by DIC on a pixel-level. Results were presented as mean± standard deviation.

3. Results

3.1. Main results

The proposed AI algorithm was run on the entire intravascular OCT pullbacks with no need
to exclude any frames. The running time for fully automated detection of plaque erosion was
0.447s per image for the entire method, where the shape-encoded network Mask RCNN-CK
(with Inception module) took 0.202s. Figure 6 shows four examples of automated detection of
plaque erosion compared with ground truth. Overall, the algorithm achieved close agreement
with ground truth. Due to the fact that intravascular OCT has limited depth penetration and
plaque erosion usually does not exhibit lateral boundaries, it is only possible to accurately detect
the boundary on the luminal side. There is a close agreement between the results of the proposed
network and ground truth for images with plaque erosion (Fig. 6(b)-(d)). For areas without plaque
erosion, the proposed network performed well on the reduction of false positives (Fig. 6(a)).

With the test set consisting of 5553 cross-sectional intravascular OCT images from 16 pullbacks,
the proposed AI algorithm achieved 0.600± 0.279 precision and 0.949± 0.129 recall for plaque
erosion (Table 3). The performance of lumen segmentation was 0.980± 0.010 in DIC. Comparing
with other widely used state-of-the-art CNN methods including Faster RCNN [52], U-Net [39],
DeepLabv3+ [35], TransUNet [53], nnUNet [54], V-Net [55] and SOLOv2 [56], Mask RCNN
[35] performed relatively better to be selected as the basis network to detect plaque erosion
automatically, and the shape-encoded module brought significant enhancement of algorithm
precision (Table 3). The post-processing algorithm based on domain knowledge can effectively
reduce possible learning bias and improve detection accuracy. It generated a significant visual
improvement on the final results, which is reflected numerically by the significant improvement
in precision. We also tested the algorithm on additional ten pullbacks consisting of 3224 images
without erosion and achieved an accuracy of 0.932± 0.075.

The proposed AI algorithm reached an area under the precision-recall curve (AUC) of 0.707
on the test set (Fig. 7). In clinic, different operating points are often required depending on the
specific patient management strategies. Based on the algorithm output, we propose operating
point A and B. At operating point B, a recall of 95% is achieved at 60% precision, which is the
direct result of the algorithm; at operating point A, an 80% recall is achieved at 73% precision
(Fig. 7). In this study, we chose the operating point A as the final result to better balance the
recall (0.800± 0.175) and precision (0.734± 0.254).

There are still some failure cases in the proposed AI algorithm. Figure 8 shows four cases in
which plaque erosion was not detected, which were agreed by at least 2 out of the 3 physicians.
Figure 8(a) and Fig. 8(b) are two challenging examples of plaque erosion with unclear lumen
boundaries (Fig. 8(a)), or with relatively low luminal surface irregularity (Fig. 8(b)). For the start
or end frame of the eroded segment, plaque erosion is relatively small and less obvious, and the
corresponding features are relatively difficult to be detected (Fig. 8(c) and (d)).
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Fig. 6. Plaque erosion detection by the proposed AI algorithm in four cases, with each
column showing one case. From top to bottom are the original images, ground truth, and
predicted plaque erosion by our proposed method respectively.

Fig. 7. Precision-recall curve (orange) shows the performance of the automated prediction
of plaque erosion against ground truth. Operating point A (73% precision) and B (95%
recall) are indicated by the blue and green triangles respectively. Blue-shaded areas indicate
95% confidence intervals.
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Fig. 8. Undetected plaque erosion, with each column showing one case. From top to bottom
are the original images and ground truth respectively. The blue circle, green triangle, and
pink rhombus on the top right respectively indicates physician 1, physician 2 and physician 3
agreed on the case.

We quantitatively compared the differences between the proposed AI algorithm and three
physicians on plaque erosion detection using the test set (Table 4). Three physicians independently
labeled the same 16 pullbacks in the test set blinded to each other. Physician 1 annotated all
pullbacks as plaque erosion. Physician 2 annotated one pullback as plaque rupture rather than
erosion, and physician 3 annotated two pullbacks (different with physician 2) as plaque rupture.
The recall of the proposed AI algorithm against physician 1 and physician 3 was higher than the
agreement between the physicians, but was slightly lower than physician 2. The error in precision
is possibly due to the presence of probable OCT-erosion (see Fig. 9). We additionally evaluated
the agreement between the proposed method and the consensus of the three physicians which
was generated by only keeping the plaque erosion segmented by all three physicians with at least
50% overlap. The algorithm achieved a precision of 0.422± 0.250 and a recall of 0.928± 0.124
compared with the consensus containing 11 pullbacks and 3612 images.

Table 4. Quantitative comparison between the proposed AI algorithm and three physicians

Methods Physician 1 Physician 2 Physician 3

Precision

Physician 1
Physician 2 0.574± 0.372

Physician 3 0.799± 0.366 0.854± 0.292
AI 0.600± 0.279 0.360± 0.297 0.465± 0.252

Recall

Physician 1
Physician 2 0.514± 0.419

Physician 3 0.772± 0.317 0.725± 0.290

AI 0.949± 0.129 0.647± 0.351 0.838± 0.238

Figure 9 illustrates some typical examples of probable OCT-erosion identified by the AI
algorithm but were not labeled by physicians. In general, only using the features presented by
intravascular OCT is difficult to eliminate the false positives shown in Fig. 9(a)-(g), where a
fibrous or lipid plaque with an irregular lumen surface is usually present. Figure 9(h) shows
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Fig. 9. Likely probable OCT-plaque erosion detected by the AI algorithm but missed by
physicians, with each column showing one case. From top to bottom are the original images
and the output from the algorithm respectively.

local luminal surface irregularity in the absence of thrombus, which was also detected by the
algorithm as false positives.

3.2. Ablation study

We run a number of ablation experiments to analyze the proposed CNN model Mask RCNN-CK.
Results are shown and discussed in detail below.

The design choice of encoder modules. One concern about the shape-encoded CNN model
is the feature extraction modules of shape features. We compared the three different encoder
modules (VGG Module, Residual Module, Inception Module) from simple to complex, applying
to Mask RCNN with convexity shape encoding (Mask RCNN-C). The results are shown in
Table 5, among which Inception module performed better. Also, we evaluated the effect of
different feature map sizes (512×512 pixels, 256×256 pixels and 128×128 pixels) with Inception
Module on network performance as shown in Table 6. We repeated the above experiments on
Mask RCNN-CK, and the best performing configuration was Inception Module with the feature
map size of 128×128 pixels on both convexity and curvature, which was used as our final choice.

The choice of shape features. Another concern about the shape-encoded CNN model is the
choice of shape features, and its choice is crucial to the algorithm performance. We proposed two
different shape features: convexity characterizes the protrusion of the plaque erosion; curvature
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Table 5. Quantitative comparison on Mask RCNN with convexity
with different encoder modules

Encoder modules Precision Recall

VGG Module 0.375± 0.230 0.579± 0.244

Residual Module 0.347± 0.220 0.630± 0.234

Inception Module 0.343± 0.199 0.683± 0.198

Table 6. Quantitative comparison on Mask RCNN with convexity
with different sizes of feature map

Size of feature map Precision Recall

512×512 pixels 0.316± 0.175 0.617± 0.253

256×256 pixels 0.343± 0.199 0.683± 0.198

128×128 pixels 0.343± 0.213 0.788± 0.151

represents luminal surface irregularity. We additional evaluated Mask RCNN model with a
lumen mask input (Mask RCNN-L) in binary format to implicitly encode the two shape features,
and quantitative comparison is shown in Table 7. It can be seen that Mask RCNN-CK performed
significantly better than Mask RCNN-L, Mask RCNN-C and Mask RCNN with curvature (Mask
RCNN-K) on both precision and recall. This demonstrated that the two shape features are
complementary and results are better if they are combined together and used explicitly. We
further evaluated simply calculating the shape feature values after the Mask RCNN output for
post-CNN classification. We computed the convexity area and the curvature value of the plaque
erosion regions of the training set, and a convexity area of 0.0007 mm2 and a curvature value
of 0.335 were used as thresholds, with which 97% of the training set were correctly classified
as plaque erosion. This model generated a much lower precision of 0.195± 0.123 and a recall
of 0.959± 0.084. This indicates that it is desirable to use the shape features at the first place as
direct input branches of the CNN models.

Table 7. Quantitative comparison on algorithms with different
combinations of shape features

Methods Precision Recall

Mask RCNN-C 0.343± 0.213 0.788± 0.151

Mask RCNN-K 0.277± 0.164 0.853± 0.176

Mask RCNN-L 0.333± 0.198 0.656± 0.236

Mask RCNN-CK 0.362± 0.206 0.924± 0.124

4. Discussion

We demonstrated an AI algorithm for automated detection of plaque erosion in vivo by intravascular
OCT, which included a plaque erosion detector using a shape-encoded CNN, and a domain
knowledge based classifier. While evaluating the performance of the proposed algorithm, we
have found seemingly significant inter-observer variability especially in precision (Table 4).
This is likely due to the fact that physicians may annotate different cross-sections of the same
underlying plaque erosion in the OCT pullback and generated exaggerated numerical differences
using our overlapping criteria for evaluating inter-observer agreement. However, such stringent
segmentation of plaque erosion is unnecessary in clinic as identifying the presence of plaque
erosion as the cause of ACS is more relevant for optimizing individualized precision treatment.
Another possible reason may be that there are certain limitations in the detection of plaque
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erosion by OCT. Despite the superior resolution of OCT, current clinically available OCT systems
cannot visualize the absence of endothelial cells on the plaque surface, and the presence of
luminal thrombus hampers the penetration of light into the underlying plaque, making reliable
measurements and diagnosis of the various causes of coronary thrombus difficult [57–59]. In many
of these cases, it is likely that thrombus still remained, and this may have led to a misdiagnosis of
erosion [60]. The definitions of plaque erosion in OCT were not validated by pathology especially
for probable OCT-erosion. Plaque erosion pathologically is not defined as the absence of lipid
or calcification at the culprit site. The underlying plaque is fibroatheroma, which may include
lipid and is not necessarily lacking calcification. Only the absence of endothelial cells is a key
pathological criterion for erosion which is difficult to visualize with OCT. Thus, the accuracy
of OCT to identify probable OCT-erosion remains to be validated. Our dataset contained a
variety of lesion types commonly encountered in clinic, including plaque erosion, plaque rupture,
calcified nodules, and others, as well as abundant images without plaque erosion for testing the
false positive rate of the proposed algorithm. Validation studies demonstrated that our proposed
method is robust and can achieve compelling performance in the real world clinical dataset.

The proposed AI model is desirable for further clinical translation and applications. The
proposed algorithm is fully automated which can provide fast feedback only from the original OCT
images without any additional input. Although there are false positives, they have characteristics
similar to plaque erosion (Fig. 9) and deserve further attention from clinical input. For these cases,
it is obvious that the trained deep learning model identified the key features of plaque erosion, but
gave different detection results from physicians because probable OCT-plaque erosion was not
assessed in this study. Our results suggest that although the algorithm cannot completely replace
physicians for diagnosis, it can automatically provide reliable objective recommendations while
effectively reducing inter-observer variability. Human-Machine interaction may be a better way for
accurate detection of plaque erosion. In addition, our proposed algorithm generates configurable
operating points, which can be changed according to specific diagnostic and treatment needs.

The proposed AI algorithm has important potential values for the diagnosis and treatment of
ACS patients. Plaque rupture and plaque erosion are the most common causes of ACS. However,
previous in vitro, autopsy and in vivo studies demonstrated that eroded and ruptured plaques
are distinct entities with unique pathobiology, morphologies, incidence, and clinical behaviors,
suggesting that their optimal treatment may differ [61,62]. Advances in the medical management
of atherosclerosis (lipid lowing therapy) leads to an increasing proportion of plaque erosion
relative to rupture. If targeted and individualized treatment can be carried out for erosion patients,
it may help make a significant impact on the management of ACS patients. The current “2018
European Society of Cardiology/European Society of Cardiothoracic Surgery Guidelines for
Myocardial Revascularization” classifies patients with acute myocardial infarction based on the
performance of the electrocardiogram, and early percutaneous coronary intervention (PCI) is
recommended to obtain early myocardium reperfusion and revascularization [63]. However,
stenting in the acute phase in the presence of a large thrombus burden may lead to acute
complications (distal embolization, no-reflow phenomenon, and acute stent thrombus) and major
adverse cardiac events [64]. Considering the potential differences in the response of ruptured
and eroded vessels to PCI and a better long-term prognosis of plaque erosion compared with
plaque rupture, the treatment for plaque erosion may prioritize antithrombotic therapy over PCI
[10,65]. Potential benefits include avoidance of stent thrombus and restenosis, and prolonged
dual antiplatelet therapy. The EROSION study [10] is the first proof-of-concept study to
demonstrate that the feasibility and safety of anti-thrombotic therapy without stenting in patients
with ACS caused by plaque erosion. When OCT revealed plaque erosion with TIMI 3 flow and
non-obstructive stenosis, stent implantation can be avoided. The study may potentially change the
current “one-size-fits-all” stenting strategy for ACS patients, therefore avoiding the short-term
and long-term complications related to stent. On this basis, conservative treatment for ACS
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caused by non-obstructive plaque erosion is recommended by recent EAPCI expert document on
clinical use of intracoronary imaging [59]. The ongoing EROSION II and EROSION III studies
(2021 Transcatheter Cardiovascular Therapeutics (TCT), Orlando, Florida) further expanded
the population and explored differences of reperfusion therapy strategy and clinical prognosis
between angiography and OCT-guided STEMI patients. The results will provide further evidence
on establishing and improving individualized treatment strategies for ACS patients based on
lesion characteristics.

There are several limitations of our work. The proposed CNN model is based on 2D images,
which may be inferior to physicians who often rely on adjacent frame information for plaque
erosion detection. An 3D extension of the algorithm should be explored in the future. While our
AI algorithm was trained and evaluated on a diverse and clinically representative demographic,
the subjects were not fully representative of a global population. Plaque erosion is multifactorial,
with age, sex and lifestyle factors such as smoking and diet known to contribute to disease risk.
Another limitation is that developing the AI algorithm required the manual labeling of thousands
of intravascular OCT images, which is time-consuming and laborious, so further work can be
done through semi-supervised or active learning so that physicians only need to label one of
several images, effectively reducing the workload.

5. Conclusions

In summary, we for the first time proposed a fully automated AI method for the detection of
plaque erosion in intravascular OCT images using deep learning. Our method can provide an
objective basis for clinical diagnosis, which may help enhance the diagnostic accuracy for plaque
erosion in vivo and develop individualized treatment strategies for optimal management of ACS
patients.
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