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Abstract

Endomyocardial biopsy (EMB) screening represents the standard-of-care for detecting 

allograft rejections after heart transplant. Manual interpretation of EMBs is affected by 

substantial inter-and-intraobserver variability, which often leads to inappropriate treatment with 

immunosuppressive drugs, unnecessary follow-up biopsies, and poor transplant outcomes. Here 

we present a deep learning-based artificial intelligence (AI) system for automated assessment of 

gigapixel whole-slide images obtained from EMBs, which simultaneously addresses detection, 

subtyping, and grading of allograft rejection. To assess model performance, we curated a 

large dataset from the USA as well as independent test cohorts from Turkey and Switzerland, 

which together include large-scale variability across populations, sample preparations, and slide 

scanning instrumentation. The model detects allograft rejection with an AUC of 0.962, assesses 

the cellular and antibody-mediated rejection type with AUCs of 0.958 and 0.874, respectively, 

detects Quilty-B lesions, benign mimics of rejection, with an AUC of 0.939, and differentiates 

between low- and high-grade rejections with an AUC of 0.833. In a human reader study, the 

AI-system provided non-inferior performance to conventional assessment and reduced inter-rater 

variability and assessment time. This robust evaluation of cardiac allograft rejection paves the way 

for clinical trials to establish the efficacy of AI-assisted EMB assessment and its potential for 

improving heart transplant outcomes.

Cardiac failure is a leading cause of hospitalization in the United States and the most rapidly 

growing cardiovascular condition globally[1, 2]. For patients with end-stage heart failure, 

transplantation often represents the only viable solution[3]. Cardiac allograft transplantation 

is associated with significant risk of rejection, affecting 30–40% of recipients mainly within 

the first six months after transplantation[4]. To reduce the incidence of rejection, patients 

receive individually tailored immunosuppressive regimens after transplantation. Despite the 

medications, cardiac rejection remains the most common and serious complication, as well 

as the main cause of mortality in post-transplantation patients[5–8].

Since early stages of rejections may be asymptomatic[8], patients undergo surveillance 

endomyocardial biopsies (EMBs) typically starting days to weeks after transplantation. 

Although there is no standard schedule, most centers perform frequent biopsies for 1–2 

years. Thereafter, the frequency is center-specific or on a for-cause basis. The gold-standard 

for EMB evaluation consists of manual histologic examination of hematoxylin and eosin 

(H&E)-stained tissue[3]. EMB assessment includes detection and subtyping of rejection as 

acute-cellular rejection (ACR), antibody-mediated rejection (AMR), or concurrent cellular-

antibody rejections, in addition to the identification of benign mimickers of rejections. 

The severity of the rejection is further characterized by grade. The rejection subtype and 

grade govern treatment regimen and patient management. Despite several revisions to the 

official guidelines, the interpretation of the EMBs remains challenging with limited inter- 

and intra-observer reproducibility [9–11]. Overestimation of rejection can lead to increased 
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patient anxiety, over-treatment, and unnecessary follow-up biopsies, while underestimation 

may lead to delays in treatment and ultimately worse outcomes.

Deep learning-based, objective and automated assessment of EMBs can help mitigate 

these challenges, potentially improving reproducibility and transplant outcomes. Multiple 

studies have demonstrated the potential of AI-models to reach performance comparable 

or even superior to human experts in various diagnostic tasks[12–24]. Previous attempts 

to algorithmically assess EMBs are limited to small datasets of manually extracted 

region of interests (ROIs) or hand-crafted features, did not focus on all tasks involved 

in EMB assessment, and lacked rigorous international validation across different patient 

populations[25–28].

In this study, we present Cardiac Rejection Assessment Neural Estimator (CRANE), a 

deep-learning approach for cardiac allograft rejection screening in H&E-stained whole-slide 

images (WSIs). CRANE addresses all major diagnostic tasks: rejection detection, subtyping, 

grading, and also detection of Quilty-B lesions. CRANE is trained with thousands of 

gigapixel whole slide images using case-level labels, supporting seamless scalability to large 

datasets without the burden of manual annotations. The model performance is evaluated 

on three test cohorts from the USA, Turkey, and Switzerland, using different biopsy 

protocols and scanner instrumentation. For model interpretability and introspection, visual 

representation of the model predictions are obtained via high-resolution heatmaps, reflecting 

the diagnostic relevance of morphologic regions within the biopsy. An independent reader 

study is performed to assess the model’s consensus with manual expert assessment and to 

demonstrate the potential of AI-assistance in reducing inter-rater variability and assessment 

time. An overview of the study is shown in Figure 1.

Results

Endomyocardial Biopsy Assessment via Deep Learning

CRANE is developed on an internal dataset consisting of 5,054 gigapixel WSIs from 1,690 

patient biopsies collected from the Brigham and Women’s Hospital. Each biopsy had three 

WSIs representing three levels of the tissue block (Figure 1a). Each case has associated 

labels for the presence of rejection, characterization of the rejection type as cellular and/or 

antibody-mediated, rejection grade, and presence of Quilty-B lesion. All cases diagnosed 

as AMRs were confirmed with C4d immunohistochemical (IHC) staining. The internal 

dataset was used for model training, validation, and held-out testing. To rigorously assess 

model adaptability, CRANE was tested on two additional independent international cohorts 

sourced from Turkey (1,717 WSIs from 585 patients) and Switzerland (123 WSIs from 123 

patients). These independent international test sets were deliberately constructed to reflect 

the large data variability present across populations and medical centers; including different 

biopsy protocols, slide preparation mechanisms, and different scanner vendors, which are all 

known contributors to image variability[17, 18, 35]. The variation in the color distribution 

across cohorts is illustrated in Extended Data Fig. 1. A specification of the data collection 

protocols, and the patient cohorts are provided in Figure 1, Supplemental Table 1, and the 

Dataset Description section of Methods.
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CRANE is a high-throughput, multi-task framework that simultaneously detects ACR, 

AMR, and Quilty-B lesions, including their concurrent appearances using H&E-stained 

WSIs as the input (Figure 1b). Due to the large size of gigapixel histology images, it is 

computationally inefficient and usually not possible to apply deep-learning models directly 

to the WSI. To circumvent this, we first automatically segment tissue regions and patch 

them into smaller sections. Using transfer learning, a deep residual convolutional neural 

network (CNN) is deployed as an encoder to extract low-dimensional features from raw 

image patches. The extracted features are further tuned to histology-specific representations 

through a fully-connected neural network. This allows for a high dimensional gigapixel 

WSI to be embedded into a set of compact low-dimensional feature vectors for efficient 

training and inference. The feature vectors serve as input for the attention-based multiple 

instance learning (MIL) module[17, 36]. Using the patient diagnoses for the supervision, 

the attention module learns to rank the relative importance of each biopsy region towards 

the determination of each classification task. The parameters in the first attention layers 

are shared among all three tasks to enable the identification of atypical myocardial 

tissue. Subsequently, a separate branch is used for each task, allowing the model to 

identify morphology specific to each diagnosis. The feature representations from all 

tissue patches, weighted by their respective predicted attention score for each task, are 

aggregated in attention pooling[36]. The resulting slide-level features are then evaluated 

by the corresponding task-specific classifier, which independently determines the presence 

or absence of ACR, AMR, and Quilty-B lesions, respectively. The presence of overall 

rejection is obtained by combining the AMR and ACR predictions for each biopsy. A 

separate, single-task MIL classifier is trained to determine the grade for each detected 

rejection, discriminating between low grade (grade-1) and high grade (grade-2 and 3) cases. 

The grade-2 and 3 are combined into a single group since they both require treatment 

interventions, in contrast to observational strategy used in grade-1 rejections, as well as due 

to the extremely low appearance of grade-3 cases. The high-grade rejection are then further 

differentiated into the specific sub-grades using a separate network. Due to the extremely 

rare occurrence of grade 3 rejections (9 cases in the USA, 13 in the Turkish, and none 

in the Swiss cohort), this problem could not be addressed at the whole-slide-level (i.e. 

using the weakly-supervised approach). Instead, a supervised model is designed which uses 

pixel-level annotations. This model, summarized in Extended Data Fig. 2, is trained on 

patches extracted from the biopsy regions corresponding to the specific rejection grades as 

annotated by experts. Additional details on the model architecture and hyper-parameters are 

described in the Methods section.

Evaluation of Model Performance

The internal USA dataset is partitioned into 70/10/20% splits for training, validation, and 

held out testing, respectively. The partition is constructed in a way to ensure a balanced 

proportion of each diagnosis across all splits. Multiple slides from the same biopsy are 

always presented in the same split. The model training is performed on slide-level, where 

each slide is considered as an independent data point with patient diagnoses as labels.

We examined the model performance across different magnifications, including 40x, 20x, 

and 10x. These experiments show that the rejections and Quilty-B lesions are best estimated 
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by fusion of models across multiple magnification, while the best performance for the grade 

prediction was achieved at 10x magnification (Extended Data Fig. 3a,b). This observation 

is compatible with the manual assessment, where signs of rejections usually need to be 

examined at different magnifications, while lower magnification is more informative for 

the grade determination since it provides more context on the extent of myocardial injury. 

Learning curves for all tasks are shown in Extended Data Fig. 3c.

On the held-out USA test set, which was not seen by the model during training, the model 

accuracy (ACC) and area under receiver operating characteristic curve (AUC) at the patient-

level are as follows: cellular rejections - AUC=0.958 (95% CI: 0.940–0.977), ACC=0.893, 

antibody-mediated rejection - AUC=0.874 (95% CI:0.801–0.946), ACC=0.899, Quilty-B 

lesions - AUC=0.939 (95% CI:0.910–0.969), ACC=0.920, and grade AUC=0.833 (95% CI: 

0.764–0.901), ACC=0.818, while the performance for overall rejection detection reached 

AUC of 0.962 (95% CI: 0.943–0.980) and an accuracy of 0.899. The patient/biopsy-level 

performance is reported in Figure 2 and Supplemental Table 2 and slide-level scores are 

provided in Extended Data Fig. 4, Supplemental Tables 3 and 4. The high performance 

in detecting overall rejections implies the model’s potential for screening negative cases. 

CRANE is also able to differentiate between ACR and their benign mimickers, Quilty-B 

lesions. Other benign injuries, such as old biopsy sites, focal healing injuries, and tissue 

scars, can often imitate the appearance of ACRs, particularly in the early stages after 

transplantation[37]. Although the model was not explicitly trained to account for such 

injuries, it learned to differentiate between ACRs and early injuries (i.e. 6 months post-

transplant) with AUC of 0.983 (95 % CI: 0.950–1.00), and an AUC of 0.977 (% CI 0.963–

0.991) for both early and old injuries (Supplemental Table 5). The also model is able to 

identify AMR using conventional H&E stained slides which is in line with other recent 

studies demonstrating the potential of deep-learning models to infer certain IHC properties 

from the H&E slides alone[34, 38]. In comparison to other tasks, the model performance is 

lower for the rejection grading, similar to the trends observed in manual EMB assessment[9–

11]. This can be attributed to the higher complexity of the grading task over rejection 

detection since the grade is characterized by the type and also extent of the tissue injury. The 

high-grade ACRs were further refined into the respective grades (i.e. grade 2 vs 3) through 

the supervised grading model (see Methods), which achieved an AUC of 0.929 (95% CI: 

0.861–0.997) and ACC= 0.885 at the patch-level (Extended Data Fig. 2). For slide-level 

predictions, obtained by the fusion of the patch-level estimates through a majority voting, 

were obtained with AUC=0.960 and ACC=0.800 (Supplemental Table 6).

The performance of the model is comparable for slide-level and patient/biopsy-level 

predictions. These results further imply that the patient-level labels, which are readily 

available in clinical records, are sufficient for model training without the burden of assigning 

diagnoses for each slide separately. While there may be label noise in the training data due 

to observer variability, deep learning models are known to be robust to a substantial amount 

of label noise[39]. The model performance across different patient groups (Supplemental 

Tables 7 to 9) further illustrates the model robustness to variations in patient’s age, gender, 

and time since transplant. The model robustness can be also assessed through the confidence 

of the predictions as demonstrated in Extended Data Fig. 5.
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Generalization to Independent International Test Cohorts

The AI-model is applied, without any form of domain adaptation, stain-normalization, 

or model tuning, to the two independent international external cohorts (Switzerland and 

Turkey). To stress-test the trained model these cohorts reflect large scale variability from the 

training cohort including different slide preparation protocols, and slide scanning vendors. 

Consistent with our assessment on the in-house held out dataset, the multitask model is 

applied to all available magnification downsamples in each cohort, while the grade is 

assessed from the 10x magnification. The patient-level scores are reported in Figure 2, 

Extended Data Fig. 6 and Supplemental Table 2, while the slide-level performance is 

reported in Extended Data Fig. 4 and Supplemental Tables 3 and 4. The scores for the 

refinement of the high-grade cellular rejections are reported in Extended Data Fig. 2 and 

Supplemental Table 6. Adapting the model from internal to external cohorts led to a drop 

in performance that varies between 0.02–0.13 for AUC and 0.02–0.14 for ACC scores, 

similar to other deep-learning models when applied to external independent data-sets[16, 

18, 40]. The performance decrease can be attributed to the large data variations among 

the cohorts. As demonstrated by previous studies even small changes, such as re-scanning 

the same slides with different scanner and variation in the slide preparation can also 

reduce performance even on simple binary classification tasks[18]. Additional factors, such 

as different staining techniques, slide-thickens, micron-per-pixel (mpp) variations across 

scanners (even for the same resolution[17,35]), and signal-to-noise ratio are other known 

contributors affecting the model performance – all present in our cohorts. Despite the 

decrease in performance on the external dataset, the fact that the model reached comparable 

scores on two highly distinct international cohorts without any form of domain adaptation, 

implies the model’s ability to generalize across large variations presented in histopathology 

data. Assessment of model performance on patient subgroups (Supplemental Tables 7, 8, 

9) further shows the model robustness to variations in patient’s age, gender, and time since 

transplant, which is especially interesting since the Turkey dataset also includes pediatric 

cases.

Model Interpretability

To visualize and interpret the model predictions, attention heatmaps can be generated 

for each task by mapping the normalized attention scores to their corresponding spatial 

location in the WSI, as shown in Figure 3 and in our public interactive demo available at 

http://crane.mahmoodlab.org. Technical details on heatmap generation are provided in the 

Methods. The attention scores represent the model interpretation of the diagnostic relevance 

of each biopsy region. While no manual annotations were used for training, the model has 

learned to discriminate between atypical and normal myocardial tissue. In all tasks, the 

high-attention regions typically correspond to diagnostically relevant morphology, while the 

low-attention scores are assigned to benign tissue. The attention maps should, however, not 

be over-interpreted as segmentation of rejection regions. They merely reflect the relative 

importance of each biopsy region (relative to others) for the model predictions. As so, we 

observed that the model places higher attention to the regions with atypical tissue, which 

might include even tissue without sign of rejection such as benign injuries or artifacts. 

The model predictions are, however, derived from the regions with the highest-attention 

scores for each task. This is further illustrated in Extended Data Fig. 7, which shows the 
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attention heatmaps for a case with concurrent ACR, AMR, and Quilty-B lesion. Although 

at the slide-level view, the attention maps appear relatively similar for all three tasks, 

the highest attention regions correspond to tissue with the task-specific morphology. This 

example also provides a visual interpretation of the model ability to differentiate between 

ACR and similarly appearing Quilty-B lesions. There is a visible difference in the heatmap 

appearance between the rejection and grading task, the first being more refined and detailed, 

while the grading task heatmap has more coarse morphology. This observation is consistent 

with manual EMB examination, where fine morphological details are used to determine 

the rejection type, while grade evaluation requires more spatial context. The high-attention 

regions provide useful insights on the morphologies driving the model predictions. Further 

quantitative analysis showed a high agreement between the model and expert assessment of 

diagnostically relevant regions (Extended Data Fig. 8).

Attention heatmaps for the external datasets are presented in Figure 4. In all cohorts, 

the model strongly attended to regions with rejection morphology, while the low-attention 

scores were assigned to regions with normal or benign myocardial tissue. This further 

demonstrates the ability of the model to generalize across diverse populations and different 

scanners. To further investigate the model predictions and limitations, we performed a 

detailed analysis of failure cases. The top misclassified cases from each cohort, specifically 

the cases where the model made incorrect predictions with the highest confidence, are 

detailed in Figure 5. We observed that for all failure cases, the model has correctly assigned 

high attention scores to the regions with rejection morphology. The detection of the rejection 

regions, however, does not necessarily warrant correct predictions. It just implies that the 

model has considered these regions to be the diagnostically most relevant, however, the 

corresponding features might not be discriminative enough for the model to draw a correct 

prediction. Despite the incorrect predictions, the identified high-attention regions can guide 

pathologists towards the relevant biopsy regions and in turn reduce the inter- and intra-rater 

variability.

Comparison with Human Readers

To compare the performance of the AI model with expert pathologists, we recruited 

five certified pathologists (average experience 10.5 years). Previous studies assessing the 

performance of AI models against pathologists for cancer diagnosis have relied on building 

a reference standard based on the consensus of human experts [15,16,19]. However, since 

the variability in EMB assessment is significantly large as compared to cancer diagnosis[11], 

cases where a consensus could be reached were relatively easy for the AI model. In light of 

this, we investigate the inter-observer variability among experts and the variability between 

the AI-system and individual experts. We randomly selected set of 150 EMBs from the 

Turkey cohort, including 91 ACR, 23 AMR cases (including 14 concurrent ACR and 

AMR cases), and 50 normal biopsies. All experts were blinded to pathology reports and 

previous assessments made on these biopsies. The cases were presented to the pathologists 

in random order through a digital web-based platform and no timing constraint was imposed 

on the readers. For evaluation purposes, the pathologists were asked to derive the diagnosis 

from H&E slides only, mimicking the CRANE’s set-up without the use of IHC for AMR 

detection. We first calculated the interobserver agreement between each pair of pathologists 
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using Cohen’s kappa that takes into account agreement by chance and then calculated the 

agreement between individual expert pathologists and the CRANE model trained on US 

cases. The agreement between the five experts was comparable to previous studies for 

assessing interobserver agreement in EMBs[10]. For all tasks, we observed that the AI 

predictions are not inferior to the human reads (Extended Data Fig. 9). For example, the 

average agreement for rejection detection between individual pathologists was κ = 0.537 

(moderate agreement) while the average agreement between individual pathologists and 

CRANE was κ = 0.639 (substantial agreement).

To further evaluate the potential of CRANE to serve as an assistive diagnostic tool, we 

conducted an additional reader study to assess the benefit of showing model generated 

heatmaps during case assessment. The pathologists were asked to assess 150 EMBs from 

the Turkey cohort. The readers were randomly asked to make assessments on WSIs only or 

on WSIs with AI-assistance in the form of attention-heatmaps shown as a semi-transparent 

layer at the top of H&E slide. All features available in our public interactive demo were 

available to the readers and no timing constraint was imposed on the readers. Following a 

four-week washout period, the pathologists repeated the task, but the readers from the first 

group used WSIs and the AI-assistance, while the second group used only WSIs. For the 

purpose of this study, we created the ground truth labels based on the consensus of the 

readers from the inter-rater variability experiment presented in Extended Data Fig. 9. While 

this reader study is limited in scope, it shows that utilizing CRANE as an assisting tool has 

increased the accuracy for all tasks and reduced the assessment time for all readers (shown 

in Extended Data Fig. 10). These results indicate the potential of AI-assistance in reducing 

the inter-rater variability and increasing the efficiency of manual biopsy assessment and set 

the stage for large scale studies and clinical trials to assess the benefit of AI-assisted EMB 

assessment.

Discussion

Herein, we present CRANE, a weakly-supervised deep-learning model for automated 

screening of EMBs in H&E-stained WSIs. Using multi-task learning, the model can 

simultaneously identify ACR, AMR, Quilty-B lesions, and their concurrent appearance, 

while an additional network is used to determine the rejection grade. The model has been 

trained using only patient diagnoses readily available in the clinical records, allowing 

seamless model deployment for large datasets from multiple centers. The usability of 

CRANE has been demonstrated on two independent international test cohorts, which 

reflect diverse geographic populations, scanners, and biopsy protocols. To the best of 

our knowledge, this is the first large-scale international validation of weakly-supervised 

computational pathology setup.

Although the datasets used in all three cohorts reflected the screening population of 

each participating institution, the proportion of AMRs cases was considerably lower in 

comparison to ACR in all cohorts, which is one limitation of the study. This can be 

attributed to the rarer appearance of AMRs and to the later recognition of this rejection type 

by the medical community. Even though CRANE’s performance for the rejection grading is 
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comparable to human experts, this task remains challenging and might benefit from future 

model improvements.

Our model demonstrates the promise of AI-integration into the diagnostic workflow. 

However, optimal use of weakly-supervised models in clinical practice remains to be 

determined. The specific advantages of CRANE suggests its potential to act as an assistive 

diagnostic tool aiming to increase the efficiency of EMB assessment and decrease the 

inter-rater variability by highlighting the predictive regions, such assistive tools which 

highlight areas of interest for human analysis are currently in use for cytology[41]. Improved 

robustness and accuracy of rejection assessment could reduce the number of unnecessary 

follow-up biopsies, a highly valuable outcome given the cost and risks associated with 

EMBs. CRANE can be further deployed to automatically screen for critical and time-

sensitive cases which may benefit from priority inspections.

While our study focuses on morphology-based biopsy assessment based on current ISHLT-

standards, future works could benefit from the integration of clinical endpoints, such as 

echocardiography or cardiac hemodynamic measurements, to improve patient stratification. 

Additional incorporation of emerging molecular biomarkers, such as donor-specific 

antibodies, intra-graft mRNA transcripts[37, 42–44], cell-free DNA[45], exosomes[46], 

and gene expression profiling[47] could further enhance our understanding of the 

pathophysiology of cardiac rejection and involved immune interactions. This study lays 

the foundation and prompts the need for future prospective trials to fully evaluate the extent 

to which AI-based assessments can improve heart transplant outcomes.

Methods

Dataset Description

USA Cohort.—The model was developed using the USA cohort collected at Brigham and 

Women’s Hospital, which comprise of 5,054 WSIs from 1,690 internal EMBs (2004–2021). 

The Mass General Brigham institutional review board approved the retrospective analysis 

of pathology slides and corresponding pathology reports. Informed consent was waived for 

analysing archival pathology slides retrospectively. All pathology slides were de-identified 

before scanning and digitization. All digital data, including whole slide images, pathology 

reports and EMRs were de-identified before computational analysis and model development. 

We collected all available ACR cases between 2007–2021, and AMR cases between 2011–

2021. Since the number of high-grade rejections decreased over the last decade, we included 

all grade 2 and 3 cellular rejections from 2004 onwards. Since a majority of EMBs are 

diagnosed as normal, these cases were collected from 2017–2020, where the number of 

normal cases were selected to be approximately equivalent to the number of rejection cases. 

Having a higher amount of normal cases might not be beneficial since machine learning 

methods tend to develop a bias toward the majority class present in the training data[48]. 

The diagnoses for all cases were distilled from deidentified pathology reports, which have 

been determined by expert cardiac pathologists based on the contemporary ISHLT criteria 

(i.e. ISHLT-2004 guideline for ACRs and the ISHLT-2013 for the AMRs.) Due to the 

changes in the ISHLT-guidelines over the collecting period, all cases from the early years 

have been re-evaluated to ensure compatibility with the contemporary ISHLT-guidelines. 
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The IHC staining was performed for all the cases included in the study as a part of clinical 

biopsy assessment. The only exception is a set of 3 high-grade cellular rejections from 

2004, for which the C4d IHC status is not reported. Since for these 3 cases we cannot 

guarantee the absence of pAMR-1i rejection, they were excluded from the study. The slides 

were scanned at 40x (with 20x and 10x downsamples) using Hammatsu S210 scanner. This 

dataset is randomly partitioned and stratified by diagnosis, into a training set (70% cases), 

a validation set (10% cases), and a held out test set (20% cases). The partitioning was 

performed at the patient-level to ensure that all the slides from the same biopsy are always 

placed into the same set. Patient demographics (age, gender, and time post-transplant) and 

their distribution is reported in Supplementary Table 1.

The model was additionally evaluated on two international independent test sets submitted 

from medical centers in Turkey and Switzerland. The institutional review board at Ege 

University, Turkey approved the study. The study was considered exempt from review board 

approval in Switzerland. All data from Turkey and Switzerland was deidentified at their 

corresponding institutions and received at BWH for model testing. The diagnoses for these 

cohorts, determined by expert cardiac pathologists, were extracted from the de-identified 

pathology reports at each institution. The C4d IHC staining was used to confirm all AMR at 

both centers. The slides from different cohorts were prepared at their respective institutions 

using diverse biopsy protocols, staining approach, and scanner vendors. Even though all 

three centers use similar biopsy protocols, their slide preparation and scanning processes 

process differs. For example, in the USA and Turkish cohort, each biopsy level is store on a 

separate slide, whereas in the Swiss cohort all three biopsy levels are placed in a single slide. 

Due to this, there is no difference in the patient and slide-level predictions for the Swiss 

cohort.

Turkey Cohort.—The Turkey cohort comprised of 1,717 WSIs from 585 patients, 

collected between 2002 to 2020, at the Ege University Hospital, using the following 

data-selection protocol. The cellular rejections were collected from 2006–2020 and the 

antibody-mediated rejection from 2011–2020, including all available cases. For a robust 

assessment of the model on rare high grade rejections, all available 2R and 3R rejections 

from 2002–2005 were also included in the test set. Due to the concurrent appearance of 

cellular and antibody-mediated rejections, the dataset contains additional 4 AMRs cases 

from 2007. The non-rejection cases were collected from 2014–2020, where the amount of 

non-rejection cases was selected to be proportional to the overall number of all collected 

rejections cases. To maintain compatibility with contemporary ISHLT-grading guidelines, 

all cases from the early years have been re-evaluated by pathologists at the Ege Universtiy 

Hospital. The IHC staining was performed on all cases as a part of the clinical assessment. 

The only exception is a set of 26 patients from the early years for which the IHC status is not 

reported. Similar to the USA cohort, these cases were not considered when evaluating model 

performance for antibody-mediated rejections. The slides were scanned at 40x (with a 10x 

downsample) using the Lecia Aperio CS2 scanner. Patient demographics (age, gender, and 

time post-transplant) and their distribution is reported in Supplementary Table 1.

Lipkova et al. Page 10

Nat Med. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Swiss Cohort.—The Swiss cohort comprised of 123 WSIs from 123 patient cases, 

collected from 2014 to 2020, at the Bern University Hospital (following the ISHLT-2004 and 

ISHLT-2013 guidelines for ACRs and AMRs, respectively). The patient selection, however, 

was performed in a way to reflect the variation in the population. The slides were scanned at 

20x and 10x using the 3DHistech 250 Flash scanner. Despite the lower magnification used 

for the Swiss cohort, the microns per pixel of the WSIs is comparable to images from the 

remaining two cohorts. Due to the small number of cardiac allograft transplants performed 

in Switzerland (less than 40 cases per year, based on Global Observatory on Donation and 

Transplantation center), information related to patient demographics (such as age, gender, 

and time post-transplant) were not available to preserve patient’s privacy.

Multi-task Weakly-Supervised Model Architecture

To assess the state of EMB, it is necessary to determine whether the biopsy tissue is 

normal or demonstrates signs of rejections. In the latter case, it is needed to determine 

whether the rejection is acute-cellular, antibody mediated, or if it is a benign Quilty-B lesion 

mimicking cellular rejection. The different rejection states are not mutually exclusive but 

can appear concurrently. The extent of the rejection is further quantified by the rejection 

grade. CRANE uses two weakly-supervised networks to address all these tasks. The first 

network assesses the state of the EMB, while the second network determines the grade 

of the detected rejections. Additional an auxiliary model is designed to refine the inferred 

high-grade rejections into the grade 2 and 3, respectively.

CRANE uses attention mechanisms, which as shown previously[17, 18], is particularly 

suitable for dealing with whole-slide images. Although the CRANE’s architecture is similar 

to previous works dealing with cancer detection[17, 24], the task at hand is unique to 

each problem. In contrast to the cancer detection problem, where the malignancy is 

specified by a presence of a distinct and repeating pattern, the cardiac rejections exhibit 

substantially large variability in the diseases representation. Specific rejection types can be 

represented by several different morphologies e.g. diffusive vs focal inflammatory infiltrates. 

At the same time, similarly appearing patterns can encode various rejection types or their 

mimickers, while multiple rejection types can coexist within a single slide. The CRANE’s 

predictions can be obtained on both, patient and slide-level. For simplicity, we describe the 

model’s architecture using the slide-level formalism, while the adaptation to the patient-level 

predictions is provided afterward.

To minimize the number of models required for the EMB evaluation we opted for a 

multi-task architecture which allows simultaneously predict the presence or absence of 

acute cellular rejection (task 1), antibody mediated rejection (task 2), and Quilty-B lesions 

(task 3). In this formulation, all acute cellular rejections of non-zero grades (i.e. 1R, 

2R, and 3R) are consider as a single class. Same for all the non-zero grades of antibody-

mediated rejections (i.e. pAMR-1i, pAMR-1h, pAMR2, pAMR2, and pAMR3). The reason 

for combining all rejection grades into a single class is that different rejection types are 

characterized by diverse morphology, and thus the role of the multi-task model is to learn to 

distinguish among the rejection types, their benign mimickers, and healthy tissue. Posing 

the problem as three multi-task binary classifiers allows to make all three predictions 
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simultaneously while also enabling analysis of the biopsy regions responsible for predictions 

of each task via attention heatmaps.

Since histology images are typically comprised of several gigapixels, it is computationally 

inefficient – and often infeasible – to apply CNN models directly on the entire WSI. 

The standard deep-learning models usually use smaller ROIs for model training. This 

approach, however, requires manual annotation of representative image regions in each 

WSI for each considered task. A high cost and human bias of manual annotations often 

limits the deployment of such deep-learning models on a large scale. To overcome these 

limitations we use the multiple-instance-learning (MIL) approach. In the MIL formalism, a 

WSI is considered as a collection (referred to as ”bag”) of smaller image regions (referred 

to as ”instances”). Using the weak supervision in the form of patient diagnosis, the model 

learns to identify which image regions are representative for the given diagnosis.

Preprocessing.—To preprocess the WSI data we used the publicly available CLAM 

WSI-analysis toolbox[17].

First, the tissue regions in each biopsy slide were segmented and stored as object contours. 

To train models at different magnifications, we extracted non-overlapping 256×256-sized 

image patches from each magnification using the segmentation contours. Afterward, 

a pretrained ResNet50 is used to embed each patch into a low-dimensional feature 

representation. Specifically, using spatial average pooling after the 3rd residual block leads 

to a single 1024-dimensional feature vector representation for each image patch. For a 

WSI represented as a bag of K instances (patches), we denote the patch-level embedding 

corresponding to the kth patch as zk ∈ ℝ1024

Histology-specific features.—To enable the model to learn histology-specific feature 

representations, the deep features extracted by ResNet50 encoder are further tuned through 

three stacked fully-connected layers Fc1, Fc2, and Fc3, parameterized by W1 ∈ ℝ768×1024, 

b1 ∈ ℝ768, W2 ∈ ℝ512×768, b2 ∈ ℝ512, and W3 ∈ ℝ512×512, b3 ∈ ℝ512. In this way, each 

patch-features embedding zk ∈ ℝ1024 is mapped to a 512-dimensional vector hk defined as:

hk = ReLU W 3 ReLU W 2 ReLU W 1zk
⊤ + b1 + b2 + b3 . (1)

This low-dimensional feature embeddings serve as input for the multi-task attention pooling 

module.

Multi-task Attention Pooling.—The attention module aggregates information from 

all tissue regions and learns to rank the relative importance of each region toward the 

determination of each classification task. All three tasks are learned jointly, sharing the 

model parameters in the first layer, while a separate branch is used for each learning 

objective in the second layer. In this architecture, the first attention layer consists of two 

parallel attention networks: Attn-Fc1 and Attn-Fc2 with weight parameters Va ∈ R384×512 

and Ua ∈ R384×512 (shared across all tasks), and one independent layer Wa,t ∈ R1×384 for 
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each task t. The attention module is trained to assign an attention score ak,t for each patch k 
and task t, given as:

ak, t =
exp W a, t tanh V ahk

⊤ ⊙ sigma Uahk
⊤

∑j = 1
N exp W a, t tanh V ahj

⊤ ⊙ sigma Uahj
⊤ .

(2)

For simplicity, the bias parameters are omitted in the above equation. After applying the 

softmax activation, the attention scores reflect the relevance of each image region towards 

determining the given diagnosis; where the highly relevant regions have scores close to 1 

and the diagnostically non-specific regions have scores close to 0. The representation of the 

entire slide for the given task t is then computed by averaging feature representations of 

all patches hslide,t in the given slide, weighted by their respective attention scores ak,t as 

follows:

ℎslide, t = ∑k = 1
K ak, t ℎk (3)

Multi-task classifier.—The deep features hslide,t of each task are fed into the final 

classification layer. This layer consists of three binary classifiers, one per each task. The 

slide-level probability prediction score for each task t is computed as,

pt = softmax W cls, t hslide, t + bcls, t , (4)

where each task-specific classification layer (cls) is parametrized by Wcls,t ∈ R2×512 and 

bcls,t,t ∈ R2.

Rejection grade.—The rejection grade is estimated by the second weakly-supervised MIL 

network. The network takes as input WSI, which was classified as rejection by the multi-

task model, and performs binary classification which discriminates between low (grade 1) 

and high (grade 2 and 3) state. The network has the same architecture as the multi-task 

model described above, with the only difference being that the model for grading is posed as 

a single-task binary classifier.

Hyperparameters and Training Details.—We randomly sampled slides using a mini-

batch size of 1 WSI and used multi-task learning to supervise the neural network during 

training. For each slide, the total loss is a weighted sum of loss functions from all three 

tasks:

ℒtotal = c1ℒcls, 1 + c2ℒcls, 2 + c3ℒcls, 3 (5)

The standard cross-entropy was used for all tasks and c1 = c2 = c3 = 1/3. In the single-task 

model for the grade prediction, standard cross-entropy is used as well, but without scaling 

parameter c. The model parameters are updated through the Adam optimizer with a learning 

rate 2e-4 and L2-weight decay of 1e-5. The running averages of the first and second moment 

of the gradient were computed with the default coefficient values (i.e. β1 = 0.9, β2 = 0.999). 
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The epsilon term for the numerical stability is also used with the default value of 1e-8. To 

protect the model from potential over-fitting, dropout layers with p = 0.25 are used after 

every hidden layer.

Model Selection.—During training, the model’s performance is monitored for each epoch 

using the validation set. The model is trained for a minimum of 50 epochs and a maximum 

200. After the initial 50 epochs, if the validation loss (i.e. sum of all tasks) has not decreased 

for 20 consecutive epochs, early stopping was triggered and the best model with the lowest 

validation loss was used for reporting the performance on the held-out test sets. 5-fold 

cross-validation is used to further assess the robustness of the model’s training, where the 

best model is selected based on the performance on the validation set.

Patient-level predictions.—The model predictions can be obtained at both, slide and 

patient-level. At the slide level, each WSI is treated as an independent data point. In the 

patient-level approach, all slides and their corresponding patches from a biopsy are treated 

as a single input (unified bag) for the model. The model then aggregates information from 

all slides to perform the patient-level predictions.

Attention Heatmaps

For each task in the multi-task prediction problem, the attention scores predicted by the 

model can be used to visualize the relative importance assigned to each region in the 

WSI. Similar to how WSIs are processed for training and inference, we first tile each 

WSI into 256×256 patches without overlap, perform feature extraction and compute the 

attention score for each patch for each prediction task. For increased visual smoothness, we 

subsequently increase the tiling overlap up to 90% of the chosen patch size and convert 

the computed attention scores to percentile scores between 0.0 (low-attention) to 1.0 (high-

attention) using the initial sets of attention scores that were computed without overlapping as 

references. Finally, normalized scores were mapped to their corresponding spatial location 

in the WSI and scores within overlapped regions were reduced by summing and averaging. 

Lastly, the attention heatmap was registered with the original H&E image and displayed as 

a semitransparent overlay. Examples of attention maps are provided in Figure 3, Extended 

Data Fig. 7 and Fig. 4 and can also be visualized in high-resolution through our interactive 

demo http://crane.mahmoodlab.org.

Refining high-grade rejections

To demonstrate the feasibility of using deep learning to distinguish between grades 2 and 

grade 3 cellular rejections we trained a separate supervised deep network. This task could 

not be accomplished in a weakly-supervised manner because of the limited cases available 

for grade 3 rejections. We obtained rough, pixel-level expert annotations of representative 

regions for each rejection type in WSIs from 33 EMBs (14 cases with grade 2 and 9 with 

grade 3) in the USA cohort, and 26 EMBs in the Turkish cohort (13 cases with grade 2 and 

13 with grade 3). Image patches of size 512 × 512 (without overlap) were then extracted 

from the annotated regions. The USA dataset was randomly partitioned into 60% training, 

20% validation and 20% held out testing while ensuring patches from the same patient are 

always drawn into the same subset. We used a pretrained convolutional neural network based 
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on the EfficientNet-B3 architecture[49], initialized with weights pretrained on ImageNet. 

The model was trained on 2 Nvidia 2080 Ti GPUs using distributed data parallel for up 

to 50 epochs using a batch size of 8 patches per GPU, a learning rate of 2e-4 and l2 

weight decay of 1e-5 with the Adam optimizer with default optimizer hyperparameters (see 

Hyperparameters and Training Details). The validation loss was monitored each epoch and 

early stopping was performed when it did not improve for 10 consecutive epochs. The 

model checkpoint with the lowest recorded validation loss is then evaluated on the held 

out test set. The experimental setup was repeated 5 times, with different random partitions. 

The patch-level performance of the classifier is shown in Extended Data Fig. 2, while the 

slide-level performance is reported in Supplemental Table 6. CRANE does not address 

refinement of extremely rare high-grade AMRs, since in all three cohorts together there is 

only one AMR3 case reported. The Swiss cohort was excluded from the analysis due to the 

absence of grade 3 rejection cases.

Computational Hardware and Software.

WSIs were processed on Intel Xeon multi-core CPUs (Central Processing Units) and 2 

consumer-grade NVIDIA 2080 Ti GPUs (Graphics Processing Units) using the publicly 

available CLAM[17] whole slide processing pipeline implemented in Python (version 3.7.5). 

Weakly-supervised deep learning models were trained on GPUs using Pytorch (version 

1.7.1). The supervised classifier for refining high-grade rejection was trained using the 

PytorchLightning (version 1.3.3) and timm (version 0.4.9) Python libraries. Plots were 

generated in Python using matplotlib (version 3.1.1) unless otherwise specified. Additionally 

the following Python libraries were used for analysis and data handling: hSpy (2.10.0), 

numpy (1.18.1), opencv-python (4.1.1), openslide-python (1.1.1), pandas (1.0.3), pillow 

(6.2.1), scipy (1.3.1), tensorflow (1.14.0), tesnorboardx (1.9), torchvision (0.6). The area 

under the curve of the receiver operating characteristic curve (AUC ROC) was estimated 

using the scikit-learn scientific computing library (version 0.22.1), based on the Mann-

Whitney U-statistic. Additionally, the pROC library (version 1.16.2) in R (version 3.6.1) was 

used for computing the 95% confidence intervals of the true AUC using DeLong’s method 

and binormal ROC curve smoothing. The 95% confidence intervals for accuracy scores were 

computed using non-parametric bootstrapping from 1000 bootstrap samples. The interactive 

demo website was developed using OpenSeadragon (version 2.4.2) and jQuery (version 

3.6.0).
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Extended Data

Extended Data Figure 1: 
Visualization of color distribution among the three cohorts. a. Polar scatter plot depicts 

the differences in the train (US) and test (US, Turkish, Swiss) cohorts, each acquired with 

different scanners and staining protocols. The angle represents the color (i.e. hue) and the 

polar axis corresponds to the saturation. Each point represents average hue and saturation of 

an image patch selected from each cohort. To construct the figure, 100 WSIs were randomly 

selected from each cohort. For each selected slide, 4 patches of size 1024×1024 at ×10 

magnification were randomly selected from the segmented tissue regions. A hue–saturation–

density color transform is taken to correct for the logarithmic relationship between light 

intensity and stain amount. The Swiss cohort demonstrates a large variation in both hue 

and saturation whereas the US and Turkish cohorts have a relatively uniform saturation but 

variable hue. Examples of patches with diverse hue and saturation from each cohort are 

shown in subplots b. and c.
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Extended Data Figure 2: 
Classification of high-grade cellular rejections. A supervised, patch-level classifier is trained 

to refine the detected high-grade (2 R+ 3 R) cellular rejections into grades 2 and 3. A 

subplot a. shows manual annotations of the predictive region for each grade as outlined by 

pathologist. b. Patches extracted from the respective annotation regions serve as input for the 

binary classifier. Subplot c. shows the model performance at patches extracted from the US 

(m = 290 patches) and Turkish (m = 131 patches) cohort. Reported are ROC curves with 

95% confidence intervals (CIs). The bar plots represent the model accuracy, F1-score, and 

Cohen’s κ for each cohort. Error bars indicate the 95% CIs while the center is always the 

computed value of each classification performance metric (specified by its respective axis 

labels). The slide-level performance is reported in Supplemental Table 6. The Swiss cohort 

was excluded from the analysis due to the absence of grade 3 rejections.

Extended Data Figure 3: 
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Model performance at various magnifications. Model performance at different 

magnifications scales at a. slide-level and b. patient-level. Reported are AUC-ROC curves 

with 95% CI for 40×, 20× and 10× computed for the US test set (n = 995 WSIs, N = 336 

patients). For the rejection detection tasks, the model typically performs better at higher 

magnification, while the grade predictions benefit from the increased context presented at 

lower magnifications. To account for the information from different scales, the detection 

of rejections and Quilty-B lesions is performed from the fusion of the model predictions 

from all available scales. In comparison, the rejection grade is determined from 10X 

magnification. c. Model performance during training and validation. Shown is cross-entropy 

loss for the multi-task model assessing the biopsy state and for the single-task model 

estimating the rejection grade. Reported is slide-level performance at 40× for the multi-task 

model, while the grading scores are measured at 10X magnification. The model with the 

lowest validation loss encountered during the training is used as the final model.

Extended Data Figure 4: 
Performance of the CRANE model at slide-level. The CRANE model was evaluated on 

the test set from the US (n = 995 WSIs, N = 336 patients) and two independent external 

cohorts from Turkey (n = 1,717, N = 585), and Switzerland (n = 123, N = 123). a. Receiver 

operating characteristic (ROC) curves for the multi-task classification of EMB and grading 

at the slide-level. The area under the ROC curve (AUC) scores are reported together with 

the 95% CIs. b. The bar plots reflect the model accuracy for each task. Error bars (marked 

by the black lines) indicate 95% CIs while the center is always the computed value for 

each cohort (specified by the respective axis labels). The results suggest the ability of the 

CRANE model to generalize across diverse populations, and different scanners and staining 

protocols, without any domain-specific adaptations. Clinical deployment might benefit from 

the model’s fine-tuning with the local data and scanners.
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Extended Data Figure 5: 
Confidence of model’s predictions. The model robustness can be measured through the 

confidence of the predictions. The models that suffer from overfitting usually reach high 

performance on the training dataset by memorizing the specifics of the training data rather 

than learning the task at hand. As a consequence, such models result in incorrect but highly 

confident predictions during the deployment. The bar plots show the fraction of model 

predictions achieved with high confidence, for both correctly (blue) and incorrectly (yellow) 

estimated patient cases. The fraction of highly confident correctly predicted samples is 

consistently higher than the fraction of confident incorrect predictions across all the tasks. 

These results indicate the robustness of the model predictions for all tasks.

Extended Data Figure 6: 
Patient-level performance for all prediction tasks. Reported are confusion matrices for a. 

rejection detection (including both ACR and AMR), detection of b. ACRs, c. AMRs, d. 

Quilty-B lesions, and e. discrimination between low (grade 1) and high (grade 2 + 3) 

rejections. To assess the model’s ability to detect rejections of different grades, subplots 
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f. shows the distinction between normal cases and low-grade rejections, while g. reports 

distinction between normal cases and high-grade rejections. In both external cohorts, the 

model reached higher performance for detecting the more clinically relevant high-grade 

rejections, whereas in the internal cohort the performance is comparable for both low and 

high-grade cases. The rows of the confusion matrices show the model predictions and the 

columns represent the diagnosis reported in the patient’s records. The prediction cut-off for 

each task was computed from the validation set. For the clinical deployment, the cut-off 

can be modified and fine-tuned with the local data to meet the desirable false-negative rate. 

The performance is demonstrated on the US hold-out test set (N = 336 patients with 155 

normal cases,181 rejections, 161 ACRs, 31 AMRs, 65 Quilty-B lesions, 113 low-grade, and 

68 high-grade), Turkey (585 patients with 308 normal cases, 277 rejections, 271 ACRs, 

16 AMRs, 74 Quilty-B lesions, 166 low-grade, and 111 high-grade) and Swiss (N = 123 

patients with 54 normal cases, 69 rejections, 66 ACRs, 10 AMRs,18 Quilty-B lesions, 59 

low-grade and 10 high-grade). Details on each cohort are reported in Supplemental Table 1.

Extended Data Figure 7: 
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Analysis of case with concurrent cellular, antibody-mediated rejection, and Quilty-B lesions. 

a-b. The selected biopsy region and the corresponding H&E stained WSI. Attention 

heatmaps are computed for each task (c,d,e) and the grade (f). For the cellular task (c.), 

the high-attention regions correctly identified diffuse, multi-focal interstitial inflammatory 

infiltrate, predominantly comprised of lymphocytes, and associated myocyte injury. For the 

antibody heatmap (d.), the high-attention regions identified interstitial edema, endothelial 

swelling, and mild inflammation, consisting of lymphocytes and macrophages. For the 

Quilty-B heatmap (e.), the high-attention regions highlighted a focal, dense collection 

of lymphocytes within the endocardium, with mild crush artifact. For the grade (f.), the 

high-attention regions identified areas with diffuse, interstitial lymphocytic infiltrate with 

associated myocyte injury, corresponding to high grade cellular rejection. The high-attention 

regions for both types of rejection and Quilty-B lesions appear similar at the slide level at 

low power magnification, since all three tasks assign high-attention to regions with atypical 

myocardial tissue. However, at higher magnification, the highest attention in each task 

comes from regions with the task-specific morphology. The image patches with the highest 

attention scores from each task are shown in the last column. This example also illustrates 

the potential of CRANE to discriminate between ACR and similarly appearing Quilty-B 

lesions.

Extended Data Figure 8: 
Quantitative assessment of attention heatmaps’ interpretability. While the attention scores 

provide only relative importance of each biopsy regions for the model predictions, we 

attempted to quantify their relevance for diagnostic interpretability at patch- and slide-level. 
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From the internal test set, we randomly selected 30 slides from each diagnosis and computed 

the attention heatmaps for each task (a-b,f-g).For the patch-level assessment, we selected 3 

non-overlapping patches from the highest attention region in each slide. Since the regions 

with the lowest attention scores often include just a small fraction of tissue, we randomly 

selected 3 non-overlapping patches from the regions with medium-to-low attentions (i.e. 

attention scores<0.5). We randomly remove 5% of the patches to prevent pathologist from 

providing an equal amount of diagnoses, resulting in a total of 513 patches. A pathologist 

evaluated each patch as relevant or non-relevant for the given diagnosis. The pathologist’s 

scores are compared against the model predictions of diagnostically relevant (high-attention) 

vs non-relevant (medium-to-low attention) patches. The subplot shows AUC-ROC scores 

across all patches, using the normalized attention scores as the probability estimates. 

The accuracy, F1-score, and Cohen’s κ, computed for all patches and for the specific 

diagnoses, are reported in e. These results suggest a high agreement between the model and 

pathologist’s interpretation of diagnostically relevant regions. For the slide-level assessment, 

we compare concordance in the predictive regions used by the model and pathologists. A 

pathologist annotated in each slide the most relevant biopsy region(s) for the given diagnosis 

f. The regions with the top 10% highest attentions scores in each slide are used to determine 

the most relevant regions used by the model g. These are compared against the pathologist’s 

annotations. The detection rate for all slides, and the individual diagnosis, are reported 

in h. Although the model did not use any pixel-level annotations during training these 

results imply relatively high concordance in the predictive regions used by the model and 

pathologist. It should be noted that the attention heatmaps are always normalized and not 

absolute, hence, the highest attended region is considered for the analysis similar to 17.
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Extended Data Figure 9: 
Inter-observer variability analysis. The design of the reader study is depicted in a-b. The 

subplot c. shows the agreement between each pair of pathologists, while the agreement 

between the AI model and each pathologist is shown in d. The average agreement for each 

task is plotted as a vertical solid line. The analysis was performed on a random subset of 

150 cases randomly selected from the Turkey test cohort: 91 ACR, 23 AMR cases (including 

14 concurrent ACR and AMR cases) and 50 normal biopsies. The AI model was trained on 

the US cohort. For evaluation purposes, the pathologists assessed each case using the H&E 

slides only. It should be noted that the assessment presented here is based on Cohen’s κ and 
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is not the absolute agreement. Cohen’s κ is a metric which runs between −1 and 1 and takes 

into account agreement by chance.

Extended Data Figure 10: 
AI-assisted biopsy assessment. An independent reader study was conducted to assess the 

potential of the CRANE to serve as an assisting diagnostic tool. Subplot a. illustrates the 

study design. A panel of five cardiac pathologists from an independent center was asked 

to assess 150 EMBs randomly selected from the Turkey cohort, the same set of slides as 

used for the assessment of interobserver variability presented in Extended Data Fig. 9. The 

pathologists were randomly split into two groups. In the first round, the readers from the 

first group used WSIs only, while the readers from the second group also received assistance 

from the CRANE in the form of attention heatmaps (HMs) plotted on the top of H&E slides. 

Following a washout period, the pathologists repeated the task. In the second round, the 

readers from the first group received WSIs and AI assistance, while the second group used 

WSIs only. Subplots b-e. report accuracy and assessment time (f.) of the readers without and 

with AI assistance marked as (WSI) and (HM + WSI), respectively. The ground truth labels 

were constructed based on the pathologists’ consensus from the reader-study presented in 

Extended Data Fig. 9. The ability of the CRANE to mark diagnostically relevant regions has 

increased the accuracy of manual biopsy assessment for all tasks and all readers, as well as 

reduce the assessment time. These results support the feasibility of CRANE in reducing the 

interobserver variability and increasing the efficiency of manual biopsy reads.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Cardiac Rejection Assessment Neural Estimator (CRANE) workflow.
a. Fragments of endomyocardial tissue are formalin fixed and paraffin embedded (FFPE). 

Each paraffin block is cut into slides with three consecutive levels and stained with H&E. 

Each slide is digitized and served as an input for the model. b. CRANE first segments tissue 

regions in the WSI and patches them into smaller sections. Pretrained encoder was used 

to extract features from the image patches, which are further fine-tuned through a set of 

three fully-connected layers, marked as Fc1, Fc2, and Fc3. A weakly supervised multi-task, 

multi-label network was constructed to simultaneously identify normal tissue and different 

rejection conditions (cellular, antibody, and/or Quilty-B lesions). The attention scores, 

reflecting relevance of each image region towards the model prediction, can be visualized in 

the form of whole-slide attention heatmaps. c. The model was trained on the USA cohort, 

using 70% cases for training and 10% for validation and model selection. Evaluation of 

the model was conducted on the internal USA dataset using the remaining held-out 20% 

cases and two external cohorts from Turkey, and Switzerland. Detailed breakdown of these 

datasets is presented in Supplemental Table 1.
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Figure 2: Performance of the CRANE model at patient-level.
The CRANE model was evaluated on the test set from the USA (n=995 WSIs, N=336 

patients) and two independent external cohorts from Turkey (n=1,717, N=585), and 

Switzerland (n=123, N=123). a. Receiver operating characteristic (ROC) curves for the 

multitask classification of EMB evaluation and grading at the patient-level. The area under 

the ROC curve (AUC) is reported together with the 95% confidence intervals (CIs) for each 

cohort. b. The bar plots reflect the model accuracy for each task. Error bars (marked by the 

black lines) indicate 95% CIs and the center is always the computed value for each cohort 

(specified by the respective axis labels).
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Figure 3: Visualisation of the attention heatmaps.
Sample of WSIs of EMBs with different diagnosis are shown in the first column. The 

second column displays a closer view to the cardiac tissue samples marked by blue arrows 

in the first column. An attention heatmap corresponding to each slide was generated by 

computing the attention scores for each predicted diagnosis (third column). A zoom-in-view 

of the regions of interest (ROIs) marked by green squares in the second column are 

shown in fourth column, while the corresponding attention heatmaps are displayed in the 

fifth column. The last two columns depict a zoom-in-view of the ROIs marked by the 

blue square together with the corresponding attention heatmap. Green arrows highlight 

specific morphology corresponding to the textual description. The colormap of the attention 

heatmaps range from red (high-attention) to blue (low-attention). a. Cellular Rejection. The 

highest attention scores identified regions with increased interstitial lymphocytic infiltrates 

and associated myocyte injury, while the adjacent, lower attention scores identified healthier 

myocytes without injury. b. Antibody-Mediated Rejection. The highest attention scores 

determined regions with edema within the interstitial spaces in addition to increased 

mixed inflammatory infiltrate, comprised of eosinophils, neutrophils, and lymphocytes. 

The adjacent lower attention scores identified background fibrosis, stroma, and healthier 

myocytes. c. Quilty-B Lesion. The highest attention scores distinguished a single, benign 

focus lymphocytes within the endocardium, without injury or damage to the myocardium. 

The lower attention scores correspond to background and healthy myocytes. d. Cellular 

Grade. The highest attentions identified diffuse, prominent interstitial lymphocytic infiltrates 
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with associated myocyte injury, representing severe rejection. The lower attention regions 

identified background fibrosis and unaffected, healthier myocytes.
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Figure 4: Analysis of attention-heatmaps in the three independent test cohorts.
Displayed are cases with cellular (a.) and antibody-mediated rejections (b.) sourced from 

three cohorts: US (left columns), Turkish (middle columns), and Swiss (right columns). 

The types of scanners used for each cohort are indicated. The first row depicts WSIs 

from corresponding center, while the second row shows closer views on cardiac tissue 

samples marked by the blue arrows in the first row. The corresponding attention heatmaps 

are depicted in the third row. The colormap of the attention heatmaps range from red 

(high-attention) to blue (low-attention). The last two rows show a zoom-in-view of ROIs 

marked by the green squares in the second row along with the corresponding attention 

heatmaps.
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Figure 5: Analysis of failure cases using attention heatmaps in the three independent test 
cohorts.
Displayed are cases with cellular (a.) and antibody mediated rejections (b.) which were 

incorrectly identified as normal by the model. Results are shown for the US (left columns), 

Turkish (middle columns), and Swiss (right columns) cohorts. The types of scanners used 

for each cohort are indicated. The WSIs from each center and the corresponding attention 

heatmap are shown in the first and the second row, respectively. The third row shows 

zoom-in-views in the ROIs marked by the green squares, while the accompanying attention 

heatmaps are shown in the last row.
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