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Uncontrolled resection of replication forks under stress can
cause genomic instability and influence cancer formation.
Extensive fork resection has also been implicated in the che-
mosensitivity of “BReast CAncer gene” BRCA-deficient can-
cers. However, how fork resection is controlled in different
genetic contexts and how it affects chromosomal stability and
cell survival remains incompletely understood. Here, we report
a novel function of the transcription repressor ZKSCAN3 in
fork protection and chromosomal stability maintenance under
replication stress. We show disruption of ZKSCAN3 function
causes excessive resection of replication forks by the exonu-
clease Exo1 and homologous DNA recombination/repair pro-
tein Mre11 following fork reversal. Interestingly, in BRCA1-
deficient cells, we found ZKSCAN3 actually promotes fork
resection upon replication stress. We demonstrate these anti-
and pro-resection roles of ZKSCAN3, consisting of a SCAN
box, Kruppel-associated box, and zinc finger domain, are
mediated by its SCAN box domain and do not require the
Kruppel-associated box or zinc finger domains, suggesting that
the transcriptional function of ZKSCAN3 is not involved.
Furthermore, despite the severe impact on fork structure and
chromosomal stability, depletion of ZKSCAN3 did not affect
the short-term survival of BRCA1-proficient or BRCA1-
deficient cells after treatment with cancer drugs hydroxyurea,
PARPi, or cisplatin. Our findings reveal a unique relationship
between ZKSCAN3 and BRCA1 in fork protection and add to
our understanding of the relationships between replication
fork protection, chromosomal instability, and chemosensitivity.

Complete, faithful replication of DNA is key to genome
maintenance and cell proliferation (1). However, the DNA
replication process, which is carried out by tens of thousands of
replication forks, is frequently perturbed by factors of both
exogenous and endogenous origins (2, 3). To cope with this
challenge, cells have evolved a multitude of mechanisms to
protect the fork structure upon replication stress and promote
replication restart when the stress condition is resolved (4). A
number of chromatin-associated factors (e.g., BRCA1, BRCA2,
Rad51, BOD1L, FANC proteins) have been identified to be
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important for replication fork protection, which is essential for
the prevention of mutations and genomic instability (5). The
ATR/Chk1-dependent checkpoint pathway and a newly identi-
fied Ca2+-dependent signaling pathway have also been shown to
promote the protection of stalled replication forks (6, 7). Despite
these important advances, the molecular mechanisms and
regulation of fork protection and its role in cell survival in the
presence of replication stress remain incompletely understood.

Defects in fork protection are considered a major underlying
mechanism of genomic instability caused by mutations in fork
protection factors (5). The importance of fork protection in
cancer avoidance and treatment is exemplified by the func-
tions of the tumor suppressor BRCA1 (8, 9). BRCA1 protects
genome stability through its role in both DNA repair by ho-
mologous recombination (HR) and replication fork protection
(8–10). BRCA1 promotes HR, in part, by promoting resection
at double-strand DNA break (DSB) ends (11–14). Paradoxi-
cally, at stalled replication forks, BRCA1 acts to prevent
excessive fork resection by nucleases including Mre11 and
Exo1 that are also involved in DSB resection (15). Indeed,
BRCA1-deficient cancer cells exhibit excessive fork DNA
resection when challenged with replication stressors such as
hydroxyurea (HU) (8, 15). This aberrant fork resection is
believed to occur after fork reversal, leading to degradation of
nascent DNA and generation of extensive ssDNA behind the
replication forks, which eventually gives rise to chromosomal
instability (16, 17). The defects in HR and fork protection
caused by BRCA1-deficiency confer cellular hypersensitivity to
PARP inhibitors (PARPi) (18, 19). At least four PARPi (Ola-
parib, Rucaparib, Talazoparib, Niraparib), which are synthetic
lethal with BRCA1-deficiency, have been approved by FDA for
treating various cancers. However, cancer resistance to these
drugs develops almost invariably following treatment. It was
suggested that restoration of fork protection is a major
mechanism underlying the acquired chemoresistance,
although later studies suggest that this relationship is depen-
dent on specific genetic contexts (20, 21). Thus, further
elucidation of the regulation of fork protection in both
BRCA1-proficient cells and BRCA1-deficient cells is important
for the understanding of the mechanisms of genome mainte-
nance and the development of novel approaches to overcome
cancer resistance to PARPi.
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Regulatory role of ZKSCAN3 in replication fork processing
In an effort to identify new players and regulators in the
replication fork protection process, we explored the potential
involvement of a group of ZKSCAN proteins. ZKSCAN pro-
teins belong to the zinc finger (ZNF)-containing protein
family, which consists of the largest group of DNA-binding
proteins and are encoded by 5% of human protein-coding
genes (22). In the ZNF superfamily, 718 members contain
the C2H2-type ZNF domain and most of them are transcrip-
tion factors (23). Several of these factors have been implicated
in genome maintenance (e.g., TZAP, APTX, RNF138, ZATT)
(24). ZKSCAN is a unique subfamily of ZNF-containing pro-
teins that contain both KRAB domain and SCAN box in
addition to C2H2 ZNF domains. Twenty-five ZKSCAN genes
have been identified in human based on their predicted protein
sequences, although most of them have not been functionally
characterized (25). These ZKSCAN proteins likely act as
transcriptional repressors due to the presence of the KRAB
domain (26). The SCAN box is believed to mediate protein
dimerization (homodimerization or heterodimerization),
although its exact role in these proteins remains to be defined
(27–30). ZKSCAN3 is one of the few ZKSCAN proteins that
have been studied previously. ZKSCAN3 acts to suppress
autophagy through its role in inhibiting the transcription of
multiple genes that are required for autophagy and lysosome
biogenesis (31). A more recent study suggests that ZKSCAN3
also facilitates heterochromatin maintenance to suppress
senescence, and that this function is independent of its tran-
scriptional regulation of autophagy (32). Aberrant expression
of ZKSCAN3 has been shown to be associated with enhanced
cell proliferation and cancer metastasis, although the exact role
of ZKSCAN3 dysregulation in tumorigenesis remains to be
defined (33–40).

By carrying out a siRNA screen on the ZKSCAN protein
family using a fork resection assay, we identified ZKSCAN3 as
a new factor required for fork protection in BRCA1-proficient
cells in the presence of replication stress. Surprisingly, in
BRCA1-deficient cells, ZKSCAN3 promotes, instead of
inhibiting, fork resection upon replication stress. Remarkably,
the SCAN box alone is both necessary and sufficient for the
context-dependent role of ZKSCAN3 in the regulation of fork
resection. Despite the roles of ZKSCAN3 in fork resection and
chromosomal stability in both BRCA1-proficient and BRCA1-
deficient cells, its depletion did not obviously affect the
sensitivity of those cells to HU, cisplatin, or Olaparib.
Results

ZKSCAN3 is a novel fork protection factor required for
chromosome stability under replication stress

To explore the potential involvement of the human
ZKSCAN family proteins in genome maintenance, we per-
formed a siRNA screen to test their potential roles in pre-
venting abnormal fork resection after replication stress. We
used a previously described native BrdU immunofluorescence
staining assay, which detects exposed ssDNA in cells, to assess
fork resection under replication stress (7). Two different siR-
NAs were transfected into HeLa cells to silence each of the 25
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ZKSCAN genes (Fig. 1A). Cells were then incubated with BrdU
for 36 h, followed by HU treatment for 5 h to induce repli-
cation stress. After this, cells were permeabilized, fixed, and
stained with an anti-BrdU antibody. As shown in Figure 1B,
while siRNAs targeting most of ZKSCANs did not cause an
overt fork resection phenotype, siRNAs targeting ZKSCAN3
or ZKSCAN4 resulted in a significant increase of anti-BrdU
signal in HU-treated cells, suggesting that these two
ZKSCAN proteins are important for fork protection in the
presence of replication stress. In this study, we choose to focus
on ZKSCAN3, in part because its aberrant expression has been
observed in multiple cancers (33–40).

To further validate the function of ZKSCAN3 in fork pro-
tection, we performed a DNA fiber assay that measures the
degradation of nascent DNA strands at replication forks as a
result of fork resection. HeLa cells were incubated with
thymidine analogs iododeoxyuridine (IdU) and chlorodeox-
yuridine (CldU) sequentially followed by HU treatment to
induce replication stress. Cells were then lysed and genomic
DNA was stretched on slides by gravity. IdU and CldU tracks
in the DNA fibers were then detected by immunofluorescence
and the track lengths were measured. A ratio of CldU/IdU < 1
represents fork resection (41). Consistent with the native BrdU
assay results, siRNA-mediated knockdown of ZKSCAN3
caused an elevated level of nascent DNA degradation in HU-
treated cells. Importantly, this fork resection phenotype was
fully rescued by expression of an siRNA-resistant ZKSCAN3
construct in ZKSCAN3-depleted cells (Fig. 1C). To further
confirm the requirement of ZKSCAN3 for fork protection, we
generated a ZKSCAN3-KO HeLa cell line using the CRISRP/
Cas9 method. As shown in Figure 1D, ZKSCAN3-KO cells
exhibited a higher level of fork resection, than parental cells,
after HU treatment. This fork resection phenotype was again
rescued by ectopically expressed ZKSCAN3. siRNA-mediated
knockdown of ZKSCAN3 in the nontransformed RPE cell
line also resulted in excessive fork resection after replication
stress (Fig. 1E). Together, these results indicate that ZKSCAN3
plays a key role in preventing aberrant fork resection after
replication stress.

To further elucidate the significance of the fork protection
function of ZKSCAN3, we next performed a chromosome
spreading assay to analyze the effects of ZKSCAN3 depletion
on chromosome structural integrity. As shown in Figure 1F,
ZKSCAN3-knockdown cells exhibited an elevated level of
chromosomal abnormalities (including both breaks and fu-
sions) after HU treatment, compared to control-knockdown
cells. Taken together, these data strongly suggest that
ZKSCAN3 is a novel fork protection factor that safeguards
chromosomal stability in the presence of replication stress.
ZKSCAN3 prevents aberrant fork resection by Exo1 and Mre11
after fork reversal

Excessive fork resection usually occurs on reversed forks in
the presence of replication stress (16). Fork reversal is believed
to occur through two separate pathways, with one mediated by
FBH1 and the other by SMARCAL1, ZRANB3, and HLTF
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Figure 1. ZKSCAN3 promotes fork resection and chromosomal stability under replication stress. A, schematic diagram of the ZKSCAN proteins family.
Numbers shown in blue box denote the number of the Zinc fingers in each protein. B, a siRNA screen of ZKSCAN proteins as potential fork protection factors.
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Regulatory role of ZKSCAN3 in replication fork processing
(42–44). In the presence of HU, fork reversal requires
SMARCAL1 (45). To determine whether fork reversal is
required for the excessive fork resection observed in
ZKSCAN3-deficient cells, we performed DNA fiber experi-
ments in HeLa cells treated with siRNAs targeting ZKSCAN3,
SMARCAL1, or both. As shown in Figure 2A, fork resection in
ZKSCAN3-depleted cells was completely rescued by SMAR-
CAL1 knockdown. SMARCAL1 depletion also rescued the
fork resection phenotype in ZKSCAN3-KO cells (Fig. 2B).
These data support the idea that ZKSCAN3 prevents aberrant
processing of reversed replication forks upon replication
stress.

To determine which nucleases are involved in fork resection
in ZKSCAN3-depleted cells, we performed DNA fiber analysis
to examine the effects of functional disruption of Exo1 or
Mre11 on fork resection after replication stress. As shown in
Figure 2, C and D, both siRNA-mediated knockdown of Exo1
and Mirin-mediated Mre11 inhibition completely rescued the
fork resection phenotype in ZKSCAN3-knockdown or
ZKSCAN3-KO cells after HU treatment. These observations
suggest that ZKSCAN3 suppresses aberrant fork resection by
Exo1 and Mre11 after replication stress. This is similar to
BRCA1, which also inhibits excessive fork resection by Exo1
and Mre11 upon replication stress (15).
The SCAN domain of ZKSCAN3 mediates its role in fork
protection under replication stress

To further characterize the function of ZKSCAN3 in fork
protection, we next determined which domain(s) in ZKSCAN3
protein mediate its function. Like other ZKSCAN family
members, ZKSCAN3 contains three major domains, including
SCAN box, KRAB, and ZNF motifs (25). The SCAN box is
believed to mediate protein homo/hetero-dimerization,
whereas the KRAB and ZNF mediate transcriptional repres-
sion and DNA-binding activities, respectively (25). To deter-
mine the roles of these domains in fork protection, we
expressed N-terminally FLAG-tagged WT and truncation
mutants of ZKSCAN3 in ZKSCAN3-KO HeLa cells (Fig. 3, A
and B). DNA fiber analysis was then performed in those
replacement cells after HU treatment. In contrast to WT
protein, which fully rescued the fork resection phenotype of
ZKSCN3-KO cells, a ZKSCAN3 mutant lacking the SCAN box
failed to do so, indicating that the SCAN box is important for
the function of ZKSCAN3 in fork protection (Fig. 3C).
Fork resection was measured in HeLa cells after HU treatment (2 mM, 5 h) using
majority (98%) of untreated control cells (black dots) were taken as BrdU-posit
cells. HU-treated, control siRNA (siCtrl)-transfected HeLa cell samples were share
n = 2, ****p ≤ 0.0001 (unpaired t test). C, effects of ZKSCAN3 depletion on fork
Experimental procedures). Left lower panel: siRNA-mediated knockdown of ZKSC
cells. Right panel: Ratio of CldU/IdU track lengths for the samples depicted in th
measured for each sample. n = 3, ****p ≤ 0.0001 (one-way ANOVA). D, effects o
of FLAG-tagged ZKSCAN3 in ZKSCAN3-KO cells. Right panel: Ratio of CldU/Id
represent the median. At least 200 tracks were scored for each sample. n = 3,
knockdown on fork resection in RPE cells after HU treatment (4 mM, 2 h). Red
n = 3, ****p ≤ 0.0001 (unpaired t test). F, effects of ZKSCAN3 depletion on c
control- or ZKSCAN3-siRNAs were treated with HU (4 mM, 6 h) before the met
metaphase chromosome spreads in control- or ZKSCAN3-depleted cells treat
Quantified results of the samples depicted in the left panel. One hundred fifty
test). CldU, chlorodeoxyuridine; HU, hydroxyurea; IdU, iododeoxyuridine.
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Interestingly, cells expressing mutants lacking KRAB or ZNF
domains exhibited little or no fork resection after HU treat-
ment, indicating that these two domains are dispensable for
fork protection (Fig. 3C). Remarkably, expression of the SCAN
box alone in ZKSCAN3-KO cells fully rescued the fork
resection phenotype (Fig. 3D). These results indicate that the
SCAN box of ZKSCAN3 is both necessary and sufficient for its
function in fork protection. The observation that the KRAB
and ZNF domains are not required for fork protection strongly
suggests that ZKSCAN3 safeguards replication fork structure
independently of its function in transcriptional regulation.

To demonstrate the specificity of the function of the SCAN
box of ZKSCAN3 (hereafter referred to as SCAN3) in fork
protection, we tested whether the SCAN box of a different
family member ZKSCAN5 (hereafter referred to as SCAN5)
could also support fork protection in ZKSCAN3-depleted cells
upon replication stress. As shown in Figure 3E, SCAN3
expression fully rescued the fork resection phenotype of
ZKSCAN3-knockdown cells, consistent with the results
described above in ZKSCAN3-KO cells. In contrast, a similar
level of SCAN5 expression failed to rescue fork resection in
ZKSCAN3-depleted cells, demonstrating a unique role of the
SCAN box of ZKSCAN3 in fork protection (Fig. 3E).
ZKSCAN3, paradoxically, facilitates excessive fork resection in
BRCA1-deficient cells

The fork protection function of ZKSCAN3 described above
is similar to that of BRCA1, which also suppresses Exo1/
Mre11-dependent aberrant fork resection under replication
stress in a SMARCAL1-dependent manner (15). To examine
whether ZKSCAN3 acts in the same pathway or in parallel
with BRCA1 in fork protection after replication stress, we
depleted ZKSCAN3 in BRCA1-knockdown HeLa cells and
performed DNA fiber experiments after HU treatment.
Consistent with published results, BRCA1-knockdown cells
exhibited excessive fork resection after replication stress
(Fig. 4A). Strikingly, cells depleted of both ZKSCAN3 and
BRCA1 exhibited little or no fork resection after HU treat-
ment, compared to cells depleted of BRCA1 alone (Fig. 4A).
Similar results were obtained in RPE cells, indicating that this
unique relationship between ZKSCAN3 and BRCA1 in fork
resection regulation is not cell line specific (Fig. 4B). To further
confirm this finding, we used a BRCA1-deficient cell line UWB
1.289 (hereafter referred to as UW for simplicity) and a
a nondenaturing BrdU-staining assay. Cells with BrdU signal higher than the
ive (blue dots). Red bars represent the mean BrdU intensity of BrdU-positive
d in each experiment group. Thousand cells were analyzed for each sample.
resection after replication stress. Left upper panel: Experimental scheme (see
AN3 in HeLa cells and expression of siRNA-resistant ZKSCAN3 in knockdown
e left lower panel. Red bars represent the median. At least, 200 tracks were
f ZKSCAN3 KO on fork resection after replication stress. Left panel: Expression
U track lengths for the samples depicted in the left lower panel. Red bars
****p ≤ 0.0001, ns, not significant (one-way ANOVA). E, effects of ZKSCAN3
bars represent the median. At least 200 tracks were scored for each sample.
hromosomal integrity under replication stress. HeLa cells transfected with
aphase chromosomal spreading assay. Left panel: Representative images of
ed with HU. Chromosomal aberrations are marked by arrows. Right panel:
metaphases were examined for each sample. n = 3, **p ≤ 0.01 (unpaired t
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Regulatory role of ZKSCAN3 in replication fork processing
reconstituted cell line with BRCA1 re-expression (hereafter
referred to as UW+BRCA1) (46). As expected, UW cells
exhibited fork resection phenotype after replication stress,
which could be rescued by BRCA1 re-expression (see result for
UW+BRCA1 cells) (Fig. 4C). Consistent with the results
described above of BRCA1-knockdown cells, siRNA-mediated
knockdown of ZKSCAN3 in UW cells also reversed their fork
resection phenotype (Fig. 4C). By contrast, ZKSCAN3
6 J. Biol. Chem. (2022) 298(8) 102215
depletion resulted in excessive fork resection in UW+BRCA1
cells (Fig. 4C). These data strongly suggest that ZKSCAN3
promotes (instead of suppressing) excessive fork resection in
BRCA1-deficient cells and that BRCA1 promotes aberrant fork
resection in ZKSCAN3-deficient cells. Like BRCA1, the cyto-
solic DNA sensor protein cGAS has also been shown to sup-
press aberrant fork resection in the presence of replication
stress (47). However, unlike BRCA1-deficient cells, the fork
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(one-way ANOVA). HU, hydroxyurea.

Regulatory role of ZKSCAN3 in replication fork processing
resection phenotype of cGAS-deficient cells could not be
reversed by ZKSCAN3 depletion (Fig. 4D). This result further
demonstrates the unique functional relationship between
ZKSCAN3 and BRCA1.

We next asked whether the function of ZKSCAN3 in fork
resection regulation in BRCA1-deficient cells is also mediated
by its SCAN box. Indeed, expression of SCAN3 completely
restored fork resection in cells depleted of both ZKSCAN3 and
BRCA1 (Fig. 4E). This result again suggests that the role of
ZKSCAN3 in fork resection regulation is not mediated
through its transcriptional function. In line with this idea, no
obvious changes in the protein levels of fork reversal factors
(SMARCAL1, HLTF, ZRANB3) and resection nucleases (Exo1
and Mre11) were observed in ZKSCAN3/BRCA1 double-
depleted cells compared to single-depleted cells (Fig. 4F),
suggesting that the rescue effect of ZKSCAN3 depletion on
fork resection in BRCA1-deficient cells was not a result of
decreased expression of those factors. Consistent with the
J. Biol. Chem. (2022) 298(8) 102215 7
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ability of ZKSCAN3 depletion to rescue fork resection of
BRCA1-deficient cells, ZKSCAN3 depletion also partially
reversed the chromosomal instability phenotype of BRCA1-
knockdown HeLa cells after HU treatment (Fig. 4G).

ZKSCAN3 depletion did not rescue HR defects of BRCA1-
deficient cells

In addition to fork protection, BRCA1 also promotes HR-
mediated repair of DSBs, which can be caused by radiation or
fork collapse (11, 48). To determine whether ZKSCAN3
depletion can also rescue the HR defects of BRCA1-deficient
cells, we used a DR-GFP reporter to measure the efficiency of
HR in cells depleted of these proteins (49). A U2OS cell line
with an integrated DR-GFP reporter were infected with ade-
noviruses expressing the endonuclease I-SceI to induce a single
DSB within the reporter. Repair of this DSB by HR leads to
production of a functional GFP protein in cells, which can be
detected by flow cytometry (49). As shown before, siRNA-
mediated BRCA1 knockdown drastically reduced HR effi-
ciency (Fig. 5A). ZKSCAN3 knockdown alone apparently did
not affect HR efficiency (Fig. 5A). Cells depleted of both
ZKSCAN3 and BRCA1 exhibited a similar level of HR to cells
depleted of BRCA1 alone (Fig. 5A), suggesting that ZKSCAN3
depletion could not rescue the HR defects caused by BRCA1
loss. Under our experimental conditions, knockdown of BRCA1
and ZKSCAN3 individually or in combination did not cause
overt changes in the cell cycle profile, indicating that the
observed HR efficiencies in different samples did not result
from cell cycle alterations (Fig. 5B). To further test whether
ZKSCAN3 plays a role in BRCA1-mediated HR, we treated cells
with DNA damaging agents bleomycin or cisplatin to generate
DSBs and examined the formation of Rad51 foci, which is
required for HR (50). ZKSCAN3 depletion did not cause
obvious effects on Rad51 foci formation in cells in the presence
or in the absence of BRCA1 (Fig. 5C), further supporting the
idea that ZKSCAN3 is not involved in BRCA1-mediated HR.
The inability of ZKSCAN3 depletion to restore the HR in
BRCA1-deficient cells may, in part, explain the partial effect of
ZKSCAN3 depletion in alleviating chromosomal instability in
BRCA1-deficient cells induced by HU (Fig. 4G).

The context-dependent role of ZKSCAN3 in fork resection
regulation does not correlate with cellular sensitivity to
genotoxic agents

Aberrant fork processing and resulting chromosomal
instability may cause reduced cell viability in the presence of
replication stress. To determine whether the context-
dependent function of ZKSCAN3 in fork resection correlates
with cell survival, we examined the effects of ZKSCAN3
depletion on the viability of BRCA1-proficient or BRCA1-
deficient cells after treatment with HU. As shown in
Figure 6A, siRNA-mediated ZKSCAN3 depletion did not cause
obvious sensitivity to HU in HeLa cells, despite its role in fork
protection and chromosomal stability maintenance in the
presence of BRCA1. ZKSCAN3 depletion also caused little or
no sensitivity of BRCA1-deficient UW cells to HU, although
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fork protection was restored in those cells (Figs. 6B and 4C).
These results suggest that excessive fork resection and
resulting chromosomal aberrations do not always correlate
with cellular sensitivity to replication stress.

We also examined the effects of ZKSCAN3 depletion on the
sensitivity of BRCA1-deficient cells to Olaparib and cisplatin,
both of which are used to treat BRCA1-deficient cancers.
Consistent with published results, BRCA1-depleted cells
exhibited severe chromosomal instability after Olaparib or
cisplatin treatment and were highly sensitive to these che-
motherapeutics (Fig. 6, C–E) (51–53). ZKSCAN3 depletion
partially rescued chromosomal aberrations in BRCA1-depleted
cells (Fig. 6C). However, ZKSCAN3 depletion did not alter the
sensitivity of those cells to cisplatin or Olaparib (Fig. 6, D and
E). These data suggest that restoration of chromosomal sta-
bility is not sufficient to cause chemoresistance of BRCA1-
deficient cells.
Discussion

Our study has revealed a context-dependent role of both
ZKSCAN3 and BRCA1 in regulating fork processing in the
replication stress response. In WT cells, both ZKSCAN3 and
BRCA1 function to prevent excessive, Exo1/Mre11-mediated
fork resection after replication stress to preserve chromo-
somal stability (Figs. 1 and 2). However, ZKSCAN3 facilitates
fork resection in BRCA1-deficient cells and BRCA1 facilitates
fork resection in ZKSCAN3-deficient cells upon replication
stress (Fig. 4). These observations highlight a unique rela-
tionship between BRCA1 and ZKSCAN3 in fork resection
regulation. The functions of ZKSCAN3 in fork resection
regulation are mediated by its N-terminal SCAN box and are
independent of its role in transcriptional repression (Figs. 3
and 4). Despite its requirement for fork protection and chro-
mosomal stability maintenance, disruption of ZKSCAN3
function does not impact short-term survival of BRCA1-
proficient cells in the presence of replication stress (Figs. 1
and 6). Likewise, although ZKSCAN3 depletion rescues the
fork resection phenotype of BRCA1-deficient cells, it does not
rescue their sensitivity to chemotherapeutics such as Olaparib
and cisplatin (Figs. 4 and 6). These findings suggest that
aberrant fork resection and the resulting chromosomal insta-
bility do not always lead to reduced cell viability and that
restoration of fork protection does not necessarily give rise to
chemoresistance of BRCA1-deficient cancers.

The identification of novel functions of ZKSCAN3 in fork
processing and genome maintenance has expanded its physi-
ological functions and shed new light on its cancer relevance.
ZKSCAN3 has been shown to regulate autophagy, lysosome
biogenesis, and heterochromatin maintenance (31, 32). Our
study indicates that ZKSCAN3 also acts to safeguard the
genome (in BRCA1-proficient cells) by suppressing aberrant
replication fork processing (Fig. 1). Consistent with the notion
that excessive fork resection upon replication stress is
dependent on fork reversal (45), we found that depletion of
SMARCAL1 rescued the fork resection phenotype of
ZKSCAN3-deficient cells (Fig. 2, A and B). Like BRCA1,
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Figure 6. ZKSCAN3 depletion did not affect the sensitivity of BRCA1-proficient or BRCA1-deficient cells to HU, cisplatin, or Olaparib. A, effects of
ZKSCAN3 knockdown on the viability of HeLa cells after treatment with indicated doses of HU for 24 h. n = 3, data represent mean ± S.E.M. B, effects of
ZKSCAN3 knockdown on the viability of BRCA1-deficient UW cells after treatment with indicated doses of HU for 24 h. n = 3, data represent mean ± S.E.M. C,
result of metaphase chromosome spreading in HeLa cells depleted of ZKSCAN3, BRCA1, or both after treatment with Olaparib (9 μM, 6 h) or cisplatin
(0.5 μM, 6 h). One hundred fifty metaphases were examined for each sample. n = 3, ****p ≤ 0.0001 (one-way ANOVA). D and E effects of knockdown of
BRCA1, ZKSCAN3, or both on the viability of HeLa cells after treatment with the indicated doses of cisplatin (D) or Olaparib (E) for 24 h. n = 3, data represent
mean ± S.E.M. HU, hydroxyurea.

Regulatory role of ZKSCAN3 in replication fork processing
ZKSCAN3 acts to prevent aberrant fork resection by Exo1 and
Mre11 (Fig. 2, C and D) (15). ZKSCAN3 functional domains
have not been characterized before, but the KRAB domain is
likely important for its functions in regulating autophagy,
lysosome biogenesis, and heterochromatin maintenance
because those functions require ZKSCAN3’s transcriptional
function and/or its interaction with KAP1, both of which likely
involve the KRAB (31, 32). Surprisingly, the function of
ZKSCAN3 in fork protection is mediated solely by its N-ter-
minal SCAN box and does not require the KRAB and ZNF
domains (Fig. 3), indicating that the role of ZKSCAN3 in fork
resection is mechanistically separable from its other functions.
As a protein dimerization domain, SCAN may facilitate fork
protection via homodimerization or interaction with another
SCAN-containing protein (27–30). However, it is also possible
adenoviruses expressing I-SceI. GFP-positive cells were detected through flow
panel. Data represent mean ± S.E.M. n = 2, *p ≤ 0.05; **p ≤ 0.01, ns, not signific
with siRNAs targeting BRCA1, ZKSCAN3, or both. C and D, RAD51 foci in U2OS
(12.5 μg/ml, 6 h) (C) or cisplatin (10 μM, 6 h) (D). Left panel: representative im
panel: Percentage of cells with more than five RAD51 foci in samples depicted
0.0001; ns, not significant (one-way ANOVA). HR, homologous recombination.
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that the SCAN box in ZKSCAN3 mediates interactions with
proteins without SCAN that are important for fork protection.
We have not observed the association of ZKSCAN3 with
chromatin before or after replication stress, raising the possi-
bility that it does not act at the forks to prevent aberrant fork
processing. In addition to ZKSCAN3, our siRNA-mediated
screen also identified ZKSCAN4 as a potential fork protec-
tion factor (Fig. 1B). Little is known about the functions of
ZKSCAN4, but it shares highest similarity with ZKSCAN3 in
protein sequence among the 25 ZKSCAN genes in human cells
(54). However, these two proteins apparently do not function
redundantly in fork protection, because siRNA-mediated
ZKSCAN4 knockdown caused fork resection phenotype
without affect the protein levels of ZKSCAN3 (data not
shown). Future work is needed to further define the roles of
cytometry. Right panel: Quantified results of the samples depicted in the left
ant (one-way ANOVA). B, cell cycle profile of U2OS DR-GFP cells transfected
cells depleted of BRCA1, ZKSCAN3, or both after treatment with bleomycin
ages of RAD51 and γH2AX foci after bleomycin or cisplatin treatment. Right
in the left panel. Data represent mean ± S.E.M. n = 3, ***p ≤ 0.001; ****p ≤
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ZKSCAN3 and ZKSCAN4 and their functional relationship in
replication fork protection.

Our study has also provided additional evidence for the
emerging concept that excessive fork resection after replication
stress does not necessarily impact the chemosensitivity of
BRCA1-proficient or BRCA1-deficient cells (Fig. 6). Despite the
critical importance of ZKSCAN3 in fork protection and chro-
mosomal stability, no overt sensitivity of ZKSCAN3-depleted
cells to HU-induced replication stress was observed (Fig. 6A).
A similar phenotype was observed for BRCA2, whose depletion
causes aberrant fork resection but little sensitivity to HU (55).
By contrast, depletion of a number of other fork protection
factors such as BRCA1, RIF1, AMPK, BOD1L led to heightened
sensitivity to HU (7, 9, 14, 56). These observations suggest that
the impact of fork resection on cell survival in the presence of
replication stress is dependent on specific genetic contexts.
Recent studies suggest that reversal of the fork resection
phenotype in BRCA2-deficient cells can result in resistance to
PARPi (20, 57–60). In support of this idea, functional disruption
of PTIP, CHD4, or EZH2 reversed both fork resection and the
PARPi sensitivity of BRCA2-deficient cells (20, 61, 62). How-
ever, in BRCA1-deficient cells, silencing RADX, EZH2, or
MUS81 prevented excessive fork resection after replication
stress without reversing the PARPi sensitivity of those cells (15,
62, 63). Similarly, our results indicate that ZKSCAN3 depletion
also rescued the chromosomal instability phenotype of BRCA1-
deficient cells without affecting their sensitivity to PARPi or
cisplatin (Figs. 4 and 6). These observations suggest a context-
dependent role of fork resection and chromosomal instability
in the modulation of the chemoresistance of BRCA-deficient
cancer. The chromosomal instability caused by ZKSCAN3
deficiency may have long-term impact on cancer formation and
progression. Further dissection of the mechanisms and regula-
tion of fork protection will advance our understanding of
genome maintenance and the development of new cancer
treatment strategies.

Experimental procedures

Cell culture

HeLa, U2OS, and HEK293T cells were cultured in Dul-
becco’s Modified Eagle Medium (DMEM) with 10% fetal
bovine serum, 100 U/ml penicillin, and 100 μg/ml strepto-
mycin in a humidified incubator containing 5% CO2 at 37 �C.
DMEM/Nutrient Mixture F-12 medium (DMEM/F-12) was
used for culturing nontransformed RPE cells, as previously
described (7). UWB 1.289 cells and UWB 1.289 cells recon-
stituted with BRCA1 (gifts of Dr Alessandro Vindigni) were
cultured at 37 �C with 5% CO2 in 50% RPMI media, 50%
Mammary Epithelial Cell Growth Medium BulletKit (Lonza
CC-3150) supplemented with 3% fetal bovine serum, 100 U/ml
penicillin, and 100 μg/ml streptomycin.

Generation of ZKSCAN3 mutants and ZKSCAN3-KO and
ZKSCAN3-expressing cells

Flag-tagged human full-length ZKSCAN3 and its truncation
mutants were inserted into the pCDH vector via PCR and the
Gibson Assembly cloning methods. siRNA-resistant
ZKSCAN3 construct (with three point mutations) was made
by site-directed mutagenesis. To generate HeLa ZKSCAN3-
KO cell line, a construct expressing sgRNA (50 CACCG-
CACTATTGACACCAGCCCCA 30) in pLenti-CRSIPRv2
(Addgene #52961) was transfected into HeLa cells via Lip-
ofectamine 3000 (Life Technologies). Twenty four hours after
transfection, cells were selected by puromycin (2 μg/ml) for
48 h. Single cells were seeded and grown in 96-well plates for
amplification. Knockout single clones were verified by West-
ern blot. HeLa ZKSCAN3-KO cells stably expressing full
length ZKSCAN3 or its truncation mutants were generated
through lentiviral infection. Lentiviral vectors expressing full
length ZKSCAN3 or truncation mutants were contransfected
into HEK293T cells together with pPAX2 and pVSVG plas-
mids. Filtered lentivirus-containing medium was used to infect
HeLa ZKSCAN3-KO cells. Seventy two hours after infection,
the cells were selected by puromycin (2 μg/ml) for 48 h.
Expression of ZKSCAN3 proteins were verified by Western
blot using an anti-FLAG or anti-ZKSCAN3 antibody.

siRNA-mediated knockdown of gene expression

siRNA was transfected using lipofectamine RNAiMAX
(Thermo Fisher Scientific) according to the manufacturer’s
instructions. siRNAs used in this study include BRCA1
(Thermo Fisher, s459), Exo1 (Thermo Fisher, s17502),
SMARCAL1 (Thermo Fisher, s26996), ZKSCAN3#1 (Thermo
Fisher, s37205), ZKSCAN3#2 (Thermo Fisher, s37206), cGAS
(Thermo Fisher, s41746), and Control (negative control,
Thermo Fisher, 12935146). siRNAs used for the ZKSCAN
family screen are listed in Table 1.

Nondenaturing BrdU immunofluorescence staining for
measuring fork resection

HeLa cells were cultured on glass-bottomed dishes then
incubated with BrdU (10 μM) for 36 h before treatment with
HU (2 mM) for 5 h to induce replication stress. Cells were then
permeabilized with extraction buffer (10 mM Pipes pH 6.8,
100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 1 mM EGTA,
and 0.2% Triton X-100) for 5 min. After this, cells were
incubated sequentially with 3% paraformaldehyde in phos-
phate-buffered saline (PBS) (room temperature) for 20 min,
cold methanol (- 20 �C) for 20 min, and then ice-cold acetone
(4 �C) for 30 s. Subsequently, cells were incubated with
blocking buffer (PBS containing 0.05% Tween-20 and 2%
bovine serum albumin (BSA)) for 1 h at room temperature,
followed by incubation with anti-BrdU antibody (1:1000, BD
Pharmingen, 555627) overnight at 4 �C. Cells were then
incubated with goat anti-mouse secondary antibody (1:500,
Invitrogen, A11001) for 1 h at room temperature. Both pri-
mary and secondary antibodies were diluted in PBS containing
2% BSA. After staining with Hoechst 33342 (1 μg/ml), images
were captured using an inverted microscope (Nikon Ti-E) with
a 20× objective and Metamorph software (Molecular Devices).
The BrdU signal in individual nuclei (defined by Hoechst-
stained area) was determined using ImageJ. Cells with a
J. Biol. Chem. (2022) 298(8) 102215 11



Table 1
(Related to Experimental procedures)

siRNAs Source

siRNA for ZKSCAN1 #1 Thermo Fisher, siRNA ID: s15081
siRNA for ZKSCAN1 #2 Thermo Fisher, siRNA ID: s15082
siRNA for ZKSCAN2 #1 Thermo Fisher, siRNA ID: s50897
siRNA for ZKSCAN2 #2 Thermo Fisher, siRNA ID: s50898
siRNA for ZKSCAN3 #1 Thermo Fisher, siRNA ID: s37205
siRNA for ZKSCAN3 #2 Thermo Fisher, siRNA ID: s37206
siRNA for ZKSCAN4 #1 Thermo Fisher, siRNA ID: s51828
siRNA for ZKSCAN4 #2 Thermo Fisher, siRNA ID: s51829
siRNA for ZKSCAN5 #1 Thermo Fisher, siRNA ID: s24298
siRNA for ZKSCAN5 #2 Thermo Fisher, siRNA ID: s24300
siRNA for ZKSCAN6 #1 Thermo Fisher, siRNA ID: s15039
siRNA for ZKSCAN6 #2 Thermo Fisher, siRNA ID: s15040
siRNA for ZKSCAN7 #1 Thermo Fisher, siRNA ID: s31718
siRNA for ZKSCAN7 #2 Thermo Fisher, siRNA ID: s31719
siRNA for ZKSCAN8 #1 Thermo Fisher, siRNA ID: s15257
siRNA for ZKSCAN8 #2 Thermo Fisher, siRNA ID: s15258
siRNA for ZKSCAN9 #1 Thermo Fisher, siRNA ID: s19814
siRNA for ZKSCAN9 #2 Thermo Fisher, siRNA ID: s19815
siRNA for ZKSCAN10 #1 Thermo Fisher, siRNA ID: s15272
siRNA for ZKSCAN10 #2 Thermo Fisher, siRNA ID: s15273
siRNA for ZKSCAN11 #1 Thermo Fisher, siRNA ID: s15290
siRNA for ZKSCAN11 #2 Thermo Fisher, siRNA ID: s15291
siRNA for ZKSCAN12 #1 Thermo Fisher, siRNA ID: s19706
siRNA for ZKSCAN12 #2 Thermo Fisher, siRNA ID: s19707
siRNA for ZKSCAN13 #1 Thermo Fisher, siRNA ID: s32956
siRNA for ZKSCAN13 #2 Thermo Fisher, siRNA ID: s32957
siRNA for ZKSCAN14 #1 Thermo Fisher, siRNA ID: s38521
siRNA for ZKSCAN14 #2 Thermo Fisher, siRNA ID: s38522
siRNA for ZKSCAN15 #1 Thermo Fisher, siRNA ID: s51456
siRNA for ZKSCAN15 #2 Thermo Fisher, siRNA ID: s51457
siRNA for ZKSCAN16 #1 Thermo Fisher, siRNA ID: s46070
siRNA for ZKSCAN16 #2 Thermo Fisher, siRNA ID: s46071
siRNA for ZKSCAN17 #1 Thermo Fisher, siRNA ID: s39497
siRNA for ZKSCAN17 #2 Thermo Fisher, siRNA ID: s39498
siRNA for ZKSCAN18 #1 Thermo Fisher, siRNA ID: s25008
siRNA for ZKSCAN18 #2 Thermo Fisher, siRNA ID: s25009
siRNA for ZKSCAN19 #1 Thermo Fisher, siRNA ID: s21180
siRNA for ZKSCAN19 #2 Thermo Fisher, siRNA ID: s21181
siRNA for ZKSCAN20 #1 Thermo Fisher, siRNA ID: s31200
siRNA for ZKSCAN20 #2 Thermo Fisher, siRNA ID: s31201
siRNA for ZKSCAN21 #1 Thermo Fisher, siRNA ID: s15284
siRNA for ZKSCAN21 #2 Thermo Fisher, siRNA ID: s15285
siRNA for ZKSCAN22 #1 Thermo Fisher, siRNA ID: s10291
siRNA for ZKSCAN22 #2 Thermo Fisher, siRNA ID: s10292
siRNA for ZKSCAN23A #1 Thermo Fisher, siRNA ID: s50566
siRNA for ZKSCAN23A #2 Thermo Fisher, siRNA ID: s50567
siRNA for ZKSCAN23B #1 Thermo Fisher, siRNA ID: s35242
siRNA for ZKSCAN23B #2 Thermo Fisher, siRNA ID: s35243
siRNA for ZKSCAN24 #1 Thermo Fisher, siRNA ID: s15117
siRNA for ZKSCAN24 #2 Thermo Fisher, siRNA ID: s15118
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BrdU signal above that in the majority (98%) of HU-untreated
control cells were taken as BrdU-positive. For each sample,
1000 randomly selected cells were analyzed. Statistical analysis
was performed in GraphPad Prism 9.0 using an unpaired t test.

DNA fiber assay for measuring fork resection

HeLa, RPE, or UW cells were pulse-labeled sequentially with
thymidine analogs IdU (20 mM) for 20 min and then with CldU
(200 mM) for 20 min. Cells were then washed with PBS and
treated with HU (4mM) for 2 h to induce replication stress. After
this, cells were trypsinized and resuspended in ice-cold PBS at
500,000 cells/ml (for HeLa cells) or 1,000,000 cells/ml (for RPE
and UW cells). Two microliters of cell suspension were spotted
onto a precleaned glass slide and lysed with eight μl of spreading
buffer (0.5% SDS in 200 mM Tris-HCl, pH 7.4, and 50 mM
EDTA). After 6 min of incubation, the slides were tilted to spread
the genomicDNA. Slides were air-dried and then fixed in precold
methanol and acetic acid (3:1) for 10 min and stored overnight.
The next day, slides were rehydrated in water for 5 min and
12 J. Biol. Chem. (2022) 298(8) 102215
denaturedwith2.5MHCl for 1h at roomtemperature. Slideswere
then rinsed inPBS, blocked in 5%BSAwith 0.1%Tween-20 inPBS
for 1h at room temperature, and incubated with rat anti-BrdU
(1:500, Novus or Abcam) and mouse anti-BrdU (1:50, Becton
Dickinson) inahumidchamber for2h at roomtemperature.After
incubation, slides were washed in PBS with 0.1% Tween-20 and
stained with Alexa Fluor 488-labeled goat anti-mouse antibody
and Alexa Fluor 594-labeled goat anti-rat antibody (1:100 each,
Thermo Fisher Scientific). Slides were finallymounted in Prolong
GoldAntifade (ThermoFisher Scientific). Replication tracks were
imaged with a 60× objective fluorescence microscope (inverted
Nikon Ti-Emicroscope) andmeasured using ImageJ software. At
least 150 to 200 individual tracks were measured in each sample,
and results were analyzed in Graphpad Prism 9.0.

Metaphase chromosome spreading assay

Cells were seeded in six-well plates, treated with 4 mM HU
(Sigma-Aldrich), 0.5 μM cisplatin (Sigma-Aldrich), or 9 μM
Olaparib (SelleckChem) for 6 h and then recovered in fresh
medium for 20 h before being treated with nocodazole (0.2 mg/
ml) for 4 h to induce cell cycle arrest. Cells were then trypsinized
and harvested and then incubated in 75 mM KCl in PBS for
10 min at 37 �C followed by fixation in a methanol/acetic acid
(3:1) solution. After overnight incubation at 4 �C, the fixed cell
suspension was dropped onto slides to obtain chromosome
spreads, which were then stained with Giemsa (Sigma-Aldrich).
Images of metaphase spreads were captured throughmicroscopy
using a 60× objective. For each condition, at least 50 metaphases
were examined, and resultswere analyzed inGraphpadPrism9.0.

HR assay

U2OS cells stably expressing a DR-GFP HR reporter were
transfected with a control siRNA or siRNAs targeting BRCA1,
ZKSCAN3, or both. Two days after transfection, cells were
infected with adenovirus expressing I-SceI nuclease to intro-
duce a single DSB within the reporter. Three days after
infection, cells were trypsinized and washed with PBS, and the
GFP signal in live cells was measured using BD FACS Calibur
Flow Cytometer and analyzed using FlowJo. To analyze the cell
cycle, the remaining cells from GFP analysis were fixed with
70% ethanol for 30 min on ice, washed with cold PBS, and then
incubated with PBS containing propidium iodide (20 μg/ml)
and RNase A (200 μg/ml) at 37 �C for 30 min. Flow cytometry
was then performed using BD FACS Calibur Flow Cytometer
and cell cycle profile was analyzed using FlowJo.

Alamar Blue assay and CCK8 assay for measuring cell viability

Cells were seeded in 24-well plates at a density of
10,000 cells/well a day after transfection and treated with
cisplatin (Sigma-Aldrich) or Olaparib (SelleckChem) at the
indicated concentrations for 24 h. Three or four days after
treatment, cells were incubated with 1× Alamar Blue staining
buffer and then transferred into 96-well plates. Cell number
was measured through the absorbance at 595 nm in a
microplate reader and Gen5 version 2.09 software (BMG
LABTECH). Cell Counting Kit-8 assay (APE x BIO) was
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performed according to the manufacturer’s protocol. The cell
number was determined through the absorbance at 450 nm
using the same plate reader and software. Statistical analysis
was performed in GraphPad Prism 9.0.

Immunofluorescence staining and immunoblotting

Immunofluorescence staining was performed as previously
described (7). Briefly, cells cultured on glass coverslips were
washed with PBS once, then permeabilized with 0.2% Triton X-
100 in PBS (PBST) for 10 min at room temperature. After three
washes with PBS, cells were fixed with 4% paraformaldehyde for
10 min at room temperature and then blocked with 10% goat
serum in PBS for 1 h at room temperature. Coverslips were
incubated overnight at 4 �C with primary antibodies diluted in
PBS containing 10% goat serum and 0.1% Tween-20. Coverslips
were then washed with PBST three times, then incubated at
room temperature for 1 h in the dark with secondary antibodies
diluted in PBS containing 10% goat serum and 0.1% Tween-20.
After three washes in PBST, cells were stained with Hoechst
(1 mg/ml) for 10 min at room temperature before mounting
with Prolong gold mounting solution. Fluorescence images
were captured using a 60× objective. For each condition, at least
100 cells were quantified in a blind manner, and results were
analyzed in Graphpad Prism 9.0.

For immunoblotting, cells were collected and lysed in 1×
Loading Buffer with beta-mercaptoethanol. Total proteins were
separated by 8–12% SDS-PAGE for 1 h and then transferred onto
PVDFmembranes for 1 to 2 h depending on proteins’molecular
weights. After blocking with 1× casein buffer for 40 min, the
membrane was incubated with primary antibodies overnight at 4
�C and then with secondary antibodies (1:10,000, Thermo Fisher
Scientific). Western blot signal was detected using an Odyssey
scanning system (Licor). Primary antibodies were used at the
following dilutions: anti-ZKSCAN3 (1:100, Santa Cruz Biotech-
nology), anti-BRCA1 (1:1,000, Abclonal), anti-SMARCAL1
(1:1,000, Cell Signaling Technology), anti-HLTF (1:1,000,
Abclonal), anti-ZRANB3 (1:1,000, Abclonal), anti-Exo1 (1:1,000,
EMD Millipore), anti-Mre11 (1:1,000, Oncogene Research
Products), anti-Rad51 (1:100, Santa Cruz Biotechnology), anti-
Flag (1:1,000, Abclonal), anti-cGAS (1:1,000, Cell Signaling
Technology), and anti-beta Actin (1:5,000, Cell Signaling Tech-
nology). Beta-Actin was used as a loading control.

Statistical analysis

Statistical analyses were performed using GraphPad Prism
9.0. The tests performed, the sample size (n), and the number
of independent replicates for each experiment are described in
the figure legends.

Data availability

All data are contained within the article.
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