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Abstract

The proliferation of synthetic data in artificial intelligence for medicine and healthcare raises 

concerns about the vulnerabilities of the software and the challenges of current policy.

As artificial intelligence (AI) for applications in medicine and healthcare undergoes 

increased regulatory analysis and clinical adoption, the data used to train the algorithms 

are undergoing increasing scrutiny. Scrutiny of the training data is central to understanding 

algorithmic biases and pitfalls. These can arise from datasets with sample-selection 

biases — for example, from a hospital that admits patients with certain socioeconomic 

backgrounds, or medical images acquired with one particular type of equipment or camera 

model. Algorithms trained with biases in sample selection typically fail when deployed in 

settings sufficiently different from those in which the trained data were acquired1. Biases 

can also arise owing to class imbalances — as is typical of data associated with rare diseases 

— which degrade the performance of trained AI models for diagnosis and prognosis. 

And AI-driven diagnostic-assistance tools relying on historical data would not typically 

detect new phenotypes, such as those of patients with stroke or cancer presenting with 

symptoms of COVID-19 (coronavirus disease 2019)2. Because the utility of AI algorithms 

for healthcare applications hinges on the exhaustive curation of medical data with ground-

truth labels, the algorithms are as effective or as robust as the data they are supplied with.

Therefore, large datasets that are diverse and representative (of the heterogeneity of 

phenotypes, in the gender, ethnicity and geography of the individuals or patients, and in 

the healthcare systems, workflows and equipment used) are necessary to develop and refine 

best practices in evidence-based medicine involving AI (ref.3). To overcome the paucity of 

annotated medical data in real-world settings, synthetic data are being increasingly used. 

Synthetic data can be created from perturbations via accurate forward models (that is, 
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models that simulate outcomes given specific inputs), physical simulations or AI-driven 

generative models. As with the development of computer-vision algorithms for self-driving 

cars to emulate scenarios such as road accidents and harsh driving environments for which 

collecting data can be challenging4, in medicine and healthcare accurate synthetic data can 

be used to increase diversity in datasets and to increase the robustness and adaptability of 

AI models. However, synthetic data can also be used maliciously, as exemplified by fake 

impersonation videos (also known as deepfakes), which can propagate misinformation and 

fool facial-recognition software5.

The United States Federal Drug and Administration (FDA) has put forward an approval 

pathway for AI-based software as a medical device (AI-SaMD). Over 70 algorithms have 

been approved as of today, with uses ranging from the detection of atrial fibrillation 

to the clinical grading of pathology slides6,7. By incorporating synthetic data emulating 

the phenotypes of underrepresented conditions and individuals, AI algorithms can make 

better medical decisions in a wider range of real-world environments. In fact, the use of 

synthetic data has attracted mainstream attention as a potential path forward for greater 

reproducibility in research and for implementing differential privacy for protected health 

information8,9 (PHI). With the increasing digitization of health data and the market size 

of AI for healthcare expected to reach $45 billion by 2026 (ref.8), the role of synthetic 

data in the health-information economy needs to be precisely delineated in order to develop 

fault-tolerant and patient-facing health systems10. How do synthetic data fit within existing 

regulatory frameworks for modifying AI algorithms in healthcare? To what ends can 

synthetic data be used to protect or exploit patient privacy, and to improve medical decision-

making? In this Comment, we examine the proliferation of synthetic data in medical AI and 

discuss the associated vulnerabilities and necessary policy challenges.

Fidelity tests

Beyond improved image classification and natural language processing, one promise of 

AI involves learning algorithms, also known as deep generative models, that can emulate 

how data are generated in the real world12. Generative adversarial networks (GANs) are 

a type of generative model that learn probability distributions of how high-dimensional 

data are likely to be distributed. GANs consist of two neural networks — a generator 

and a discriminator — that compete in a minimax game (that is, a game of minimizing 

the maximum possible loss) to fool each other. For instance, in a GAN being trained to 

produce paintings in the style of Claude Monet, the generator would be a neural network 

that aims to produce a Monet counterfeit that fools a critic discriminator network attempting 

to distinguish real Monet paintings from counterfeits. As the game progresses, the generator 

learns from the poor counterfeits caught by the discriminator, progressively creating more 

realistic counterfeits. GANs have shown promise in a variety of applications, ranging from 

synthesizing paintings of modern landscapes in the style of Claude Monet to generating 

realistic images of skin lesions13 (Fig. 1, top), pathology slides14, colon mucosa15, chest 

X-rays16–18 (Fig. 1, top), and from a range of imaging modalities19–22.

Advancements in computer graphics and in information theory have driven progress in 

generative modelling from the generation of 28 × 28 (pixels per side) black-and-white 
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images of handwritten digits to simulating life-like human faces with 1,024 × 1,024 

high-fidelity images23. To show the capabilities of the AI-driven generation of synthetic 

medical data, we produced images of three histological subtypes of renal cell carcinoma 

(chromophobe, clear cell, and papillary carcinoma) by training a GAN with 10,000 real 

images of each subtype, and then compared the performance of the model with another 

model trained using both real and synthetic data (Fig. 1, middle and bottom panels). The 

synthetic images generated by the GAN finely mimic the characteristic thin-walled ‘chicken 

wire’ vasculature of the clear-cell carcinoma subtype and the unique features of the other 

two subtypes. The GAN also improves the accuracy of classification.

By closely mimicking real-world observational data, synthetic data could transform 

interoperability standards in the sharing of health data, and contribute to improving 

reproducibility24. For example, in lieu of revealing actual patient data, synthetic datasets 

that accurately capture the original distribution of the data would substantially lessen 

patient-privacy concerns and could be freely shared. Unfortunately, current generative 

models are not ready for the off-the-shelf generation of synthetic data, and may even create 

vulnerabilities (which could lead to patient re-identification) if adopted carelessly across 

healthcare ecosystems. For example, if a clinician working with developmental disorders 

and using a generative model to capture phenotype diversity in adolescents with de novo 
mutations makes the weights of the trained GAN model publicly available, the GAN could 

be used by a third party to synthesize real faces of the adolescents, thus leaking PHI. 

This is an example of information leakage (and in particular of a membership interference 

attack25,26), one of many failure modes of generative models, wherein samples from the 

training dataset can be recovered from the probability distribution, owing to overfitting. 

Although information leakage can be mitigated with sophisticated modelling techniques 

such as differential privacy, the adaptation to clinical scenarios would require expertise 

in machine learning as well as medical-domain knowledge27–30. As best practices for 

generative models continue to be developed, better privacy guarantees should be put forward 

to minimize the possibility of a PHI leak31.

Challenges in implementation and adoption

The generation of synthetic data has garnered significant attention in medicine and 

healthcare13,14,17,32–34 because it can improve existing AI algorithms via data augmentation. 

For instance, among renal cell carcinomas, the chromophobe subtype is rare; it accounts for 

merely 5% of all cases, and has a global incidence of one case per two million patients with 

renal cancer. By providing synthetic histology images of renal cell carcinoma as additional 

training input to a convolutional neural network, the detection accuracy of the subtype can 

be improved (Fig. 1, bottom).

However, the wider roles of synthetic data in AI systems in healthcare remain unclear. 

Unlike traditional medical devices, the function of AI-SaMDs may need to be adaptive 

to data streams that evolve over time, as is the case for health data from smartphone 

sensors35,36. Researchers may be tempted to use synthetic data as a stopgap for the 

fine-tuning of algorithms; however, policymakers may find it troubling that there are not 

always clinical-quality measures and evaluation metrics for synthetic data. In a proposed 
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FDA regulatory framework for software modifications in adaptive AI-SaMDs, guidance for 

updating algorithms would mandate reference standards and quality assurance of any new 

data sources6. However, when generating synthetic data for rare or novel disease conditions, 

there may not even be sufficient samples to establish clinical reference standards. As with 

other data-driven deep-learning algorithms, generative models are constrained by the size 

and quality of the training dataset used to model the data distribution, and models trained 

with biased datasets would still be biased toward overrepresented conditions. How can we 

assess whether synthetic data are emulating the correct phenotype and are free from artifacts 

that would bias the deployed AI-SaMDs? Current quantitative metrics for the evaluation 

of generative models use probability likelihood and divergence scores that are not easy to 

interpret by clinicians and that do not reflect specific failure modes in the generation of 

synthetic data37. This complicates the adoption of synthetic data for AI-SaMDs.

Synthetic data could be evaluated via visual Turing tests; in fact, human-eye perceptual 

evaluation metrics have been proposed for evaluating generative models on real and 

synthetic images3,7. These metrics can be adapted to assessing synthesized radiology 

and pathology images by expert radiologists and pathologists, yet they may be prone to 

large intra-observer variability. Another practical barrier to visual Turing Tests relates to 

intractable data-curation protocols; for example, assessing thousands or millions of synthetic 

images would be as tedious as collecting and labelling actual real images. These problems 

would be further exacerbated with synthetic data that cannot be as readily assessed, such 

as electrocardiograms, voice measurements, longitudinal disease trajectories, and entire 

electronic medical records39–43 (EMRs).

Training generative models with multi-institutional datasets that capture a larger diversity of 

clinical phenotypes and outcomes can improve model generalization and reduce biases. And 

larger training datasets naturally lead to more robust algorithms. However, sharing data and 

models between institutions is complex, owing to the regulated nature of PHI and to privacy 

concerns regarding model-information leakage. Synthetic data can certainly facilitate 

reproducibility and transparency, and minimize biases, yet data-driven generative models 

can be trapped in a catch-22 dilemma: the data-paucity problem that generative modelling 

aims to solve is unfortunately constrained by the inherent stagnant interoperability of EMRs, 

and this prevents large and diverse datasets from being curated in the first place.

Privacy and security

Deepfakes are an increasingly pervasive form of AI-synthesized media (images, audio and 

video); in fact, GANs such as those used by the deepfake software faceswap allow users 

to impersonate any individual through appearance and voice, and have been convincing 

enough to defraud a UK-based energy firm out of $243,000 (ref.44). Regulation around the 

creation and distribution of deepfakes has engaged policymakers, digital-forensics experts 

and technology companies, and recent legislation in the United States has prohibited the 

distribution of malicious synthetic media in order to protect political candidates5. However, 

in healthcare the proliferation of deepfakes is a blind spot; current measures to preserve 

patient privacy, authentication and security are insufficient. For instance, algorithms for the 

generation of deepfakes can also be used to potentially impersonate patients and to exploit 
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PHI, to falsely bill health insurers relying on imaging data for the approval of insurance 

claims45, and to manipulate images sent from the hospital to an insurance provider so as to 

trigger a request for reimbursement for a more expensive procedure.

Yet algorithms for the generation of deepfakes can also be used to anonymize patient data. 

A GAN architecture similar to that used by the software faceswap can be used to de-identify 

faces in live videos46, and similar methods could be used for the de-identification of EMRs, 

medical images and other PHI47. In healthcare settings, and in particular in clinical research, 

it may be necessary to video record patient interactions in order to detect phenotypes for 

early disease prognosis (for example, saccadic eye movements in autism spectrum disorders, 

and speech defects in mild cognitive impairment and in Alzheimer’s disease). As clinical 

practice is increasingly adopting telemedicine for remote health monitoring48, software that 

may leak PHI needs to be regulated with mandatory security measures, such as synthetic-

data-driven differential-privacy systems27.

Paths forward

What constitutes authenticity, and how would the lack of authenticity shape our perception 

of reality? The science-fiction American write Philip K. Dick posited similar questions 

throughout his literary career and in particular in his 1972 essay ‘How to build a universe 

that doesn’t fall apart two days later’, where he commented on the dangerous ‘blur’ 

replacing reality with synthetic-like constructs49. As if he were describing the dilemmas 

of today’s technology, Dick wrote ”What is real? Because unceasingly we are bombarded 
with pseudo-realities manufactured by very sophisticated people using very sophisticated 
electronic mechanisms. I do not distrust their motives; I distrust their power. They have a 
lot of it. And it is an astonishing power: that of creating whole universes, universes of the 
mind.” In healthcare, this power lies in the creation of realistic data that can influence the 

perception of clinicians and healthcare policymakers regarding what is clinical ground truth, 

and that affect the deployment of AI algorithms used to make decisions influencing human 

lives50. The advancements made are maturing so rapidly that we should carefully understand 

what control we cede if we allow for ‘spurious imitations’ to gain a foothold in healthcare 

decision-making. For instance, since the start of the COVID-19 pandemic, there has been 

an explosion of interest around the development of synthetic data, with use cases such as 

the training AI algorithms17,51, epidemiological modelling and digital contact tracing52–54, 

and data sharing between hospitals55. Because synthetic data will undoubtedly be soon 

used to solve pressing problems in healthcare, it is urgent to develop and refine regulatory 

frameworks involving synthetic data and the monitoring of its impact in society.

Algorithms grounded on real data.

To make synthetic data more compliant with existing clinical regulations, algorithms for 

the generation of synthetic data should be developed with accurate forward models of 

existing data collections15. Generative models are one of many data-generation techniques 

that have pushed AI ‘over the precipice’ into product deployment across industries (most 

prominently, in digital advertising and in autonomous vehicles; companies developing self-

driving vehicles can simulate tens of millions of driven miles every day56). Indeed, synthetic 
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data have already been widely adopted to develop algorithms that can make better decisions 

than most humans in unseen narrow scenarios32, 57–60.

In computer-aided diagnostics, forward models can be used to create photorealistic 

environments for training AI algorithms when data collection is unfeasible. Instead of 

using data-driven approaches such as generative modelling, algorithms that explicitly 

model physical properties (for example, light scattering in tissue) can be used to generate 

biologically accurate synthetic data20,61,62. For complicated medical procedures such as 

colonoscopies, virtual environments akin to those used to develop self-driving cars could 

be used to train AI-based capsule endoscopes to navigate the gastrointestinal tract63. Unlike 

synthetic data from generative models, simulation-based synthetic data from forward models 

are created from existing clinical reference standards, medical prior knowledge and physical 

laws. This strategy may have regulatory advantages, especially regarding the adoption of AI 

software that can be regularly modified.

For the real-world deployment of active-learning systems, synthetic data may be used in 

regulatory ‘stress tests’ before AI algorithms can be used by physicians and patients. For 

example, during the deployment of an algorithm for the automated screening of diabetic 

retinopathy in clinical centres across Thailand64, the algorithm failed to analyse some eye 

scans owing to variable lighting conditions, camera angles and deficient image quality. 

Such issues of ‘domain shift’ (that is, of unmatched training-data and test-data distributions) 

in healthcare applications may be addressed by adopting best practices developed by the 

autonomous-vehicle industry. For instance, for self-driving cars, virtual environments that 

generate synthetic data for data augmentation and that simulate non-expert behaviours 

that human drivers cannot feasibly create are a substitute for scarce data from real-world 

collisions and other potentially harmful scenarios65–67. In the case of diabetic-retinopathy 

screening, a solution would be to simulate challenging scenarios, such as variable lighting 

and camera distortions during model training, to make the model robust against changes in 

lighting, image acquisition and patient pose. Such environments would also benefit other 

settings and systems, such as computer-assisted surgical procedures: AI algorithms could be 

trained to learn from incorrect surgery techniques without putting patients at risk.

Evaluation metrics and human-in-the-loop tests.

In addition to creating regulatory standards for synthetic-data quality, regulations and 

evaluation metrics should also be developed for models that assess not only realism, but 

also failure modes such as information leakage. Although no consensus for a universal 

quantitative metric has been reached, recent discussions have pointed toward rethinking the 

evaluation of generative models as if facing a bias–variance trade-off — that is, models 

biased towards emulating only one label would fail to capture the multimodal nature of 

probability distributions, and models with high variance would generate data outside of the 

distributions68–70. This analogy gives rise to two qualities for scoring synthetic datasets: 

fidelity for assessing realism of synthetic samples, and diversity for capturing the variability 

of real data. The privacy issues in synthetic data can also define authenticity, a measurement 

of the number of copies of real data made by the model. In experimentation with synthetic 

EMR data in the context of COVID-19, these three metrics were used to understand 
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the fidelity–diversity and privacy–utility trade-offs in ranking generative models70. It was 

seen that prioritizing diversity and privacy-preserving performance decreased fidelity and 

downstream classification tasks using synthetic data.

In grounding synthetic data with biological priors, the generation of synthetic data can also 

be used as a tool for scientific discovery. This is exemplified by AlphaFold (developed 

by the company DeepMind), an algorithm that uses generative models to predict the 

3D structure of proteins71. Although the adoption of AI-generated protein structures as 

therapeutic candidates may be improbable in the short term, sequence-based synthetic 

data can be experimentally validated in animal models (out of the millions of potential 

protein candidates that can be generated using GANs, only a handful of samples need to 

pass fidelity tests for physical experimentation72). Such an ‘auditing’ process for synthetic 

data has led to a relay-race of biotechnology start-ups and pharmaceutical companies 

collaborating together to use AI for drug discovery73. In 2018, the biotech start-up In silico 

Medicine showed the use of GANs to generate small-molecule inhibitors for a protein target 

and their in vitro and in vivo validation in only 46 days74.

Regulations for the use of synthetic data in medicine and healthcare need to be developed 

and specifically adapted for different use cases. And although there may always exist 

unknown unknowns during algorithm deployment, experimentation and human-in-the-loop 

evaluation can be used to iteratively refine AI-SaMDs so that they become more fault-

tolerant.
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Fig. 1 |. Synthetic medical data in action.
Top, synthetic and real images of skin lesions and of frontal chest X-rays. Middle, Synthetic 

and real histology images of three subtypes of renal cell carcinoma. Bottom, Areas under 

the receiver operating characteristic curve (AUC) for the classification performance of 

an independent dataset of the histology images by a deep-learning model trained with 

10,000 real images of each subtype and by the same model trained with the real-image 

dataset augmented by 10,000 synthetic images of each subtype. Methodology and videos are 

available as Supplementary Information.

Chen et al. Page 11

Nat Biomed Eng. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Fidelity tests
	Challenges in implementation and adoption
	Privacy and security
	Paths forward
	Algorithms grounded on real data.
	Evaluation metrics and human-in-the-loop tests.

	References
	Fig. 1 |

