Skip to main content
. 2022 Jul 22;10:807225. doi: 10.3389/fchem.2022.807225

TABLE 3.

Typical examples of adsorbents that have been tested for adsorptive denitrogenation.

Adsorbent Feedstock Performance References
General adsorbents
Fe(III) impregnated bentonite clay Quinoline and methylene blue Total adsorbed nitrogen (39 mg g−1) Mambrini et al. (2013)
Activated carbon, MAXSORB-II Straight run gas oil 0.039 g N g adsorbent Sano et al. (2004)
CuCl/activated carbon Quinoline and indole in n-octane/p-xyene (75:25) AC: quinoline (64 mg/g), indole (63 mg/g); CuCl/AC: quinoline (126 mg/g), indole (168 mg/g) Ahmed and Jhung, (2015a)
Mesoporous silicas Light gas oils Up to 8.05 mg N per g adsorbent Kwon et al. (2008)
Zeolites containing cuprous cations Commercial diesel Alkyl carbazoles completely removed Hernández-Maldonado and Yang, (2004)
Yttrium ion-exchanged Y zeolite Indole and quinoline in n-octane Up to 12.37 mg per g adsorbent Tian et al. (2020)
X-type zeolites Quinoline in isooctane Up to 17 mg N per g adsorbent Ofoghi et al. (2021)
Hexagonal mesoporous silicas (molecular sieves) Ti−HMS Pyridine, quinoline and indole in n-octane (N concentration 200 μg g−1) and diesel Pyridine > quinoline > indole diesel (90% N removal) Zhang et al. (2010)
Ion exchange resins Shale-derived oils Up to 0.072 g N/g resin Marcelin et al. (1986)
Aluminosilicate mesostructures (MSU-S) and HPW and NiO-HPW modified MSU-S Quinoline and carbazole in n-hexadecane/n-octane (50:50) MSU-S (0.4 mmol/g), HPW-MSU-S (0.43 mmol/g) and NiO/HPW-MSU-S (0.44 mmol/g) Rashidi et al. (2015)
∼7% increase in nitrogen uptake in modified MSU-S
Tailored organic polymers
 Styrene-divinylbenzene copolymer Model fuel and crude oil pyridine (99.9%), pyrrole (99.7%) Awokoya et al. (2021)
 Vinylpyridine based polymer Indole in n-octane Indole (31.80 mg g−1) Cao et al. (2014)
 Polybenzimidazole fibres Model fuel and spiked diesel pyrimidine (11.5 mg g−1), carbazole (11.8 mg g−1), quinoline (11.0 mg g−1) Abdul-quadir et al. (2019)
 Poly 4-vinyl aniline-co-divinylbenzene Model fuel and Sasol diesel 500 pyridine (30.2 mg g−1) Mathidala and Ogunlaja, (2019)
 Poly-2-(1H-imidazol-2-yl)-4-phenol microspheres Model fuel and diesel pyrimidine (10.56 mg g−1), carbazole (11.71 mg g−1), quinoline (10.84 mg g−1) Abdul-Quadir et al. (2018a)
 Poly 2-(1H-imidazol-2-yl)-4-phenol nanofibers Model fuel and diesel quinoline (11.7 mg g−1), pyrimidine (11.9 mg g−1), carbazole (11.3 mg g−1) Abdul-Quadir et al. (2018b)
 Fe3O4 nanoparticles equipped magnetic molecularly imprinted polymers Model fuel indole (37.58 mg g−1) Niu et al. (2014)
Coordination polymers
 MIL-101 (Cr) Straight run gas oil (SRGO) and light cycle oil (LCO) SRGO (9.0 mg N per g), LCO (19.6 mg N per g) Nuzhdin et al. (2010)
Adsorption due to π-π stacking interactions with terephthalate bridges of MOF
 MIL-100 (Al3+, Cr3+, Fe3+, V3+) Indole and 1,2-dimethylindole in heptane Indole (V>Cr>Fe>Al) Van de Voorde et al. (2013a)
1,2-Dimethylindole (V>Cr>Al>Fe)
MIL-100(V)vac has best performance due to CUSs
Indole>1,2-Dimethylindole
 MIL-101 (Cr) Pyridine Pyridine (950 mg/g) pyridine adsorption via CUSs Kim et al. (2011)
 MIL-101 (Cr) SRGO and LCO MIL-101 (Cr) showed better adsorption than silica gel, Selexsorb® CD, Selexsorb® CDX and activated carbon (2.3 times higher adsorption capacity, two times rate of adsorption) Laredo et al. (2016)
Adsorbent regenerated 280 times using acetone
 MIL-100(Fe, Cr, Al), MIL-101(Cr), [Cu3(BTC)2], CPO-27(Ni), CPO-27(Co), MIL-47/MIL-43 Indole, 2-methylindole, 1,2-dimethylindole in heptane or heptane/toluene (80:20) No significant uptake (<1 wt%) in MOFs without open metal sites (MIL-47/MIL53) Maes et al. (2011)
Reduced uptake when solvent was changed to heptane/toluene (80:20)
 MIL-96(Al), MIL-53(Al) and MIL-101(Cr) Pyridine, pyrrole, quinoline and indole in n-octane Highest adsorption in MIL-101(Cr) due to CUSs Wang et al. (2013)
Adsorption in MIL-96(Al) and MIL-53(Al) demonstrated importance of pore shape and size
 MIL-53(Fe) Indole and benzothiazole in heptane/isopropanol Indole (22 wt%), benzothiazole (59 wt%) Van de Voorde et al. (2013b)
Hydrogen bonding
 UiO-66—SO3H Indole in n-octane Indole (37% improved uptake compared to pristine UiO-66) Ahmed et al. (2015)
Hydrogen bonding with O in (-SO3H)
 UiO-66 and UiO-66-NH2 Pyridine Improved adsorption capacity and kinetics in UiO-66-NH2 compared to pristine UiO-66 Hasan et al. (2014)
 UiO-66 and UiO-66-NH2 Indole UiO-66 (213 mg/g) > UiO-66-NH2(100) (312 mg/g) due to increased hydrogen bonding from amine group Ahmed and Jhung, (2015b)
 CuCl impregnated MIL-100(Cr) Quinoline, indole in n-octane/p-xylene (75:25 v/v) Quinoline (9%) and indole (15%) improved uptake comparedto pristine MIL-100(Cr) Ahmed and Jhung, (2014)
 Phosphotungstic acid impregnated MIL-101 Quinoline, indole 20% increase in quinoline uptake, no change for indole Ahmed et al. (2013a)
Acidic MOFs good for the adsorption of hard bases
 AlCl3 loaded MIL-100(Fe) Quinoline and indole 17% increase in uptake of quinoline, no change for indole Ahmed et al. (2014)
AlCl3 is a Lewis acid salt
 MIL-101(Cr) functionalized with -SO3Ag Quinoline, indole in n-octane/toluene (85:15 v/v) 50% increase in uptake, maintained uptake in presence of toluene She et al. (2018)
Composite materials
 Fe3O4@SiO2@PILs (magnetic polymeric ionic liquids) Pyridine, quinoline, indole, carbazole in toluene/heptane (80:20) Pyridine (80.28%), quinoline (84.45%), indole (32.48), carbazole (28.47) Wang et al. (2019)
PILs were grafted on silica-coated Fe3O4
 Mesoporous Ti-HMS/KIL-2 composite Pyridine and quinoline in n-octane Pyridine(90%), quinoline (90%) Song et al. (2017)
Increased surface area compared to precursor compounds
 ZIF-67(x)@H2N-MIL-125 [Z67(x)@M125] Indole, 1-metylindole, quinoline, pyrrole and pyridine in n-octane Indole (680 mg/g) Bhadra and Jhung, (2020)
Indole>1-methylindole>quinoline>pyrrole>pyridine
H-bonding, cation-π, acid-base and π-complexation
 Graphene oxide (GnO)/MIL-101 (Cr) composite Indole or quinoline in n-octane GnO/MIL-101 indole (593 mg/g), quinoline (484 mg/g) > MIL-101 indole (416 mg/g), quinoline (446 mg/g) Ahmed and Jhung, (2016b)
 Graphite oxide/MIL-101(Cr) Quinoline and indole in n-octane/p-xylene (75:25) Improved uptake of quinoline (24%) and indole (30%) in GO/MIL-101 compared to pristine MIL-101 Ahmed et al. (2013b)