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A B S T R A C T   

In the opening months of the pandemic, the need for situational awareness was urgent. Forecasting models such 
as the Susceptible-Infectious-Recovered (SIR) model were hampered by limited testing data and key information 
on mobility, contact tracing, and local policy variations would not be consistently available for months. New case 
counts from sources like John Hopkins University and the NY Times were systematically reliable. Using these 
data, we developed the novel COVID County Situational Awareness Tool (CCSAT) for reliable monitoring and 
decision support. In CCSAT, we developed a retrospective seven-day moving window semantic map of county- 
level disease magnitude and acceleration that smoothed noisy daily variations. We also developed a novel 
Bayesian model that reliably forecasted county-level magnitude and acceleration for the upcoming week based 
on population and new case count data. Together these formed a robust operational update including county- 
level maps of new case rate changes, estimates of new cases in the upcoming week, and measures of model 
reliability. We found CCSAT provided stable, reliable estimates across the seven-day time window, with the 
greatest errors occurring in cases of anomalous, single day spikes. In this paper, we provide CCSAT details and 
apply it to a single week in June 2020.   

1. Introduction 

The outbreak of COVID-19 in the United States in late February 2020 
created a public health maelstrom with complex economic, security, and 
communication crises in its wake. Initial uncertainty surrounding modes 
of transmission and certain population dynamics that might expedite or 
abate progression created considerable concern, and even panic, across 
virtually every sector of the U.S.. There was an urgent need to charac
terize and project the growth of COVID-19 with a focus on the timing 
and location of new case spikes that could overwhelm healthcare sys
tems and lead to catastrophic death and suffering. Mechanistic epide
miological models, such as the Susceptible-Infected-Recovered (SIR) 
model or its variants SEIR (exposed) and SEIRS (return to susceptible) 
have a successful history of responding to this kind of need and are a 
natural first choice for modeling the spread of infectious disease; Brauer 
(Brauer, 2008) provides a detailed overview. These models do require 

adequate data on susceptible, exposed, and recovered populations as 
well as infection disease rate estimates. Unfortunately, the COVID-19 
data landscape was widely varied, uncertain, and constantly changing. 
These conditions severely hampered the use of these models in the early 
months. 

Early aggregation efforts by John Hopkins University (Johns Hop
kins, University of Medicine, 2020) and The New York Times (NY Times) 
(The New York Times, 2020) focused on developing daily new case 
updates by aggregating open source public health data at the state and 
county level. This was possible because new case data was fairly 
consistent in delivery and definition across U.S. public health portals. A 
deeper look, however, revealed this was not the norm. The data land
scape was actually a rich and rapidly evolving ecosystem of state and 
local strategies fielding a wide variety of data types, data definitions, 
schema, reporting strategies, and delivery mechanisms. As the weeks 
unfolded, the increase in volume and variety of data across these portals 
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was matched only by the speed in which schema and delivery solutions 
were changed without notice. For example, Knox County, Tennessee 
defines a recovered case as “a person released from isolation” (Knox 
County Tennessee Health Department, 2020). However, the state of 
Tennessee requires a recovered case to “(1) have been confirmed to be 
asymptomatic by their local or regional health department and have 
completed their isolation period or (2) are at least 21 days beyond the 
first test confirming their illness” (TN Department of Health, 2020). 
Under this scenario an individual could be classified as recovered in 
Knox County but not be included in Tennessee’s state recovery total. 
This was not an isolated case. This lack of a common data standard 
meant that harmonizing and integrating county-level data into a 
consistent view across the U.S. was an extraordinary effort for most 
other attributes, often incurring heuristic conflation solutions. There is a 
clear need for public health data standards that serve research and 
public health communities alike. Efforts by these authors to curate and 
harmonize the data at scale are well beyond the scope of this work but 
will be published in a forthcoming paper. 

Against this backdrop, producing stable, long range forecasts at scale 
was very difficult. Attention was given to shorter term capabilities that 
could reliably support decision making on a one-to two-week cycle. This 
capability would greatly benefit near-term decision making by allowing 
authorities to be informed and intentionally react to imminent trends at 
the county, state, and federal level. Pressing questions include:  

● How bad is the situation in my jurisdiction and is it getting worse or 
better?  

● Are things getting better or worse overall across the nation?  
● How many new cases should I anticipate next week?  
● How well do the weekly predictions match reality? 

Answering these questions at the county scale was particularly 
hampered by two prevailing factors. First, visualizing the daily disease 
dimensions of severity and growth over 3000+ counties required a 
careful visualization and monitoring strategy. Secondly, predicting 
future case counts in an uncertain data environment is further chal
lenged by the presence of numerous counties with small populations and 
sparse daily new case counts. This can lead to rates based on small 
numbers which can be unreliable. 

In March 2020, enabled by the CARES Act, the U.S. Department of 
Energy (DOE) established the National Virtual Biotechnology Labora
tory (NVBL) to address key challenges associated with the COVID-19 
crisis (Buchanan & Streiffer, 2020). The broad scientific and technical 
expertise and resources of DOE’s 17 national laboratories were orga
nized under NVBL to address a range of issues including monitoring and 
modeling of the COVID-19 pandemic. Under NVBL the COVID County 
Situational Awareness Tool (CCSAT) was developed as a data-driven so
lution, leveraging robust spatio-temporal techniques in statistics, visu
alization, and decision support. The aim of CCSAT was to inform 
decision makers about county-level disease progression within the past 
seven days, to forecast progression in the upcoming seven days, and to 
assess the larger fine-scale (i.e., county) national trends. The model was 
developed and deployed in the opening months of the pandemic. Results 
from the model were submitted weekly to the U.S. DOE to inform situ
ational awareness and a web tool implementation of a Bayesian nowcast 
model ultimately adopted by the Tennessee State Data Center (Tennes
see State Data Center, 2021). 

1.1. Literature review 

The volume of literature on characterizing and predicting the spread 
of COVID-19 is significant and continues to grow even at the time of this 
writing. Here we provide a brief synopsis of recent and ongoing work 
and situate the CCSAT model within this larger context. 

Historically, the epidemic curve is used to understand disease growth 
and has long been used as a metric (Wilson & Burke, 1942). However, 

most works estimate the curve under the assumption of a fixed number 
of susceptible individuals (Blackwood & Childs, 2018; Lanzas et al., 
2020), an unknown quantity in the early stage of this pandemic. More 
recently, for ongoing epidemics such as SARS and measles, people began 
to calculate the time derivative of epidemic curves, which yields the 
number of new cases over a time interval (Rozema, 2007). Looking at 
the first derivative of the data provides a useful metric because its 
calculation does not require knowledge of the total number of suscep
tible individuals. Similarly, research on the epidemic curve’s second 
derivative has helped identify inflection points during the SARS 
epidemic (Chen et al., 2008), which provides a basis measurement for 
when case counts are accelerating or decelerating. One of the most 
notable works Wu et al. (2020) warned of the potential for an epidemic 
after estimating R0 values in Wuhan. Later work Calvetti et al. (2020) 
estimated county-level transmission rates of COVID-19 as well as ratios 
of asymptomatic to symptomatic individuals. Unlike our tool, this work 
was localized to less than 40 counties. Similar county-level work was 
done in NYC and tried to predict the effectiveness of COVID-19 control 
strategies using an adapted SIR model Albani et al. (2021c). Some work, 
took a similar hierarchical Bayesian pure spatiotemporal modeling 
approach and looked at estimating the relative risk of COVID-19 Jaya 
and Folmer (2021). Zhou et al. (2020) represents mechanistic modeling 
work most closely related in resolution and scale to CCSAT. The authors 
developed a rich model that accounted mechanistically for several fac
tors including mobility, travel, infection rates, this that and the other. 
The authors note that those factors were not typically available at the 
county-level and so various assumptions and application of state values 
for county-level parameters were required impacting objectivity and 
creating unusual artifacts in the modeling output. Nonetheless the 
model is well positioned for expansion and inclusion of these data as it 
becomes available. It is worth noting that agent based modeling ap
proaches have also been explored (Faucher et al., 2022; Kerr et al., 2021; 
Kumar et al., 2021; Wang et al., 2021). However, agent based ap
proaches are typically aimed at targeted scenarios, spatially limited, or 
even theoretical (e.g. Wang et al., 2021) and are beyond the scope of the 
CCSAT effort. 

Under-reporting (UR) is a common problem in the COVID-19 
pandemic. An excellent survey on methods for dealing with under- 
reporting is available in Gibbons et al. (2014) including 
community-based studies such as seroprevelance surveys, returning 
traveller studies, capture-recapture studies for European incidence of 
salmonellellosis and campylobacteriosis. Recent papers apply and 
expand on these approaches in the case of COVID-19 including Albani 
et al. (2021a); Angulo et al. (2021); Lau et al. (2021); Whittaker et al. 
(2021). Since these data were largely unavailable or unreliable at the 
time at county-level we elected to move forward without addressing this 
challenge in the current version, focusing entirely on the prediction of 
new cases as reported by the NY Times. 

Newly accessible mobility data in 2020 from companies such as 
SafeGraph (2020), Google (2020), and Apple (2020) facilitated impor
tant research in the relationship between mobility, social distancing, 
and COVID-19. Recent literature shows promising efficacy for mobility 
especially in the estimation of lagged effects (two to five weeks) between 
mobility changes and COVID-19 progression differences (e.g. Bushman 
et al., 2020; Cot et al., 2021; Sulyok & Walker, 2020). Hu et al. (2021) 
provide an excellent overview and comparison of recent publications. 
There are a number of challenges and concerns in using this kind of 
mobility data. For example, Hu et al. (2021) points to a number of open 
challenges and concerns with mobility data including privacy concerns 
and how to choose and integrate multi-source mobility data properly. 
Coston et al. (2021) show that these data are biased and can dispro
portionately harm high-risk elderly and minority groups. Additional 
caveats exist in using these data at the county-level. For example, Google 
warns against long study periods as their understanding of facility use 
has changed over time. Google further warns that counties and cate
gories with insufficient data are omitted. For example, in a Google report 
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dated 5/29/2022, of Tennessee’s 95 counties, 44 are missing 50% of 
mobility data, 25 are missing 83%, and two have none at all. These 
problems are prevalent and led authors to postpone their use in CCSAT. 

In the main, mechanistic approaches were unduly hampered by poor 
local information without a significant number of assumptions and ap
proaches that rely on mobility, death rates, vaccinations, hospitaliza
tion, death rate, and seroprevelance data where too incomplete at the 
county-level to serve a weekly operational tempo and be included in 
CCSAT. Instead, we took a different approach for nowcasting; we 
developed an entirely data driven model requiring only county-level, 
new case data to provide operational answers to the those primary 
questions (previously mentioned). While this may miss opportunities in 
small areas where detailed data do exist, we show that the approach 
scales well to 3300+ counties producing reliably accurate results on a 
weekly tempo. 

Specifically, CCSAT brings forward three fundamental capabilities 
for supporting decision makers at an operational cadence under condi
tions of data scarcity.  

● A bivariate mapping approach for conveying stable, near term 
measures of county-level growth and growth acceleration 

● A straightforward approach for assessing national county and pop
ulation disease dynamics over time 

● A statistical near-term forecasting model for producing stable esti
mates of upcoming new case totals at the county-level 

We now develop the details of the CCSAT and demonstrate its use 
during June 2020, an early and unstable month of the pandemic. Details 
on how to access source code and data are available in the Supporting 
Information section. 

2. Materials and methods 

The aim for CCSAT was to provide both a retrospective analysis of 
disease progression and a statistical prediction of future progression for 
each of the 3000+ U.S. counties. From there, aggregations and analyses 
at the state and federal level are also possible. The decision was made to 
choose a seven-day interval for both prospective and retrospective 
analysis. This was motivated by the need to balance the pace and vari
ability of COVID-19 progression with the ability of policy-makers and 
crisis managers to engage with measured responses. Monitoring and 
predictions over a shorter time interval (e.g., daily) were possible but 
had higher variations and did not align with the pace of decision mak
ing. The seven-day window also provided several beneficial analytical 
properties. For example, data collected daily could be noisy especially in 
regions with small populations. In other cases, public health portals 
would sporadically upload multiple days of new cases on a single day 
(Monday was popular for batch weekend updates). Aggregation over 
seven-day blocks (both past and future) tends to produce smoother data 
that is more easily interpreted and predicted. Within this moving win
dow two seven-day models were utilized. For a retrospective analysis of 
the previous seven days we developed the Velocity and Acceleration 
(V&A) cartographic model. Prediction of new cases in the upcoming 
seven days is handled by a novel Bayesian nowcast model (nowcasting 
refers to very near-term predictions). We continue now with a descrip
tion of each. 

2.1. Velocity and acceleration maps 

We define velocity as simply the current cumulative new case load 
for a seven-day period. Acceleration is how much faster (or slower) the 
current case load is over the previous seven-day total (i.e., this week’s 
new cases vs last week’s new cases). It is simply the ratio of the most 
recent seven-day new case count with the previous seven. Using data 
from the NY Times, the number of new case counts for all 3000+ U.S. 
counties was tracked and normalized by county population. To report 

velocity, a county is labeled as low, middle, or high based on whether it 
falls respectively into the lower, middle, or upper third of new county 
cases per capita nationally. The acceleration of a given county is the 
ratio of this week’s growth to last week’s growth. A county is labeled as 
decelerating, constant, or accelerating if the ratio falls within the intervals 
[0–0.9], [0.9–1.1], or [ > 1.1], respectively. Through experimentation 
we found a 10% interval around a constant value of 1 struck a practical 
balance between the need for interpretable results and the need to detect 
small but real growth patterns. We found that using smaller intervals (e. 
g., 1%) produced chaotic county-level oscillations between deceleration 
and acceleration, obscuring larger trends with small scale noise. 
Choosing a larger percentage (e.g., 20%) tended to obscure smaller 
important trends. Ultimately, the percentage is only a parameter and can 
easily be modified to suit different conditions. 

In the next step, we convey these two within a bivariate map legend 
that allows decision makers to jointly observe COVID-19 velocity and 
acceleration behaviors. While adaptations to the number of categories is 
easily done, choosing three each for velocity and acceleration has 
appealing cartographic qualities. First, the bivariate legend will present 
9 joint categories, a recognized upper limit for human interpretability 
that can be traced back as far as Miller’s formal cognitive work (Miller, 
1956). Secondly, choosing labels of (low, middle, upper) and (deceler
ating, constant, accelerating) provides a nice symmetry that responds to 
the need to understand conditions “bettering, unchanging, or wors
ening” along separate and joint metrics. Choosing more categories will 
likely put pressure on human interpretabilty. Choosing fewer will break 
with the need to understand caseload dynamics at their simplest se
mantic level. Using the velocity and acceleration rules above, each 
county is semantically tagged with velocity and acceleration and map
ped using the joint 3 × 3 bivariate legend. In this manner, it is easy to 
visualize counties with high velocity and high acceleration, low velocity 
and low acceleration, and so forth. Ultimately this responds to the need 
to simultaneously know “How bad is this and are things getting worse?” 
at the county-level. Two important properties arise from this approach 
that proved valuable in our experience. First, the computation is 
straightforward and well understood by a less technical decision maker, 
an important confidence feature in an uncertain and changing envi
ronment. Secondly, as a seven-day approach, the results were relatively 
stable with transitions from week to week that were consumable and 
interpretable. 

2.2. Acceleration graphs 

In addition to the map, we temporally characterize the national 
outlook by computing a daily V&A map providing a continuous seven- 
day moving window. On each day, the number of counties that fall 
into the decelerating, accelerating, or constant velocity categories were 
represented as a stacked area graph over time. This provided a visuali
zation of the national status as a whole allowing easy inspection of na
tional disease progression at finer county-level scales. 

2.3. Bayesian nowcast model 

At the time of development and writing of this paper, between March 
and June of 2020, the combination of an uncertain and evolving data 
environment with a pressing demand for useable predictions motivated 
the development of a forecasting model based only on the underlying 
population and the temporal progression of new cases. Indeed because 
of the tight linkage between COVID-19 and population as both a target 
and mode of transmission, we reasoned that a model based only on these 
two inputs might quickly produce and operationalize viable near-term 
estimates. In parallel to our model development, sparse data con
straints elsewhere also motivated other researchers to develop and apply 
Bayesian disease models that could operate with little data, such as Jaya 
and Folmer (2021), who develop and apply a Bayesian spatiotemporal 
forecasting model for the identification of COVID-19 hotspots in West 
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Java Province, Indonesia. For a recent and extensive review on the 
history and development of the field of Bayesian disease mapping see 
MacNab (2022). 

It is worth noting that as time moved forward other information on 
mobility, policy, and more demographic insights became available. 
Interesting future work may focus on the value of these other inputs in 
improving near-term predictions of our models in cases where trans
mission dynamics are better known and reliable data is available. The 
goal of the present nowcast model is to estimate the total number of new 
cases in the upcoming week for each U.S. county. 

We approach this challenge by estimating the number of daily ex
pected new cases, E[Yit], for each county i and day t, then aggregating 
the total across all seven days. Conceptually this is a straightforward 
modeling task, however, three main challenges needed to be addressed 
to ensure a single robust model with reliable new estimates for each day 
for every county in the U.S. regardless of population size or the size of 
previously observed outbreaks.  

1. How to appropriately capture the day-to-day variation of observed 
new cases within a county?  

2. How to characterize the shifting temporal dynamics of this variation 
as new cases grew and declined at different rates across the U.S.?  

3. How to do so in a manner that is flexible enough to provide useful 
uncertainty bounds for all counties in the U.S., regardless of how 
sparsely populated or limited their previous new case counts had 
been? 

The first challenge was addressed by taking advantage of an alter
native formulation of the negative binomial distribution, called the 
Negative Binomial-1 (NB-1) that was able to better capture the variation 
of new cases observed in the data. The second was addressed by using 
temporally smoothing splines that allowed the slope of each county’s 
estimated new cases to flexibly and continuously adapt over time by 
allowing previous estimated cases to influence the current days esti
mate. The third issue was handled by defining a multi-level hierarchical 
relationship between counties and then using partial pooling to borrow 
information across counties when estimating new case counts. We now 
cover each of these in detail. 

2.4. Negative Binomial-1 (NB-1) 

Counts are often modeled as random variables from a Poisson dis
tribution, which requires variance and the expected value to be equal. 
Inspecting histograms of daily new case counts quickly revealed they 
had a relatively large variance and were dispersed more widely than a 
Poisson distribution would tolerate. A common correction to this is to 
use a Negative Binomial model instead (Cameron & Trivedi, 2013). The 
Negative Binomial model NB(μ, θ) is parameterized in terms of the 
mean, μ, and the overdispersion parameter θ. Initial experiments, 
however, showed this model also did not fit the count data, producing 
extremely large count predictions relative to the mean. 

The standard Negative Binomial distribution has a variance equal to 
Var(Y) = μ +

μ2

θ (Greene, 2008). Because of the quadratic mean-variance 
relation, Cameron and Trivedi (Cameron & Trivedi, 1986) call this the 
Negative Binomial-2 model (NB-2) and specify an alternative model 
with a linear mean-variance relation, referred to as the Negative 
Binomial-1 model. This linear mean-variance relationship can be ach
ieved by using the NB-2 model when θ = μφ. Substituting μφ for θ in the 
above variance equation simplifies the NB-1 variance to Var(Y) = μ+

μ
φ. 

Hence, the NB-1 model is equivalent to an NB-2 when θ = μφ. This 
adaptation to provided a much better fit between the model predictions 
and the observed data and NB-1 was used as the basis for nowcast es
timates. Specifically, We define a county’s daily new case count, Yit, as 
being generated from an NB-1 distribution and adopt the following 
model: 

Yit ∼ NegativeBinomial(μit, μitφi), (1) 

This formulation implies that the case counts Y on day t in county i 
are modeled to have a Negative Binomial-1 distribution, however we 
have specified it using the NB2-NB1 transformation with mean μit and 
dispersion parameter θ = μitφi. To get the outputs for that county’s daily 
distribution we must provide values for two input parameters. One that 
determines where the center of that distribution is located, μit. This is 
what we expect the number new cases to be for that county on that day. 
This parameter represents the modeled estimation of the true but un
known value E[Yit]. The second, μitφi, controls how confident we are in 
this estimate. Estimating the value of these parameters requires the 
formulation of a link function. 

Typically, the main concern of constructing this function is around 
determining which independent variables will be used to help estimate 
the dependent variable. Also included in this function, whether explic
itly defined or implicitly assumed, is the relationship each observation in 
the dataset has to the others. Because independent and identically 
distributed (iid) observations are uncommon, particularly in spatio- 
temporal data, it is often helpful to include variables in the link func
tion that attempt to capture the nature of this relationship and quantify 
the influence each observation has on the others. 

This is especially true when modeling a phenomenon that progresses 
across space and time like the spread of COVID-19 across the U.S.. 
Strong spatial and temporal autocorrelation can introduce difficulties if 
the goal of a model is one of inference. However, if prediction is the goal, 
then these strong autocorrelations are often one of the most valuable 
features to include in the structure of the model. In fact, for the task of 
forecasting a county’s near-term daily new case counts, exploiting the 
spatio-temporal autocorrelation in the data turned out to be a more 
reliable source of prediction than attempting to include external inde
pendent variables, such as a county’s median income or measures of 
mobility. Therefore, the focus of our efforts when constructing the link 
function was not on finding external independent variables, but on 
constructing parameters that were flexible and robust enough to make 
predictions of county-level new case counts based solely on the temporal 
and spatial autocorrelations observed in the new case and underlying 
population data. We accomplished this by constructing the link function 
around a temporally auto-regressive parameter, αk,i,t. 

Each αk,i,t parameter, defined further below, captures the day to day 
changing rate of growth in previously observed new case counts in 
county, i, on date, t, across three levels of a spatial hierarchy, k. The 
three levels of spatial hierarchy correspond to the individual county k =
0, the Combined Metropolitan Statistical Area (CMSA) that the county is 
a part of (if metropolitan) k = 1, and a binary metropolitan/non- 
metropolitan level k = 2. These rates are then used in the estimation 
of each county’s daily new case counts. How much influence the tem
poral trend at each level of the spatial hierarchy has on a county’s es
timate is determined by the partial pooling structure described later in 
the section. Using a log-linear specification for the link function, we 
model the center of each county’s daily NB-1 distribution, μit, as 

log(μit) = log(Populationi) + (α0,i,t +α1,i,t + α2,i,t) (2) 

The three αk,i,t parameters act together as a robust, temporally and 
spatially smoothed, composite estimate of the infection rate county i is 
experiencing on date t. Additionally, including log(Populationi) allows 
log(μit) to be proportional to a county’s population. When these values 
are exponentiated through the inverse link function to arrive back at μit, 
it has the effect of multiplying this composite infection rate by the 
county’s population, thus putting μit into the desired units of expected 
number of daily new cases. 

County-level population counts were developed from the 2019 
LandScan USA population distribution data (Bhaduri et al., 2007; Weber 
et al., 2019). LandScan USA is part of the Homeland Infrastructure 
Foundation-Level Data (HIFLD) Open Data GeoPlatform (U.S. 
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Department of Homeland Security, 2020) which uses a multi-variable 
dasymetric modeling approach to generate a mid-year population esti
mate model by spatially distributing official Census counts using infor
mation such as land cover and building footprints. 

2.5. Temporally smoothing splines 

To take advantage of the temporal autocorrelation observed in the 
data, the αk,i,t parameters treat the next day’s value, αk,i,t+1, as a function 
of the previously observed new case counts plus an error term. Since 
infectious diseases follow an exponential (i.e., log-linear) growth model, 
the splines were constructed to be linear functions of each other from 
one time step to the next, mathematically represented by a second-order 
random walk (Fahrmeir & Wagenpfeil, 1996). In a second-order random 
walk, the expected value of each new observation is a continuation of 
the trend from the previous day. Resulting in the following formulation: 

αk,i,t+1 = αk,i,t + (αk,i,t − αk,i,t− 1) + εk,i,t; εk,i,t ∼ Normal(0, σ2) (3) 

The advantage of using this stochastic approach is that the error term 
ε can account for changes in the underlying disease rate that are not 
explicitly accounted for in the model formulation. As changing condi
tions on the ground lead to changes in the rate of new cases, these are 
captured by the splines as changes in the slope of the log-linear link 
function. 

Capturing the autocorrelation present in the data leads high corre
lation among individual elements that make up the αk,i,t. This high 
correlation causes the Markov Chain Monte Carlo simulations to become 
inefficient as it tries to attribute a specific amount of variation to every 
individual element of αk,i,t. To handle these posterior correlations and 
improve overall model efficiency singular value decomposition was used 
to create a low-rank approximation of the full second-order random 
walk process. Switching to matrix notation this leads to the following: 

αk,i,t = ak,i + Zi,tbk,i; k = {0, 1, 2} (4) 

Where Zi,t is the matrix of singular values and bk,i the vector of error 
terms. Further details are provided in the Supporting Information. 

2.6. Partial pooling 

The nowcast model creates partial pooling by using Bayesian prior 
distributions at each of the three levels of the defined spatial hierarchy. 
The use of hierarchical Bayesian priors to partially pool modeling esti
mates is a long-established method that performs well when modeling a 
phenomenon that occurs within or across clusters (e.g., counties or 
states) especially when those observations are highly imbalanced (Gel
man et al., 2013; Gelman & Hill, 2006; Lemoine, 2019). The use of 
partial pooling balances fitting the daily county-level data with a prior 
assumption that counties at each hierarchical level share the same 
trends in the spread of COVID-19. In large counties, the Bayesian model 
favors data fit within that county. However, in counties with low counts, 
the prior distributions become important because they encourage the 
trend in each county to be similar to the trend in other counties within 
the hierarchy. Bayesian priors allow a data-driven smoothing of 
county-level trends, enabling estimates to borrow more strength if the 
amount of data is low and less strength if the number of cases in the 
county is large. In contrast, if a county has enough data to detect de
viations from state or metropolitan region-level trends, then the model 
enables this. In this way, the model allows a smooth, data-driven level of 
flexibility between small and large counties, enabling the single model 
to provide robust, stable estimates for counties of all sizes. 

2.7. Computation 

The Bayesian nowcast model is fit using Stan (Carpenter et al., 2017), 
which uses Bayesian Markov Chain Monte Carlo simulation to estimate 

the model coefficients. Weakly informative priors (Lemoine, 2019) were 
necessary for making the model computationally feasible on a daily 
update schedule and for the model to be fit as automatic and hands-free 
as possible. With each run, thousands of new parameters had to be 
estimated, taking much too long (days) to complete on commodity 
compute resources. Timely completion was made possible by using the 
Compute and Data Environment for Science (CADES) platform at Oak 
Ridge National Laboratory. Using 320 CPU cores and 640 GB of avail
able RAM the CCSAT model could be run in about 12 h. At this pace, the 
model could be comfortably run every day producing a constant 
fourteen-day moving window if needed. 

3. Results 

We demonstrate the CCSAT’s ability to support a decision maker 
requiring new case count situational awareness on June 18th, 2020 
(CCSAT output was actually produced on weekly basis and sent to the U. 
S. DOE for continued situational awareness). We begin with a map of NY 
Times new case counts for June 11–17 in Fig. 1. This map shows the 
higher number of cases occurring in the southeast, southwest, and parts 
of Iowa. Using the CCSAT model we supply the decision maker with 
greater context on severity (velocity), whether things are getting worse 
or not (acceleration), and what can be expected over the next seven days 
(nowcast). 

3.1. V&A results 

We produced a V&A map (Fig. 2) showing the velocity and accel
eration of new case totals compared to the previous week of June 4–10. 
This informs the decision makers about the relative severity of each 
county and whether conditions are improving, constant, or worsening. 

From a decision-makers standpoint, several interesting features 
become apparent. For example: 

Worst and getting worse: The deep purple regions in the southern and 
western U.S. indicate the worst scenario: the highest new case per capita 
rates in the country with an acceleration in those rates. In particular 
southern California, southern Arizona, southern Florida, the Carolinas, 
and most of Alabama have large persistent regions with high and 
accelerating case rates. 

Still Unaffected: A roughly contiguous strip of counties with fewer 
than 10 total cases persists from central Texas, western Oklahoma, 
Kansas, Nebraska, and extending farther north toward the Canadian 
border. 

Highly Variable: A region of high variability exists beginning roughly 
in the Atlanta area and streaming through Tennessee, Kentucky, Indi
ana, Ohio, running west of the Appalachians all the way into upstate 
New York. Here we have a heterogeneous mixture of nearly every one of 
the V&A classifications. 

Low and Accelerating Everywhere: Many counties with currently low 
number of cases (bright red) are now beginning to accelerate virtually 
everywhere indicating COVID-19 is gaining ubiquitous footing 
throughout the country. 

We further summarize the impact to the U.S. population. Comparing 
new confirmed COVID-19 cases from last week (June 11–17, 2020) to 
that of the previous week (June 4–10, 2020) reveals the following 
statistics:  

● 785 counties or county equivalents, home to 111 million residents 
(34.1%), saw a decelerating growth rate.  

● 330 counties or county equivalents, home to 46 million residents 
(14.2%), saw a relatively constant growth rate.  

● 1079 counties or county equivalents, home to 157 million residents 
(47.9%), saw an accelerating growth rate.  

● 161 counties or county equivalents, home to 4.8 million residents 
(1.5%), have seen no new cases over the past week. 
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● 51 counties or county equivalents, home to 1.3 million residents 
(0.38%), have seen no new cases over the past 2 weeks.  

● 50 counties or county equivalents, home to 867 thousand residents 
(0.26%), have seen no new cases over the past 3+ weeks.  

● 682 counties or county equivalents, home to 5.7 million residents 
(1.8%), remain at less than 10 total reported cases. 

These population based summaries indeed can be viewed over time 
to see overall experiences back to the beginning of the pandemic. Fig. 3 
shows these trends for both population and number of counties. The 
upper figure shows that by March 12th, most Americans lived in a 

county with too few cases to even measure growth. By April 2nd, the 
majority of Americans lived in a county with accelerating growth. Be
tween April 9th and April 16th more Americans lived in counties with 
decelerating growth. This may be due to public policy changes, 
improving weather, and behavioral adjustments to the pandemic. The 
national trend that followed was a rather consistent, undulating pattern 
of worsening and improving. 

In the bottom figure, we see a slightly different pattern with about a 
quarter of counties still having too few cases to monitor. Like the pop
ulation perspective, beginning about April 16th, we see an undulating 
pattern in the number of improving counties. Unfortunately, the number 

Fig. 1. Observed per capita new cases. US county-level map of new COVID-19 cases during the week of June 11–17, 2020. The darker shades indicate higher 
numbers of per capita cases for the week, and the lighter shades represent few to no new cases. 

Fig. 2. V&A county map. V&A map for week of June 11–17, 2020.  
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of counties observing an accelerating growth is increasing over time as 
more counties convert from the category of ”too few cases to assess 
growth” into the ”acceleration” category. 

These graphs serve as a top level view about the spatial and temporal 
dynamics of the disease and the impact of those dynamics on the pop
ulation. As weeks go by, individual counties can leave one category and 
enter another. For example, one county is high and accelerating one 
week and the next week high and constant. Populations in those counties 
follow suit. Progression as measured by Fig. 3 provides a national county 
metric that absorbs these exchanges and enables an interpretable view of 
disease progression at the county population level. As the pandemic 
recedes due to policy intervention or vaccine distribution, the inventory 
of counties and their populations will begin converting to decelerating 
growth. As the pandemic ends the inventory will be largely classified as 
”no new cases in recent weeks.” 

3.2. Bayesian nowcast results 

Overall, forecasts for the week of June 18–24, 2020 were well- 
aligned with the net number of new cases across all states (Fig. 4). 

Excluding counties with no previous new cases, 53.6% of the daily count 
of county-level new COVID-19 case totals were within the model’s 50% 
prediction interval, 73.3% within the 70% prediction interval, and 
92.3% within the 90% prediction interval. The strong agreement be
tween the model’s prediction interval and the actual observed data in
dicates that the prediction intervals are well-calibrated and not overly 
restrictive or excessively encompassing. 

Given the initial goal of stable predictions for both urban and rural 
counties we further break out the comparison by county population 
(Fig. 5). Counties with a population of less than 50,000 demonstrated a 
larger range of outcomes than those with 50,000 or more but the model 
performed consistently across both groups. The larger range of outcomes 
for counties with a population of less than 50,000 was expected given 
the smaller population (denominator) and small number problems 
associated with lower counts of new cases in more rural areas. 

In Fig. 6, we map the prediction credibility intervals in which 
observed new case count data falls. In this spatial view, there do not 
seem to be any systemic errors with values outside the 90% credibility 
showing no to have apparent spatial clustering. 

To further assess model validation we introduce some useful 

Fig. 3. COVID-19 temporal acceleration by population (top) and county (bottom). In the top stacked area chart shows the daily percentage of the national 
population living in each type of growth rate during March 1st-June 17th. The bottom graph shows what percentage of US counties are experiencing these 
growth rates. 
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Fig. 4. Forecasted and observed new cases per capita June 18–24, 2020. The predicted growth rate of the number of new COVID-19 cases per capita was 
estimated based on known cases the prior week. 
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diagnostics at the daily level. These deeper looks can help illuminate 
reasons for problematic weekly count estimates. Fig. 7 shows the daily 
nominal credibility intervals with the observed outcomes. Overall the 
model performs relatively well even on a daily basis with observed and 
nominal probabilities within a few percentage points of one another. 
Deviations such as those on the 2nd (June 19th) and 7th day (June 24th) 

for larger counties can prompt deeper analysis into what may be 
occurring there. 

In Fig. 8 we partitioned counties into those with <100 and ≥ 100 
confirmed cases, and the daily root mean squared error (RMSE) was 
examined for those partitions each day during June 18–24. The results 
are ordered from largest average RMSE to smallest. Arkansas and Lou
isiana have the highest overall differences between forecasts and 
observed data, driven by counties with ≥100 cases. Observing states 
near the bottom of the graph with the lowest average RMSE, we see 
areas that performed well include Hawaii, New Hampshire, Rhode Is
land, Vermont, New York, District of Columbia, Maine, Pennsylvania 
and so forth. It’s noteworthy that the states with the lowest RMSE had a 
more aggressive COVID response than Arkansas and Louisiana, which 
performed poorly in our prediction. Also interestingly we see specific 
days in specific states where error spikes emerge, such as day 6 in Florida 
and day 4 in Missouri. This means that overall error rates may be 
attributable to those specific days. On the other hand, Wyoming saw an 
consistently increasing error rate over the seven-day period, for counties 
with a total number of cases greater than 100. This indicates that overall 
error are not attributable to single day instances but a divergent trend 
may be occurring there warranting further investigation. 

Another way to present nowcast results is to apply V&A maps to 
predicted values. V&A maps were constructed by using model pre
dictions for the June 18–24 period and compared with V&A maps for the 
subsequently observed data, as shown in Fig. 9. These V&A maps show 
similarities between the model forecasts and observed data. Most 
strikingly, forecasted and observed V&A maps for the coastal states 
appear largely consistent; Florida, North Carolina, South Carolina, 
southern Louisiana, eastern Texas, and southern California show similar 
patterns of high new case rates combined with accelerating growth. 

Notable exceptions to this trend are Alabama and Arizona. Cases in 
Alabama were predicted to accelerate, however Alabama saw a decel
eration of new cases state wide during the June 18–24 period. In Ari
zona, many counties were predicted to decelerate or remain constant, 
however in the end, they accelerated significantly. Departures such as 
these from predictions can potentially alert decision makers to check for 
local changes in governance for public health approaches that may be 
mitigating (or promoting) disease progression. 

Fig. 5. Forecasted vs Observed Per Capita New Cases By Population 
Groups Counties with a population of less than 50,000 demonstrated a larger 
range of outcomes than those with 50,000 or more but the model performed 
consistently across both groups. 

Fig. 6. Map showing the spatial location of model forecast deviations for June 18–24, 2020. The map shows which model quantiles new case observations fall 
within by county. 

R. Stewart et al.                                                                                                                                                                                                                                 



Applied Geography 146 (2022) 102759

10

4. Discussion 

4.1. Key outcomes 

With these results in hand, we return to the motivating questions first 
posed in the introduction and indicate how CCSAT provides salient 
answers. 

How bad is the situation in my jurisdiction and is it getting worse or 
better? The CCSAT V&A map provides a simultaneous view of the rela
tive severity (velocity) and growth in that severity (acceleration) over 
the past week. The map can be used by county, state, and federal au
thorities in understanding the greater pandemic context and where their 
particular jurisdiction is situated in that context. 

Are things getting better or worse overall across the nation? The two 
stacked time series charts show the number of counties and persons 
living in those counties that are experiencing decelerating, constant, or 
accelerating growth. This shows an overall fine-scale (county-level) 
impact of COVID dynamics back to the start of the pandemic. 

How many new cases should I anticipate next week? The Bayesian 
nowcast model predicts the number of new cases each county can expect 
seven days ahead of time. This allows prediction of new case maps as 
well as projected V&A maps that can be interpreted at county, state, and 
federal levels. 

How well do the weekly predictions match reality? By comparing the 
actual number of new cases for each county to the prediction, the per
formance of the Bayesian nowcast model can be easily assessed in a 
variety of ways. Here we compare actual data to predicted values and 
evaluate how well those fall into expected percentiles at the county and 
state level. This assessment is conducted across large and small pop
ulations and large and small case counts alike. 

In addition to these, we note the following key outcomes.  

● Within an urgent, operational pandemic environment with limited 
information, CCSAT can be executed quickly (within a few hours on 
CADES) providing near-term public health information on the spread 
of disease. 

● The V&A retrospective analysis allows decision makers to simulta
neously consider both disease severity and growth enabled by 
familiar terms of velocity and acceleration and to interpret maps 
with accessible cartographic representation.  

● The national new case rate stacked graphs trace the population and 
counties falling into each V&A category back to the start of the 
pandemic. This provided a national perspective on the county-level 
progression of the disease. Major trends (e.g., flattening, growth) 
were easily visualized.  

● The Bayesian nowcast model provided robust estimates of new case 
counts expected over the next seven days. The performance of the 
model could be constantly evaluated by comparing predictions with 
actual values on a weekly basis. 

4.2. Future work 

In some sense, the model is agnostic to the type of variable that 
authorities wish to trace as long as the variable is time based and is 
meaningful as a rate over population at the county, state, and national 
scale. Hence, CCSAT is well positioned for new variants of COVID-19 or 
entirely new future pandemics with similarly limited information. Here 
the target source was new case count. Future scenarios may have, for 
example, a more reliable death count and CCSAT could be used to es
timate the velocity, acceleration, and projected growths of there as well. 

In other future work, we aim to develop a more agile CCSAT that 
could deal with more heterogeneous and richer data surfaces in those 
counties where it is available. For example, methods for under-reporting 
(Albani et al., 2021c; Angulo et al., 2021; Gibbons et al., 2014; Lau et al., 
2021; Whittaker et al., 2021), mobility (Hu et al., 2021), vaccination 
effects (Albani et al., 2021b; Amaku et al., 2021), and mechanistic 
modeling approaches (Zhou et al., 2020) could be implemented where 
the data are available under an architecture that can dynamically 
respond to variations in data detail and richness at operational tempo. 
Cross-comparison and benchmarking of different model architectures 
and ensembles will be a critical part of that work. 

5. Conclusion 

In the early stages of the pandemic, understanding the spatio- 
temporal progression of COVID-19 through traditional SIR models and 
their variants was severely hampered by a sparse and uncertain data 
environment. In addition to data variation, massive societal behaviour 
changes occurred such as school closures and mask mandates. This made 
long term prediction very difficult but also clouded situational aware
ness about near-term severity and progression at a time when it was 
greatly needed. Against this backdrop, a pressing need remained for a 
fine-scale, national perspective on the immediate and near-term severity 
and growth of the COVID-19 pandemic across the U.S. 

The DOE’s NVBL pandemic modeling initiative responded with 
development of CCSAT, a novel data driven framework for providing 
reliable measures of near-term severity and growth as well as near-term 
projections across all 3000+ U.S. counties. Focusing on the most recent 
and upcoming seven-day periods, the 14-day moving window utilized a 
bivariate cartographic model (V&A) to convey immediate conditions 
while a Bayesian nowcast model estimated likely conditions over the 

Fig. 7. Posterior Predictive Coverage Intervals. These charts show the actual and nominal 75, 85 and 95 percent credible regions for the Bayesian model 
predictions. 
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next seven days. Results were operationally reliable as model di
agnostics (e.g, predicted-actual scatter plots, RMSE, and credibility in
tervals) showed strong and stable alignment between projected and 
actual disease distributions throughout time window. With this new 
capability, it was now possible to understand and reliably predict near- 
term spatio-temporal progression of COVID-19 across the U.S. at the 
federal, state, and county-level. 
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