Table 2.
The proposed model results are compared with the state-of-the-art network.
| Method | Reference | Evaluating indexes | ||||
|---|---|---|---|---|---|---|
| Sensitivity | Specificity | PPV | NPV | Accuracy | ||
| Alexnet | Alexnet model [18] | 0.86 | 0.92 | 0.91 | 0.94 | 0.91 |
| Maghdid et al. [19] | 0.92 | 0.96 | 0.95 | 0.97 | 0.95 | |
| Turkoglu et al. [20] | 0.92 | 0.97 | 0.97 | 0.91 | 0.94 | |
| Loey et al. [21] | 0.92 | 0.96 | 0.93 | 0.93 | 0.93 | |
| Vgg | Vgg16 model [22] | 0.92 | 0.94 | 0.91 | 0.97 | 0.93 |
| Vgg19 model [22] | 0.96 | 0.96 | 0.95 | 0.97 | 0.96 | |
| Sitaula et et al. [23] | 0.96 | 0.96 | 0.94 | 0.97 | 0.96 | |
| Shibly et al. [24] | 0.97 | 0.95 | 0.93 | 0.98 | 0.96 | |
| Lee et al. [25] | 0.87 | 0.89 | 0.89 | 0.87 | 0.89 | |
| Resnet | Resnet18 model [26] | 0.98 | 0.94 | 0.93 | 0.98 | 0.96 |
| Resnet50 model [26] | 0.97 | 0.98 | 0.98 | 0.98 | 0.97 | |
| Resnet101 model [26] | 0.97 | 0.94 | 0.98 | 0.99 | 0.97 | |
| Zhou et al. [28] | 0.88 | 0.97 | 0.936 | 0.93 | 0.93 | |
| Sakib et al. [29] | 0.89 | 0.91 | 0.78 | 0.98 | 0.90 | |
| Hira et al. [30] | 0.96 | 0.94 | 0.97 | 0.87 | 0.90 | |
| Densenet | Densenet121 model [31] | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
| Densenet201 model [31] | 0.98 | 0.91 | 0.95 | 0.98 | 0.97 | |
| Tabrizchi et al. [32] | 0.87 | 0.95 | 0.97 | 0.91 | 0.95 | |
| Mangal et al. [33] | 0.98 | 0.87 | 0.74 | 0.99 | 0.92 | |
| Chowdhury et al. [34] | 0.99 | 0.97 | 0.97 | 0.98 | 0.98 | |
| Proposed | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | |