Skip to main content
. 2022 Jul 22;13:921067. doi: 10.3389/fendo.2022.921067

Table 3.

The association between VAI and IR in a multiple logistics regression model.

Variable n(%) Model 1 Model 2 Model 3 Model 4
OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value
VAI 27309 1.6 (1.5~1.71) <0.001 1.62 (1.51~1.73) <0.001 1.29 (1.2~1.38) <0.001 1.28 (1.2~1.37) <0.001
VAI group
Q1 6827 1(Ref) 1(Ref) 1(Ref) 1(Ref)
Q2 6827 2.55 (1.91~3.4) <0.001 2.69 (2.01~3.61) <0.001 1.87 (1.34~2.61) <0.001 1.79 (1.28~2.5) 0.001
Q3 6827 5.52 (4.18~7.29) <0.001 6.01 (4.51~8.03) <0.001 3.06 (2.2~4.27) <0.001 2.79 (2~3.91) <0.001
Q4 6828 12.27 (9.25~16.28) <0.001 13.73 (10.22~18.45) <0.001 5.73 (4.07~8.06) <0.001 5.03 (3.56~7.12) <0.001
P for trend 27309 2.27 (2.09~2.47) <0.001 2.35 (2.15~2.57) <0.001 1.77 (1.6~1.97) <0.001 1.69 (1.52~1.88) <0.001

Model 1: non-adjusted.

Model 2: adjutesd age, gender, race.

Model 3: adjutesd age, gender, race, education, smoke, Alcohol use, diabetes, hypertension.

Model 3: adjutesd age, gender, race, education, smoke, Alcohol use, diabetes, hypertension, ALT, AST, GGT, BUN.