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InterCellDB: A User-Defined Database for Inferring
Intercellular Networks
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and Ligen Shi*

Recent advances in single cell RNA sequencing (scRNA-seq) empower
insights into cell–cell crosstalk within specific tissues. However, customizable
data analysis tools that decipher intercellular communication from gene
expression in association with biological functions are lacking. The authors
have developed InterCellDB, a platform that allows a user-defined analysis of
intercellular communication using scRNA-seq datasets in combination with
protein annotation information, including cellular localization and functional
classification, and protein interaction properties. The application of
InterCellDB in tumor microenvironment research is exemplified using two
independent scRNA-seq datasets from human and mouse and it is
demonstrated that InterCellDB-inferred cell–cell interactions and
ligand–receptor pairs are experimentally valid.
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1. Introduction

Cell crosstalk with adjacent or remote part-
ners are commonly observed in multicellu-
lar organisms throughout the life span.[1]

Continual cell–cell interactions ensure the
coordination of cellular activities to main-
tain physiological homeostasis.[2] Under
disease conditions, intercellular networks
change dramatically due to the alterations
in the extracellular matrix.[3] For instance,
tumor cells modify the surrounding micro-
environment by secreting factors to re-
cruit immune cells, which in turn im-
pact on tumor growth and its responses to
therapies.[4] Elucidating intercellular com-
munications will enrich our knowledge
of disease development and promote new
therapeutic approaches.

Single-cell-omics technologies provide sufficient resolution
to map intercellular networks.[5] Several analytical tools have
been developed to unravel intercellular interactions, such as
CellPhoneDB,[6] SingleCellSignalR,[7] CellChat,[8] iTALK,[9] and
NicheNet.[10] However, there are still unmet needs in this field.
First, all current analytical tools provide limited types of inter-
action. In reality, intercellular networks are much more com-
plicated, encompassing ligand–receptor, receptor–receptor, extra-
cellular matrix–receptor, and vesicle–cell interactions.[1] Besides,
all these published tools have limited capability in providing in-
sight in intercellular interactions for specific functions. For in-
stance, in recent study, we found no available analysis approaches
able to predict how ligand–receptor interaction between regula-
tory T cells (Treg cells) and microglia promotes oligodendrogene-
sis and white matter repair after ischemic stroke.[11] Finally, most
current approaches have fixed build-in searching criteria, which
limited the dimensions of analysis. A new platform is in demand
to analyze intercellular networks in a user-defined manner. We,
therefore, develop a new analytical platform called InterCellDB
to address these gaps and provide a user-defined comprehensive
analysis of intercellular communication using single cell RNA se-
quencing (scRNA-seq) datasets in combination with specific bio-
logical functions of interest.

2. Results

2.1. Building and Running InterCellDB

Information from several public biological sources (Ta-
ble S1, Supporting Information) was integrated to ensure the
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comprehensiveness, accuracy, and credibility of our dataset. As
outline in Figure 1, two major databases, including gene (Fig-
ure 1a) and interaction (Figure 1b) databases, were constructed
to provide a customizable platform for intercellular network
analysis. The gene database contained 18 990 human genes and
20 938 mouse genes with a variety of annotations, including
cellular localization (Table S2, Supporting Information) and
functional classification (Table S3, Supporting Information).
Briefly, we first acquired the complete human (127 750 proteins)
and mouse (21 291 proteins) protein data from the Ensembl
genomes database (Figure 1a). Since not all proteins are involved
in cell–cell interactions, we aligned the above protein lists with
molecules involving protein–protein interactions in the STRING
database (Figure 1a).[12] Subsequently, based on the references
provided by the NCBI genomes database, we converted proteins
into corresponding coding genes and generated two gene lists
(Human: 18 990 genes, Mouse: 20 938 genes; Figure 1a). Finally,
we appended annotation information for each protein including
cellular localization from the COMPARTMENTS database and
functional classification from the Uniprot and Gene Ontol-
ogy (GO) databases (Figure 1a).[13–16] To construct interaction
database, we extracted all the information of protein–protein in-
teraction from the STRING database. To meet the requirements
of intercellular network analysis in various biological processes,
we also provided the evidence source, credibility score, action
mode, and action effect for each protein–protein interaction
(Figure 1b).

InterCellDB starts with the fold changes and adjusted p values
of the differentially expressed genes (DEGs, so-called signature
genes) in each cluster compared with other clusters (Figure 1c).
All the DEGs were annotated by matching to the gene database,
including their cellular localization, functional classification, and
their attribution in GO terms (Figure 1d). It allows users to se-
lect specific genes for further calculation by setting three mod-
ules, including gene expression, cellular localization, and func-
tional feature (Figure 1e). In addition, users can create their own
lists of DEGs by selecting specific GO terms. For instance, to
investigate how Treg cells released factors impact on microglia
in an injured brain, the custom settings of the DEGs could be
set as follows: 1) gene expression: up-regulated DEGs of Treg
cells and microglia; 2) cellular localization: extracellular region
for Treg cells, and plasma membrane for microglia; 3) functional
features: cytokine and trophic factor for Treg cells, and receptor
for microglia. After data preprocessing, permutation test is per-
formed to calculate the confidence of interaction (Figure 1f). Sub-
sequently, the statistically significant gene pairs were matched to
the interaction database. Only matched gene pairs were consid-
ered as potential interactions between two target cells. In addi-
tion, each gene pair was annotated with evidence sources, credi-
bility score, action mode, and action effect (Figure 1g). It allows
users to set these modules to select specific interactions for fur-
ther visualization according to study requirements (Figure 1h).

Data calculation and visualization are available in InterCellDB
by running the R software. InterCellDB performs multilayer cal-
culations and display, including network analysis, action mode
analysis, intercellular analysis, and spatial pattern visualization
(Figure 1i). The network analysis defines the power of crosstalk
between any two cell clusters (Figure 1i(1)). The dot size repre-
sents the total count of protein–protein interactions involving in

crosstalk between two types of cells. The dot color suggests the
significance of intercellular communications, of which the com-
putational formula is described in the Experimental Section. The
intercellular analysis assesses action effect and mode of action be-
tween two groups of cells (Figure 1i(2)). There are several other
custom visualization options including maps of the particular
protein–protein pairs in all intercellular networks (Figure 1i(3)),
and spatial pattern of proteins involving in cell–cell crosstalk (Fig-
ure 1i(4)). With the aid from InterCellDB, many previously man-
ually performed cell–cell interaction analysis using different ex-
perimental systems could be replaced by computerized analysis
using single cell datasets collected from targeted tissues, which
is more accurate and less time and labor consuming.

2.2. Applications of the InterCellDB

The InterCellDB can be applied to any scRNA-seq dataset con-
taining potentially interacting cell populations from human or
mouse. Here, we describe in detail how InterCellDB can be uti-
lized to explore intercellular crosstalk in two scenarios.

In the first study, we applied InterCellDB to mouse scRNA-
seq data generated by Davidson et al. to study tumor microen-
vironment in melanoma. CellPhoneDB database of receptor–
ligand interactions was used in the original publication to ex-
plore immune–stromal interactions.[17] The result highlighted a
significant crosstalk between a subset of cancer-associated fibrob-
lasts (CAF1) and myeloid cells (Figure 2a). Moreover, Davidson
et al. predicted and proved that the CAF1 produces C3a to recruit
C3aR+ myeloid cells into tumor mass and promote tumor growth
(Figure 2a).

We applied InterCellDB on Davidson’s dataset for further in-
tercellular network analysis with a focus on genes related to im-
mune response (GO: 0 006955). According to the function and
cellular localization of proteins, we classified two core collec-
tions of cells: 1) cells releasing signals (i.e., cells with proteins
released to the extracellular region); 2) cells receiving signals (i.e.,
cells with receptors expressed in the plasma membrane). Inter-
cellular network analysis between these two collections of cells
showed that myeloid cells were one of the main signal recipients
in response to the ligands from CAF1, CAF2, and myeloid cells
(Figure 2b). We then performed intercellular analysis to evalu-
ate whether CAF1, CAF2, or CAF3 was the main candidate cell
group to recruit myeloid cells. Similar interaction mode was ob-
served among these three populations (Figure 2c). The rank of all
protein pairs between CAF1 and myeloid cells identified several
chemokine–receptor pairs including C3–Itgb2, C3–Itgam, C3–
C5ar1, C3–C3ar1, and Ccl11–Ccr2 as candidate molecules that
mediate CAF1-myeloid cell interaction (Figure 2d). Finally, we
evaluated whether these candidate protein pairs are specific for
CAF1-myeloid cell interaction or also participated in intercellu-
lar crosstalk between other cells (Figure 2e). We found that the
C3–Itgb2, C3–Itgam, C3–C5ar1, and C3–C3ar1 pairs were rela-
tively specific for CAF1–myeliod cell interaction and should be
good candidates for further biological studies (Figure 2e). Inter-
estingly, biological experiments in Davidson’s study prove that
C3–C3ar1 pair plays critical roles in intercellular communica-
tions between CAF1 and myeloid cells.
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Figure 1. Overview of InterCellDB database and workflow. a,b) InterCellDB integrates public databases to generate analytic tools. c–i) Routine workflow
of InterCellDB: data preprocessing (c–e), arithmetic module (f–h), and visualization display (i). It starts from differentially expressed genes (DEGs) and
corresponding cell clusters annotation (c). All the DEGs were annotated with their cellular localization, functional classification, and their attribution in
GO terms (d). Customized DEGs were selected by setting three modules, including gene expression, cellular localization, and functional feature (e).
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To compare the results of cellular interaction analysis us-
ing InterCellDB with those using other published tools, we
performed intercellular analysis between CAF1 and myeloid
cells (Figure S1a, Supporting Information). Comparable candi-
date interactions were predicted by InterCellDB, CellPhoneDB,
NicheNet, and CellChat (Figure S1a, Supporting Information).
Among those 15 protein pairs predicted by InterCellDB, nine of
them (60%) were also identified by the other three tools (Fig-
ure S1b, Supporting Information). Subsequently, we calculated
the percentage of protein pairs that are supported by previous
literatures among all the predicted protein pairs by InterCellDB
and other tools (Figure S1c, Supporting Information). The pre-
dicted accuracy of InterCellDB (86.6%) was higher than those of
the other three tools (75%) (Figure S1c and Table S4, Supporting
Information). Together, InterCellDB showed a superior value in
prediction of cellular interaction to other previous tools, includ-
ing CellPhoneDB, NicheNet, and CellChat.

InterCellDB can also be applied to evaluate the off-target ef-
fects of a specified protein pair in the intercellular network.
This complementary type of analysis reminds researchers to
pay attention to the side effects of knocking out or knocking
down a specific gene in the intercellular communication net-
work. To exhibit this application of InterCellDB, we provided a
second case of analysis using human scRNA-seq data generated
by Zhang et al., which studies intercellular crosstalk between tu-
mor cells and niche cells in the intrahepatic cholangiocarcinoma
(ICC).[18] Zhang et al. performed scRNA-seq and identified vascu-
lar cancer-associated fibroblasts (vCAFs) with high levels of IL6 as
the most prominent cluster among six distinct fibroblast subsets.
Their biological studies proved that vCAFs secrete IL6 to induce
significant epigenetic alterations in ICC cells expressing IL6 re-
ceptors and thereby enhance malignancy (Figure 3a).

We applied InterCellDB to a group of ligand–receptor pairs
specified in Zhang’s analysis and evaluated whether IL6–IL6R
was the potential messenger between vCAFs and ICC cells (Fig-
ure 3b). The results showed a similar strength distribution to
the calculation by CellPhoneDB (Figure 3b). Several protein
pairs including IL6–IL6R, NOTCH3–JAG1, NOTHCH3–JAG2,
PDGFD–PDGFRB, and PGF–NRP2 were mainly involved in in-
tercellular communications between vCAFs and ICC cells (Fig-
ure 3b). These protein pairs were also predicted by other tools,
including CellPhoneDB, NicheNet, and CellChat (Figure S1d,
Supporting Information). Furthermore, our analysis suggested
NOTCH3–JAG1 pair as a recommended protein pair that medi-
ates vCAFs, and ICC cells interaction. And IL6–IL6R pair was also
a potential candidate according to our analysis, which was veri-
fied by biological experiments in Zhang’s study. Subsequently, we
extracted all interleukins and their receptors from our databases

to assess whether there were other potential candidates in ad-
dition to the IL6–IL6R pair. We found that only IL6-mediated
and IL33-mediated protein pairs were involved in cell-to-cell com-
munication between vCAFs and ICC cells (Figure 3c). This re-
sult was also observed in the prediction of cellular interaction
by other tools, including CellPhoneDB, NicheNet, and CellChat
(Figure S1e, Supporting Information). We further evaluated the
off-target effects of IL6–IL6R pair in the intercellular network
(Figure 3d). Interestingly, vCAFs and endothelial cells produced
IL6 could act on multiple cell types, including endothelial cells,
macrophages, and ICC cells (Figure 3d). Therefore, the knockout
of IL6 gene in mice may have effects on not only ICC cells, but en-
dothelial cells and macrophages as well. Finally, InterCellDB pro-
vided spatial distribution map of IL6-mediated protein–protein
pairs encompassing a wide variety of information, such as the
expression of proteins, action mode, action effect, and cellular
localization (Figure 3e).

2.3. Comparison with Other Published Methods

The major differences between InterCellDB and other pub-
lished methods including CellChat, iTALK, CellPhoneDB, Sin-
gleCellSignalR, and NicheNet are summarized (Table S5, Sup-
porting Information). First, most published methods calculate
intercellular crosstalk based only on ligand–receptor pairs, but
ignore other common types of interactions including receptor–
receptor, extracellular matrix–receptor, and vesicle–cell interac-
tions. Indeed, the annotation of protein functions is insufficient
for these previous methods. Only the iTALK divides ligands into
several functional subsets, including cytokine, growth factor, im-
mune checkpoint, and others.[9] Distinct from other analytical
tools, InterCellDB aggregates all gene-coded proteins into 132
types according to the annotated information from the Uniprot
database (Table S3, Supporting Information). To facilitate use of
InterCellDB, we further categorized these 132 types into 16 clas-
sifications, including cytokine, receptor, enzyme, etc. (Table S3,
Supporting Information). Hence, InterCellDB could provide
multiple patterns of analysis by designating the types of proteins,
such as cytokine–receptor, and growth factor–integrin. Second,
it is known that not all protein pairs are involved in intercellular
communication. For instance, an intracellular enzyme in one cell
is not likely to directly act on a translation regulator in the nucleus
of another cell. To filter out biologically unlikely interactions,
we incorporated the cellular localization information of all gene-
encoded proteins from the COMPARTMENTS database, which
provides protein subcellular localization with confidence scores
based on integrated analysis of multiple databases and prediction

Permutation test was performed to calculate the confidence of interaction (f). Each gene pair was annotated with evidence sources, credibility score,
action mode, and action effect by matching to the interaction database (g). Customized gene pairs were generated by setting evidence source, credibility
score, action mode, and action effect for further visualization (h). Visualization of cellular network (i) including network analysis (i(1)), action mode
analysis (i(2)), intercellular analysis (i(3)), and spatial pattern visualization (i(4)). 1 “Location” annotated genes with 13 types of cellular localization and
the red dashed box showed the example for selecting proteins located in plasma membrane. 2 “Function” annotated genes with 132 types of functional
features. 3 “Source” provided evidence sources including experimentally validated, pathway curated, and predicted. 4 “Credibility score” ranged from 1
to 1000 (larger means more credible) and had four confidence levels by cutting off at 400/700/900. The red dashed box showed the example for selecting
proteins with credibility score 900. 5 “Mode” was action mode, referring to functional interplay between two proteins. The red dashed box showed the
example for selecting proteins with action mode of binding. 6 “Effect” was action effect, referring to expression changes caused by one protein when it
interacted with another protein.
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Figure 2. Analysis by InterCellDB on mouse melanoma scRNA-seq data. a) Schematic illustration of analysis processes, which starts from cluster
information collected from the scRNA-seq datasets. Candidate 2-cell interactions between CAF1 and myeloid cells are evaluated. Finally, the target gene
pair is identified. b) Dot plot showing network analysis on immune response related genes. All statistically significant interactions (p-value < 0.05 in
permutation test) are fetched. Dot size shows the count of gene pairs. The color of dots indicates the aggregated strength of interaction. c) Pie plot
showing the composition (in count) of action modes between the subsets of cancer-associated fibroblasts (CAF1, CAF2, and CAF3) and the myeloid cells.
d) Dot plot showing the comparison on candidate gene pairs (p-value < 0.05) between CAF1 and myeloid cells. e) Dot plot showing the selected genes
pairs along with all their co-occurring interactions. Gene pairs (p-value < 0.05) are included. Dot color represents the power of gene pairs by multiplying
the expression levels of participating genes. pDC, plasmacytoid dendritic cell; NK, natural killer cell; migDC, migratory dendritic cell; GD/MAIT, mucosal-
associated invariant T cell; Endo tumor, tumor endothelial cells; cDC1/2, conventional dendritic cell; CAF 1/2/3, cancer-associated fibroblast. Ptmod,
posttranslational modification.

tools (Table S2, Supporting Information). As one protein may ap-
pear in multiple locations in a cell, we therefore retained the in-
formation of confidence scores on cellular localization for each
protein. Initial credibility of cellular localization is recommended
to set as four and five. Users can adjust this cut-off value depend-
ing on their experimental requirements. Finally, InterCellDB pre-

dicts the action mode and effect of protein–protein interactions.
Action mode contains eight options including activation, inhi-
bition, catalysis, and expression, post-translational modification,
binding, reaction, and other (Table S6, Supporting Information).
Action effect refers that one protein influences the expression
of another protein (Table S7, Supporting Information). All the
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Figure 3. Figure Analysis of off-target effects by InterCellDB on human intrahepatic cholangiocarcinoma (ICC) scRNA-seq data. a) Schematic illustration
of processing steps. Zhang et al. screened several gene pairs and finally identified IL6–IL6R interaction between tumor cells and niche cells. To evaluate
potential off-target effects, we assessed all gene pairs involving either IL6 or IL6R. b) Gene pairs identified by Zhang et al. are reanalyzed using InterCellDB.
c) Dot plot showing result of evaluation on interleukin-related gene pairs. Gene pairs with p-value < 0.05 in permutation test are fetched. Dot color
represents the power of gene pairs by multiplying the expression levels of participating genes. d) Dot plot showing analysis of network involving IL6. Dot
size and color indicate the count and aggregated strength of interaction respectively. e) All IL6-related gene pairs between vCAF and ICC cell. Interaction
type and effect are denoted by line color and arrow, respectively. Genes are drawn as dots, and gene expression changes are indicted by size. The up-
regulated genes are denoted as red and down-regulated genes are denoted as green. vCAF, vascular cancer-associated fibroblast; NK, natural killer cell.
Ptmod, posttranslational modification.

above-mentioned novel features ensure a customizable cellular
network analysis with high biological relevance and credibility.

In order to better comparing with those databases of previous
tools, we performed several comprehensive benchmark studies.
First, we matched protein pairs explicitly between InterCellDB
and previous databases, which showed that InterCellDB covered
about 90% of all protein pairs in other databases in human (Fig-
ure 4a). Three major sub-libraries including experiment vali-
dated (InterCelldDB.exp), pathway curated (InterCelldDB.know),
and predicted databases (InterCelldDB.pred) were also incorpo-
rated into the comparison. Interestingly, the CellPhoneDB and

iTALK better aligned to experiment-validated pairs from the In-
terCellDB.exp database (Figure 4a). The NicheNet aligned better
to pathway curated pairs from the InterCellDB.know database
(Figure 4a). These comparisons revealed wide coverage, high fi-
delity, and low selection bias of InterCellDB. Second, we applied
NicheNet and CellChat to analyze the above-mentioned two cases
on mouse melanoma (Figure 2), and human intrahepatic cholan-
giocarcinoma (Figure 3). Third, we employed another mouse
scRNA-seq data generated by Ximerakis et al.[19] as a testing
dataset to evaluate the performance by InterCellDB comparing
with the other methods. The results indicated that the predicted
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Figure 4. Comparison between InterCellDB and other analytical tools. a) The coverage ratios of gene pairs generated by InterCellDB to the gene pairs
from other methods. The whole database is split to three sub-databases: InterCellDB.exp: experimentally validated gene pairs, InterCellDB.know: pathway
curated gene pairs, InterCellDB.pred: predicted gene pairs. b–e) we employed scRNA-seq data on mouse brain as a testing dataset to evaluate the breadth
and accuracy of inference results by InterCellDB comparing with the other methods. b) The breadth of inference results by InterCellDB comparing
with other methods. The x-axis indicates the average count of predicted protein pairs by one method, and the y-axis indicates the average number of
consistently predicted protein pairs among these methods. c) Count of predicted protein pairs by InterCellDB and other methods. Red bar denotes
the number of protein pairs predicted by InterCellDB and at least one of other methods. Blue bar denotes the count of those uniquely identified by
InterCellDB. d) Top predicted protein pairs by any of these methods for crosstalk between microglia and endotheliocytes. e,f) Representative confocal
micrographs showing the brain slices of CX3CR1-GFP mice. Scale bars = 40 μm. e) Red: IBA1 positive cells, Green: CX3CR1 positive cells. f) CX3CR1
positive cells (Green) locate near the CXCL12-expressing CD31 positive cells (colocalization of Red and Cyan). g) Running time of all methods under
the same settings. ABC, arachnoid barrier cells; ASC, astrocytes; EC, endothelial cells; MAC, macrophages; MG, microglia; OEG, olfactory ensheathing
glia; and PC, pericytes.
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breadth of InterCellDB is similar to NicheNet (Figure 4b). In ad-
dition, InterCellDB generated considerable larger number of in-
teractions and meanwhile kept fairly consistent results with the
other methods across all interacting cell clusters (Figure 4c). Sub-
sequently, we screened potential interactions between endothe-
liocytes, and microglia, and found that several unique interac-
tions were predicted by InterCellDB (Figure 4d). Biological stud-
ies were performed to verify that Cxcl12 and Cx3cr1 were involved
in microglia–endotheliocyte communications (Figure 4e,f). Fi-
nally, the results of computational efficiency showed that Inter-
CellDB ran much faster than NicheNet and CellPhoneDB, with
a performance close to those methods not using statistical test
during runtime (Figure 4g).

3. Discussion

To summarize, a major strength of InterCellDB, as compared
with most other databases, is that it enables user-defined analy-
ses of intercellular crosstalk, and takes into account the function
and cellular localization of proteins, the action mode and effect
of protein–protein interaction. InterCellDB is applicable to any
of human and mouse scRNA-seq dataset containing potentially
interacting cell populations. In addition, we include a complete
list of all possible protein–protein interactions, which provides
comprehensive information when interpreting cell–cell commu-
nication networks.

One limitation of InterCellDB is that it could not provide infor-
mation about how intercellular interaction leads to downstream
signaling events. Fortunately, the NicheNet offers a solution to
predict the downstream signal transduction in the receiving cells
after engaged by the ligands from sender cells. The combined use
of InterCellDB with NicheNet may provide thorough analysis to
picture a complete cell–cell interaction and signaling network.

In summary, InterCellDB provides a unique platform for cus-
tomizable intracellular communication analysis taking into con-
sideration of the subcellular localization, and biological functions
of interacting partners. We expect that InterCellDB will be ap-
plied to elucidate the intercellular networks in health and disease
states.

4. Experimental Section
Construction of Gene-Coded Protein Database: Information of gene-

protein correspondence was collected from the Ensembl and NCBI gene
database on March 20, 2020 (Table S1, Supporting Information).[20] An-
notation information including subcellular location and molecular func-
tion was added for each gene-coded protein (Tables S2 and S3, Sup-
porting Information). Subcellular location was extracted from the COM-
PARTMENTS database.[13] A total of 13 independent location parame-
ters were annotated for each gene-coded protein, including “extracellular
region,” “plasma membrane,” “cytosol,” “cytoskeleton,” “peroxisome,”
“lysosome,” “endoplasmic reticulum,” “Golgi apparatus,” “endosome,”
“mitochondrion,” “cytoplasm,” “nucleus,” and “other” (Table S2, Sup-
porting Information). Molecular function was collected from the Uniprot
database.[14] All 132 classifications in the “Molecular Function” panel of
the Uniprot database were included in our present database. For the con-
venience of the user, we divided them into 16 independent groups includ-
ing “actin-binding and motor protein,” “antimicrobial,” “cytokine,” “en-
zyme,” “growth factor,” “hormone,” “hydrolase,” “ion channel,” “protein
metabolism regulator,” “receptor,” “transcription regulator,” “transducer,”

“transferase,” “translation regulator,” “vasoactive,” and “other” (Table S3,
Supporting Information).

Construction of Protein Interaction Database: Protein–protein interac-
tions were collected from the STRING database (version 11, https://
version-11-0.string-db.org).[12] Three subsets were constructed accord-
ing to the credibility of protein interactions. The first subset contained
those protein interactions that were validated by experiments. These pro-
tein interactions were labelled with “experiments > 0” in the STRING
database. The second subset included those protein interactions that were
extracted from pathways and labelled with “database > 0” in the STRING
database. The last subset contained those protein interactions from vari-
ous sources including “neighborhood,” “neighborhood_transferred,” “fu-
sion,” “cooccurence,” “homology,” “coexpression,” “coexpression trans-
ferred,” “experiments transferred,” “database transferred,” “textmining,”
and “textmining transferred,” which showed low evidence and were la-
belled with score > 0 in at least one of the above sources in the STRING
database. We named these three subsets as experiment validated, pathway
curated, and predicted databases. In addition, annotation information in-
cluding credibility score, action mode, and action effect was added for each
protein–protein pair. Credibility score ranging from 1 to 1000 are divided
into four levels of confidence: highest (score ≥ 900), high (score ≥ 700),
medium (score ≥ 400), and low (score < 400). Action mode refers to
functional interplay between protein x and y, including “activation,” “bind-
ing,” “catalysis,” “expression,” “inhibition,” “post-translational modifica-
tion (ptmod),” “reaction,” and “other” (Table S6, Supporting Informa-
tion). Action effect refers to expression changes of protein x influenced
by protein y, which contains “positive,” “negative,” “unspecified,” “undi-
rected” (Table S7, Supporting Information).

Calculation of Interaction Power and Confidence: The power of interac-
tion was calculated by the product of expressions of involved proteins. For
one interacting protein pair A and B, the power was calculated by:

Power (A, B) = Exprs (A) ∗ Exprs (B) (1)

where Exprs(A) and Exprs(B) mean the normalized expression levels of the
proteins.

To calculate the confidence of interaction, cell label permutation test
was used to randomly assign clusters labels to all cells and recalculate
the power of all interactions. The p-value of one given interaction between
protein A and B was calculated as:

p =

{
#n |||Power(A, B)(n) ≤ Power(A, B), n = 1, 2,… , N

}
N

(2)

where Power(A, B)(n) is the power of the interaction in n-th permutation.
N is the total number of permutations (N = 100 by default). Those inter-
actions with p-value < 0.05 are considered significant.

Calculation of Interaction Intensity among Cell Types: The number of
protein–protein pairs and aggregated power W between any two cells were
calculated to evaluate the intensity of cell–cell interaction. The aggregated
power W is the sum of interaction power for all protein pairs. Given two
cell clusters i and j, the aggregated power was calculated by:

W (i, j) =
∑M

k=1
Power (Ak, Bk) (3)

where M represents the overall count of protein pairs between cell cluster
i and j. For k-th interaction, the power of protein Ak and Bk are calculated.

Customization of the Analysis Process: The major advantage of the In-
terCellDB was that it provided custom settings for specific analysis accom-
modating to complicated biological process. There were two main mod-
ules of custom settings, including the selection of proteins in the analy-
sis and the restriction of functional scope. The users could set specified
thresholds for expression levels, cellular localizations, and functional fea-
tures to select appropriate proteins for analysis. The users could also re-
strict functional scope by setting the evidence sources, credibility score,
action mode, and action effect of the protein interactions.
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Collection and Analysis of the Mouse scRNA-seq Data from Davidson et al:
Raw count files and experiment metadata were downloaded for scRNA-
seq data of mouse melanoma generated by Davidson et al. from https:
//www.ebi.ac.uk/gxa/sc/experiments/E-EHCA-2/downloads. scRNA-seq
data preprocessing was completed by Seurat (v3.2) before applying In-
terCellDB for intercellular analysis.[21] First, the count matrix was correctly
formatted by setting the row names as gene names and the column names
as cell barcodes. Then, the data were normalized and scaled. Cell clus-
ters were annotated by the references of the experiment metadata, which
included cancer-associated fibroblasts (CAF 1–3), fibroblast from lymph
node (fibroblast LN), tumor endothelial cells (Endo tumor), lymphatic en-
dothelial cell (Endo lymphatic), endothelial cells from lymph node (Endo
LN), conventional dendritic cells (cDC 1–2), plasmacytoid dendritic cell
(pDC), migratory dendritic cell (migDC), T cell from lymph node (LN T
cell), mucosal-associated invariant T cell (MAIT), tumor T cells, natural
killer cell (NK), myeloid, and B cells. Further, t-SNE dimensionality reduc-
tion was performed to visualize the result of clustering and the differen-
tially expressed genes were calculated for all clusters.

Assessment of the Magnitude of Immune Responses among Cell Types:
The study performed by Davidson et al. aims to explore immune–stromal
interactions. Hence, the functional scope was restricted within immune re-
sponse. Briefly, 1671 unique genes were extracted from the GO term of im-
mune response (GO: 0 006955). All further analysis was restricted in this
cluster of genes. Cells with proteins releasing to the extracellular region
were set as y-axis and cells with receptors expressing in the plasma mem-
brane were set in x-axis. Action mode of protein pairs was set as “binding”
to ensure that factors released from cells of the y-axis could bind to their
receptors in cells of the x-axis. Heatmap was used to present the interac-
tion intensity. Dot size showed the count number of protein pairs, and the
color of dots indicated the strength of interaction.

Screening Candidate Molecules Involved in Communications between
CAF1 and Myeloid Cells: To screen out candidate molecules participating
in the activation of myeloid cells by CAF1, all protein pairs labelled with
“activation” (action mode) and “positive” (action effect) between CAF1
and myeloid cells were extracted. Heatmap was used to present the in-
tensity and confidence of protein pairs in communications between CAF1
and myeloid cells. Dot size represented the confidence of protein pairs.
The degree of color saturation of a dot represented the power of protein
pairs by summing up the log2 fold changes of participating proteins.

Collection and Analysis of the Human scRNA-seq Data from Zhang et al:
Raw gene expression count matrix of human ICC scRNA-seq data were
downloaded from GEO with accession code GSE138709. To determine
gene expression, the same version of Seurat (v2.3.4) as described in the
original study was applied. After normalization, 1000 variable genes were
selected for cell clustering (resolution: 0.3). Cell clusters were annotated by
the references of the experiment metadata as T cells, NK cells, malignant
cells, macrophages, hepatocytes, fibroblasts, endothelial cells, dendritic
cells, cholangiocytes, and B cells. Further, t-SNE dimensionality reduction
was performed to visualize the result of clustering and the differentially
expressed genes for all clusters were calculated.

Evaluation of the Off-Target Effects of a Specified Protein Pair in the In-
tercellular Network: To evaluate potential off-target effects, all protein
pairs involving either IL6 or IL6R were assessed. Briefly, a set of ligand–
receptor pairs predicted by Zhang et al. was extracted and it was reana-
lyzed by using InterCellDB. Heatmap showed the intensity and confidence
of these ligand–receptor pairs for all possible interactions among any two
cell types. All interleukin receptors that were expressed in malignant cells
and had at least one putative ligand expressed in the other cell types were
calculated to screen candidate ligand–receptor pairs. Finally, IL6-released
cells were set in y-axis and IL6-received cells were set in x-axis. Action mode
of protein pairs was set as “binding” to ensure that factors released from
cells of the y-axis could bind to their receptors in cells of the x-axis. Dot size
and color indicated the count and strength of interaction, respectively.

Spatial Pattern of Target Protein Pairs between Two Cells: The spatial
pattern of target protein pairs was shown in a schematic diagram. Two
separate cell-mimic areas represented two independent cells. Each cell
area contained four subcellular locations, including extracellular space, cy-
tomembrane, cytoplasm, and cell nucleus. Interaction type and effect were

denoted by line color and arrow. Proteins were drawn as dots, and gene
expressions were indicted by size. The up-regulated genes were denoted
as red and downregulated genes were denoted as green.

Comparison of Protein Interaction Database between InterCellDB and
Previous Methods: The coverage of protein interactions was assessed
among InterCellDB, iTALK, CellPhoneDB, SingleCellSignalR, NicheNet,
and CellChatDB. Three major subsets of InterCellDB including experiment
validated (InterCelldDB.exp), pathway curated (InterCelldDB.know), and
predicted databases (InterCelldDB.pred) were also incorporated into the
comparison. The formula for coverage ratio for previous database i is given
as:

Coverageratio (i) =
|Pairs (InterCellDB) ∩ Pairs (i)|

|Pairs (i)| (4)

where Pairs(InterCellDB) is protein pairs from InterCellDB, and Pairs(i) is
protein pairs in previous database i.

Comparison of Results between Methods on Mouse and Human Cases:
For case on mouse melanoma, the interaction between CAF1 and myeloid
cells by CellPhoneDB, NicheNet, CellChat, and InterCellDB was analyzed.
To make the number of interactions comparable, the interactions between
two differentially expressed genes with log2fold change > 0.25 and be-
longing to genes associated with immune response (GO: 0 006955) were
preserved. To compare the precision between methods, literatures about
these gene pairs were manually collected (Table S4, Supporting Informa-
tion). One gene pair was defined as literature support if this interaction
was validated to be associated with carcinogenesis or anti-tumor func-
tion by experiment. For case on human cholangiocarcinoma data, simi-
lar analysis given in Figure 3b,c by CellPhoneDB, NicheNet, CellChat was
performed and the results were compared with InterCellDB.

Comparison of Performance between InterCellDB and Previous Methods:
To compare the performance across all methods, a testing protein dataset
was generated that only included those proteins existing in all databases
(Table S8, Supporting Information). Using this dataset, the crosstalk be-
tween two cell clusters was calculated based on the interaction database
for each of the methods. The scRNA-seq data for mouse brain was down-
loaded from GEO repository with accession ID: GSE129788 as a testing
dataset.[19] Total 25 cell clusters were annotated by the references of the
experiment metadata. Cell clusters from “young” animals and counted
over 100 were used, which were given as arachnoid barrier cells (ABC),
astrocytes (ASC), endothelial cells (EC), ependymocytes (EPC), immature
neurons (ImmN), macrophages (MAC), microglia (MG), mature neurons
(mNEUR), neuroendocrine cells (NendC), neural stem cells (NSC), ol-
factory ensheathing glia (OEG), oligodendrocytes (OLG), oligodendrocyte
precursor cells (OPC), and pericytes (PC). The potentially interacting pro-
tein pairs between any two cell clusters were calculated by InterCellDB or
any previous methods. The average count of fetched protein pairs for one
method k was given as:

Countk =

∑N
i=1

∑N
j=1

|||Pairi,j (k)|||
N ∗ N

(5)

where N is the total number of cell clusters, and interactions generated by
method k between cell cluster i and cell cluster j is given as Pairi,j(k).

One fetched protein pair for one method could be defined as over-
lapped to the other if it could be validated by at least one of other methods.
The average count of overlapped protein pairs for one method k are given
as follows:

Overlappedcountk =

∑N
i=1

∑N
j=1

|||Pairi,j (k) ∩
⋃M

l=1,l≠kPairi,j (l)|||
N ∗ N

(6)

where N is the number of all included cell clusters, M is the number of
overall candidate methods, and interactions generated by method k and
l between cell cluster i and cell cluster j is given as Pairi,j(k) and Pairi,j(l),
respectively.
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Details about runtime parameters and the version of each method are
given in Note S1 (Supporting Information).

Comparison of Computational Efficiency between InterCellDB and Other
Methods: The scRNA-seq data for mouse brain (GSE129788) was used a
testing dataset.[19] The analysis of computational efficiency was performed
in Linux on a computer with 2.70 GHz Intel(R) Core (TM) i7-10850H CPU,
and 64.0 GB RAM. All programs were run in one core for three repeats.
In order to be comparable, these methods were tested using the same
number of protein pairs which set as 500, 1000, 1500, and 2000. Runtime
were measured with “/user/bin/time -v” command in Linux.

Animals: Male C57BL/6 CX3CR1-GFP mice (8–10 weeks old) were
housed in plastic cages with controlled temperature and humidity and a
12/12 h light/dark cycle. All animal experiment protocols were approved
by the Institutional Ethics Committee of the Second Affiliated Hospital,
Zhejiang University School of Medicine and were in accordance with the
Guide for the Care and Use of Laboratory Animals of the National Insti-
tutes of Health.

Immunostaining of Brain Sections: Mice were deeply anesthetized and
perfused transcardially with 25 mL of ice-cold phosphate-buffered saline
(PBS), followed by 20 mL of 4% paraformaldehyde (PFA). Brains were
post-fixed in 4% PFA for 24 h and dehydrated in serial 15% and 30% su-
crose solutions at 4 °C. Next, the brain samples were sectioned into 25 μm
thick coronal slices. The sections were stored in cryoprotectant (40% PBS,
30% glycerol, 30% ethylene glycol) and kept at −20 °C until immunostain-
ing. Brain sections were washed twice with PBS, followed by permeabiliza-
tion in 0.5% Triton X-100 at room temperature. Next, brain sections were
blocked with 5% normal donkey serum in PBS for 1 h at room temperature
and incubated overnight at 4 °C with the following primary antibodies: anti-
CD31 (Santa Cruz, sc18916, 1:50), anti-IBA1 (Abcam, ab5076, 1:250), anti-
CXCL12 (Santa Cruz, sc74271, 1:50). The sections were then incubated
in the dark with donkey secondary antibody conjugated with Alexa Fluor
555 or 647 (Invitrogen, 1:500) at room temperature for 1 h. After washing
with PBS for three times, the sections were mounted on glass slides with
mount-G containing DAPI (Yeasen Biotech). Sections were observed and
analyzed with a Leica TCS SP8 confocal microscope (Leica Microsystems).
Images were adjusted for brightness and contrast using Fiji 2.1.0/1.53c.
All confocal images were represented as maximum intensity projections.

Result Presentation: The results of InterCellDB analysis were dis-
played in both graphs and tables. The graphs were drawn by using
Tool.ShowGraph. The tables were output by using integrated function
named Tool.WriteTables.

Data Availability: The scRNA-seq data for mouse melanoma was
downloaded from https://www.ebi.ac.uk/gxa/sc/experiments/E-EHCA-2/
downloads. The scRNA-seq data for human intrahepatic cholangiocarci-
noma was downloaded from the Gene Expression Omnibus (GEO) repos-
itory with accession ID: GSE138709. The scRNA-seq data for mouse brain
was downloaded from GEO repository with accession ID: GSE129788.

Code Availability: InterCellDB is publicly accessible as an R package
in GitHub (https://github.com/ZJUDBlab/InterCellDB). All the code and
data used for processing of data sources and following analysis are avail-
able in figshare, whose links are given as follows:

1) Database generation
a) Mouse: https://doi.org/10.6084/m9.figshare.17057342
b) Human: https://doi.org/10.6084/m9.figshare.17057339

2) Comparison of InterCellDB and previous methods (Figure 4 related
codes):
a) Database comparison: https://doi.org/10.6084/m9.figshare.

17057357
b) Performance comparison: https://doi.org/10.6084/m9.figshare.

17057525
3) Case studies on human and mouse data

a) Human example data processing (Figure 3 and S1 related codes):
https://doi.org/10.6084/m9.figshare.17029997

b) Mouse example data processing (Figure 2 and S1 related codes):
https://doi.org/10.6084/m9.figshare.17029985

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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