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Abstract

Background: The etiology of colorectal cancer is not fully understood.

Methods: Using genetic variants and metabolomics data including 217 metabolites from 

the Framingham Heart Study (n = 1,357), we built genetic prediction models for circulating 

metabolites. Models with prediction R2 > 0.01 (N metabolite = 58) were applied to predict levels of 

metabolites in two large consortia with a combined sample size of approximately 46,300 cases and 

59,200 controls of European and approximately 21,700 cases and 47,400 controls of East Asian 

(EA) descent. Genetically predicted levels of metabolites were evaluated for their associations 

with colorectal cancer risk in logistic regressions within each racial group, after which the results 

were combined by meta-analysis.

Results: Of the 58 metabolites tested, 24 metabolites were significantly associated with 

colorectal cancer risk [Benjamini–Hochberg FDR (BH-FDR) < 0.05] in the European population 

(odds ratios [ORs] ranged from 0.91 to 1.06; P-values ranged from 0.02 to 6.4x10−8). Twenty 

one of the 24 associations were replicated in the EA population (ORs ranged from 0.26 to 1.69, 

BH-FDR < 0.05). In addition, the genetically predicted levels of C16:0 cholesteryl ester was 

significantly associated with colorectal cancer risk in the EA population only (OR EA: 1.94, 

95% CI, 1.60−2.36, P = 2.6x10−11; OR EUR: 1.01, 95% CI, 0.99−1.04, P = 0.3). Nineteen of 

the 25 metabolites were glycerophospholipids and triacylglycerols (TAG). Eighteen associations 

exhibited significant heterogeneity between the two racial groups (P EUR-EA-Het < 0.005), which 

were more strongly associated in the EA population. This integrative study suggested a potential 

role of lipids, especially certain glycerophospholipids and TAGs, in the etiology of colorectal 

cancer.

Conclusions: This study identified potential novel risk biomarkers for colorectal cancer by 

integrating genetics and circulating metabolomics data.

Impact: The identified metabolites could be developed into new tools for risk assessment of 

colorectal cancer in both European and East Asian populations.

INTRODUCTION

Colorectal cancer remains a significant health burden in the United States (United 

States) and many other counties. More than 1.9 million new colorectal cancer cases and 

935,000 colorectal cancer deaths occurred worldwide in 2020 (1,2). The incidence varies 
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significantly across regions (1). For example, the age standardized incidence of colorectal 

cancer is 36.9 per 100,000 in the United States and 25.3 per 100,000 in China, respectively 

(3-5). Obesity, cigarette smoking, heavy alcohol consumption, diets high in fat and red meat 

or processed meat, sedentary lifestyle, and history of adenomatous polyps are established or 

suspected risk factors for colorectal cancer (6). Genetic factors also play an important role in 

colorectal carcinogenesis. Genome-wide association studies (GWAS) have uncovered over 

100 genetic susceptibility loci of colorectal cancer in European and East Asian populations 

(7-16). However, the biological mechanisms underlying these associations for most of the 

identified loci and whether it has a differential impact on colorectal cancer development in 

different racial groups remain elusive, indicating the need for further investigations.

The advance of omics techniques has enabled a comprehensive and efficient examination of 

intermediate phenotypic markers such as circulating metabolites within population-based 

studies (17-19), casting novel insights into cancer etiology and biology. Nevertheless, 

limitations of traditional observational studies including relatively small sample size, 

residual confounding, and evident heterogeneity due to differences in research design, study 

population, ‘omics’ measurement platform, and statistical analysis, pose challenges for 

making causal inference.

In recent years, new methods integrating multi-omics data have been developed and 

applied to uncover novel etiologic factors for cancer. One such method, transcriptome-

wide association study (TWAS) (20,21), has been widely implemented to identify novel 

susceptibility genes for different cancers (22-26). By combining genetic information with 

transcriptomics data, TWAS assesses the relationship between genetically predicted gene 

expressions, versus measured expression levels, and cancer risk. Because the approach 

takes advantage of random assignment of parental genotypes within each locus that 

occurs at meiosis (27), theoretically, TWAS minimizes the impact of reverse causation and 

confounding, compared with traditional observational studies. Extending the use of TWAS 

to data of other omics, such as metabolomics, is promising and important to address the 

gaps mentioned above. The approach is highly cost efficient at the screening stage for a 

biomarker study, likely to resulting in promising and high-quality candidates for follow-up 

investigations.

Here, we extended the application of genetic prediction algorithms to existing metabolomics 

data, to search for novel risk biomarkers, and facilitate a better understanding of colorectal 

cancer etiology in two racial groups.

MATERIALS & METHODS

The study flowchart was shown in Supplementary Figure 1.

Data set used for model building

Framingham Heart Study (FHS) Offspring Cohort: The FHS Offspring Study 

was a longitudinal community-based cohort study, which was initiated in 1971 after the 

establishment of the original FHS cohort (28,29). A total of 2,079 participants of European 

descent, who underwent metabolic profiling and genome-wide genotyping, were eligible to 
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be included in the genetic prediction model building process. We further excluded related 

participants according to their genomic relatedness (> 0.05) using Plink1.9 (30), which 

resulted in 1,357 unrelated subjects remaining in the current study. As described previously, 

blood samples were collected from the participants after an overnight fast (31-33). Genome-

wide genotyping was conducted using the Affymetrix 500K mapping array and the 

Affymetrix 50K gene-focused MIP array (31). The called genotypes were then imputed 

to the 1000 Genome phase 3 reference panel. After quality control (QC) procedures, only 

genetic variants with minor allele frequency (MAF) > 0.05 and imputation R2 > 0.8, were 

kept for prediction model building. Ten to 30 μl of plasma from the same set of participants 

were used to profile circulating metabolites using three different approaches. The details 

of the procedures to profile circulating metabolites in plasma samples were described in 

previous literature (31-33). Two hundred and seventeen metabolites (113 polar analytes and 

104 lipid analytes) were measured by the LC/MS-based metabolomics platform. Amino 

acids, amino acid derivatives, urea cycle intermediates, nucleotides, and other positively 

charged polar metabolites were profiled using a 4000 QTRAP triple quadrupole mass 

spectrometer that was coupled to a multiplexed LC system with hydrophillic interaction 

chromatography columns installed. Organic acids, sugars, bile acids, and other negatively 

charged polar metabolites were profiled using a 5500 QTRAP triple quadrupole mass 

spectrometer using electrospray ionization (ESI) and multiple reaction monitoring (MRM) 

in the negative ion mode. For both approaches, isotope standards were added to the 

samples for generating calibration curves and absolute quantification of metabolites of 

interest. Plasma lipid profiles were obtained using a 4000 QTRAP Triple Quadrupole Mass 

Spectrometer, coupled to a reverse-phase chromatography with Prosphere HP C4 columns 

installed. No isotope-labeled standards were used to determine absolute levels of profiled 

lipids. All the FHS data are accessible via dbGAP (https://www.ncbi.nlm.nih.gov/gap/, study 

accession: phs000007.v31.p12).

Prediction model building

To address the right-skewed distributions of metabolite levels and differences in scaling, 

metabolites were log-transformed, then regressed against age and sex to obtain residuals. 

The residuals were then quantile normalized and standardized (mean of 0 and standard 

deviation of 1) in the overall study population. We randomly split the unrelated 1,357 

participants of FHS Offspring study into training (N = 1,000) and testing set (N = 

357), with a rough ratio of 3:1. We specifically aimed to build prediction models for 

63 metabolites, selected from the 217 metabolites (Supplementary Table 1), as strong 

metabolite-quantitative trait loci (QTL); associations were previously reported for these 

metabolites (31).

Genetic variants passing the QC and located within the proximity of 500 kb both upstream 

and downstream to each reported metabolite-QTL variant, were subject to a variable 

selection procedure by the elastic net method (R package glmnet, α = 0.5). Because 

genetic variants in high linkage disequilibrium (LD) contain redundant information, we 

performed pairwise pruning (LD r2 > 0.9), prior to implementing the elastic net procedure. 

We implemented a 5-fold cross-validation in the training set to address the potential issue of 

overfitting. A tuning parameter of regularization (λ) for a model with the best performance 
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was determined by minimizing the mean cross-validated error during the cross-validation 

procedure. The regularized βs of genetic predictors were extracted and applied to the 

samples in the testing set. Pearson correlation r was calculated between the genetic predicted 

levels of metabolites (∑βiGi) and their observed levels in the testing set. In a sensitivity 

analysis, we observed minimal variation for model performance when changing the fold of 

cross-validation or the pruning criterion (Supplementary Figure 2). Levels of metabolites 

predicted well in the training set were also correlated well with the corresponding measured 

levels in the testing set (Supplementary Figure 2). We combined training and testing sets and 

repeated the same abovementioned procedures to refine β estimates of genetic predictors for 

each metabolite. In this procedure, 58 metabolites had models with R2 > 0.01 (correlation 

coefficient between predicted and measured levels > 0.1 in the cross-validation) (13,22,24) 

and were considered for downstream analyses with colorectal cancer risk.

Colorectal cancer GWAS consortia

Individual-level genotype data for the selected genetic predictors for metabolites were 

extracted from several large-scale consortia (Supplementary Table 2).

European data: This study includes GWAS data from the COloREctal Cancer 

Translational Study (CORECT), the Genetics and Epidemiology of Colorectal Cancer 

Consortium (GECCO), the Colorectal Cancer Family Registry (CCFR), and UK Biobank. 

Detailed descriptions regarding genotype datasets, sample selection, and studies have been 

published previously (7,9-11). The details of genotype quality control procedures to filter 

out samples were described in previous publications (7,9-11). Briefly, individuals that were 

second-degree or more closely related, were excluded based on identity by descent estimates 

for each pair of samples. Samples with discrepancies between reported and genotypic 

sex based on X chromosome heterozygosity and the mean values of sex chromosome 

probe intensities were also excluded. Variants having missing call rate >2%, discordant 

calls in sample duplicates, and departing from Hardy-Weinberg equilibrium (HWE) (P 

< 1 × 10−4) based on European-ancestry controls were removed. All GWAS data were 

imputed to the Haplotype Reference Consortium (HRC) panel (34) using the University 

of Michigan Imputation Server (35). The current study was restricted to individuals of 

European descent and invasive cancer cases, leaving 46,323 colorectal cancer and 59,288 

controls for downstream analyses. Approximately 10% of the cases were diagnosed at an 

age younger than 50 years old and 61.1% were diagnosed with colon cancer (Supplementary 

Table 2). All participants provided written informed consent, and each study was approved 

by the relevant Institution Review Board (IRB) or research ethics committee.

Asia Colorectal Cancer Consortium: The current study utilized genotyping data from 

21,731 colorectal cancer cases and 47,442 controls of East Asian ancestry from studies 

conducted in the Asia Colorectal Cancer Consortium (ACCC), and some were also included 

in the CORECT study (Supplementary Table 2). Details of sample selection and matching, 

genotyping, genotype calling, and QC have been described previously (8,13-16). Briefly, 

the samples were genotyped using a variety of Illumina assays. Samples or SNPs were 

excluded if they met any of the following criteria: (i) genotype call rate per sample < 95%, 

(ii) genetically identical or duplicate samples (i.e., PI_HAT > 0.9), (iii) sex determined 
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using genotypes inconsistent with epidemiologic or clinical data, (iv) first- or second-degree 

relatives (i.e., PI_HAT > 0.25), (v) ethnic outliers with a population structure inconsistent 

with HapMap Asian samples, (vi) genotype call rate per SNP < 95%, (vii) MAF < 1%, 

(viii) genotyping consistency rates < 95% in quality control samples, (ix) P for HWE 

<1×10−5 in controls, or (x) SNPs not in autosomes. The genotyping data were imputed 

using 1000 Genome phase 3 mixed reference haplotypes via the Michigan Imputation 

Server (SHAPIT2 for haplotype phasing and minimac3 for imputation) (35). Nearly 22% 

of the participants were diagnosed with colorectal cancer at younger than 50 years old. All 

participants provided written informed consent, and each study was approved by the relevant 

research ethics committee or IRB.

Statistical analysis

Genetically predicted levels of metabolites (N metabolite = 58) were calculated as a genetic 

score (GS) using the following formula:

GSj = ∑
k = 1

n
[βi ∗ xij]

where the βi is the per-allele log odds ratio (OR) of the variants i from the built model 

for the corresponding metabolite. The xij is the allele dosage for variant i of individual 

j, and n is the total number of variants included in the GS calculation. ∑βiGi then were 

modeled as the exposure of interest in the logistic regression models to obtain ORs, 

95% confidence interval (CI), and p-values for the association with colorectal cancer risk. 

Covariates adjusted in the multivariable models included age, sex, top principal components 

(to adjust for potential population structure), genotyping platform, and substudy, when 

appropriate. Regression analysis was performed separately for the European-ancestry sample 

sets, and each substudy in ACCC. The estimates were then combined by meta-analysis 

within each racial group (European and EA) and across the two groups. Stratified analyses 

were also conducted by sex (male and female), age at diagnosis (< 50 years and ≥ 50 

years), and cancer site (colon and rectum, available in European data only). Principal 

component analysis (PCA) and pairwise partial correlation were performed to show the 

correlations of measured metabolite levels in the FHS data (Supplementary Figure 3). As 

FHS data contain a relatively limited number of metabolites used as candidates for our 

model building strategy, we alternatively performed instrumental analysis using summary 

statistics of genetic variants reported as metabolite-quantitative trait loci (metaboliteQTL) in 

a recently published study (36). The study reported 499 associations (P < 4.9 x10−10) across 

142 unique metabolites. We employed inverse-variance approach to evaluate the associations 

between the 142 metabolites and colorectal cancer risk using data from the two consortia. 

All statistical analyses were conducted using R 3.4.1 or Stata version 11.

RESULTS

Model building

A total of 58 metabolites passed the predefined criterion at cross-validation R2 > 0.01 in the 

model building process when up to 1,357 unrelated samples were analyzed (Supplementary 
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Table 3). The number of genetic variants selected as predictors varied from 1 for C54:2 

triacylglycerols (TAG) to 67 for β-aminoisobutyric acid with a median of 9. On average, 

the correlation coefficient between predicted and measured metabolites in the overall study 

population was 0.155 (or 0.024 if presented as prediction R2, Supplementary Table 3). 

Among the 58 metabolites that passed the model accuracy criterion, 41 of them broadly 

belong to lipids, including glycerophosphocholines (n = 11), glycosphingolipids (n = 

4), glycerophosphoethanolamines (n = 3), phosphosphingolipids (n=2), triradylcglycerols 

(TAG, n = 18), and diradylglycerols (n = 3).

Association findings in Europeans

Genetically predicted levels of 24 metabolites showed a significant association with 

colorectal cancer risk in individuals of European descent (Benjamini-Hochberg False 

Discovery Rate [BH-FDR] < 0.05, Table 1). With a few exceptions, i.e., lactate, alanine, α-

hydroxybutyrate, and cholesteryl esters, most of the metabolites were glycerophospholipids 

and their derivatives (n = 13) or TAGs (n = 6). Half of the metabolites (12/24) were 

positively associated with colorectal cancer risk. The most significant association was 

observed for C38:4 phosphatidylcholine (PC) (OR = 1.02, 95% CI = 1.01-1.03, P = 

6.4 × 10−8) after adjustment of age, sex, study, and top principal components. Four 

chromosomal loci, i.e., chr2p23.3 (GCKR), chr11q12.2 (FADS1-3), chr7p11.2 (SEC61G) 
and chr12p12.1 (SLCO1B1), were driving the identified significant associations and may 

influence colorectal cancer risk through regulating metabolite levels in blood (Table 1). 

Genetic loci influencing other metabolites lacking a significant association with colorectal 

cancer risk were also presented (Supplementary Table 4).

Association findings in EA

We replicated 21 of the 24 associations in individuals of EA using ACCC data as all of 

them remained significant after correction for multiple comparisons (BH-FDR < 0.05, Table 

1). One additional association was found in EA that was not observed among Europeans 

(C16:0 cholesteryl ester [CE], OR EA: 1.94, 95% CI, 1.60-2.36, P = 2.60x10−11; OR EUR: 

1.01, 95% CI, 0.99-1.04, P = 0.30). In addition to the known GWAS loci that regulate 

metabolites mentioned above, variants in chr18p11.21 (GNAL) contributed to the variability 

of circulating metabolite levels, particularly to the levels of C16:0 CE. Although the 

size of EA studies included in the current analysis was apparently smaller than that of 

European studies (Supplementary Table 2), the effect size of many identified associations 

was markedly greater in EA populations (Table 1 & Figure 1) and the P-values were also 

lower in the same populations. We further compared the original GWAS estimates for the 

genetic variants involved in the current study between the two populations (Figure 2 & 

Supplementary Table 5). The effect sizes were systematically larger for the selected variants 

in EA populations than that in European populations.

Findings of meta-analysis by combining European and EA data

When meta-analyzing the race-specific association estimates, genetically predicted levels of 

24 metabolites were significantly associated with colorectal cancer risk after accounting for 

multiple comparisons (BH-FDR < 0.05). Strong heterogeneity (P het < 0.005, Table 1) was 

found for 18 associations including C16:0 CE between the two populations.
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Clusters of the identified metabolites

For the identified metabolites, PCA analysis showed distinct clusters based on their 

measured metabolite levels in the FHS dataset; for example, a group of TAG (i.e., C48:2 

TAG, C48:3 TAG, C50:3 TAG and C50:4 TAG) was distinctively separated from cholesteryl 

esters (Supplementary Figure 3).

Stratified analysis

In the European populations, we observed similar associations across the site of primary 

tumor (colon and rectum) in the stratified analysis for all the identified risk-associated 

metabolites (Supplementary Table 6), although the significance of the associations was 

attenuated due to reduced sample size (Supplementary Table 2). We also evaluated the 

identified associations by sex (male and female) and age at diagnosis (< 50 and ≥ 50 

years) (Supplementary Figure 4). All observed associations were consistently associated 

with colorectal cancer risk in women and men (Table 2). None of the identified associations 

were significantly associated with risk of young-onset colorectal cancer with small effect 

sizes (Table 2); however, all these associations were consistent in direction for the two 

strata. Tests for heterogeneity indicated that identified associations were mainly driven by 

colorectal cancer cases with an age at diagnosis of 50 years or older, which accounted for 

approximately 90% of the participants. In contrast, we did not find strong heterogeneity by 

sex or age at disease diagnosis in the EA population. The effect sizes were comparable or 

even larger among patients diagnosed at younger than 50 years old in this population (Table 

3).

Results from genetic instrumental analysis based on summary statistics

We further conducted additional analysis by employing instrumental analysis using 

summary statistics from a recently published study (36). Sixty three of the 142 metabolites 

reported by the original study were significantly associated with colorectal cancer risk 

in both European and EA populations (Supplementary Table S7; P EUR and P EA < 

0.005). All of them belong to lipids particularly fall into subgroups of glycerophospholipids 

(PCs, lysoPCs, and sphingomyelins) In addition, kynurenine and PC ae C32:2 were found 

significantly associated with colorectal cancer risk in European data only (P EUR < 0.005), 

while hexadecanoylcarnitine, lysoPC a C28:0, octadecenoylcarnitine, PC aa C36:3, SM 

C18:0 were significant in EA data only (P EA < 0.005).

DISCUSSION

In the current study, we found that genetically predicted levels of 24 metabolites were 

associated with colorectal cancer risk, after accounting for multiple comparisons (BH-FDR 

< 0.05) in the populations of European descent, while 21 of them were also replicated in 

East Asians with the same criteria.

Compelling evidence has shown that many circulating metabolites can be regulated by 

germline genetic variants (37,38). For example, previous GWAS identified 145 genetic 

loci associated with approximately 300 metabolites, which covered amino acids, sterols, 

carnitines and intermediates of metabolisms of inositol, fatty acids, glucose, and nucleosides 
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in human blood (38). Another recent study reported 588 associations (mainly for lipids) 

involving a total of 54 independent regions (39). In these studies, heritability of metabolites 

explained by reported genetic loci varied from an average of 6.9% to over 20%, 

which serves as a strong foundation for our approach to predict metabolite levels using 

genetic variants. With an unprecedentedly large sample size, we hence evaluated the 

associations between genetically predicted metabolites and colorectal cancer risk in both 

individuals of European and EA descent, particularly focusing on metabolites known to be 

influenced by genetic variants. By combining GWAS data from several large-scale colorectal 

cancer consortia, our analysis showed genetically predicted levels of 25 metabolites were 

significantly associated with colorectal cancer risk in individuals of European and/or EA 

descent, the majority of which were glycerophospholipids and TAGs.

To our knowledge, this is the first large investigation that evaluates the associations between 

metabolites and colorectal cancer risk via an integrative omics approach. Various methods 

based on genetic instruments, such as Mendelian Randomization and TWAS (20,40), have 

been recently developed and widely employed in epidemiologic studies to facilitate causal 

inference in disease etiology research. The success of these approaches is partly attributable 

to the rapidly growing publicly available GWAS data. Conceptually, our analysis is an 

extension of the TWAS approach, by building genetic prediction models for circulating 

metabolite levels, rather than gene expression levels.

Most metabolites significantly associated with colorectal cancer risk were 

glycerophospholipids and their downstream derivatives (i.e., lysophospholipids), and TAGs. 

Previous population-based metabolomics studies including our own, suggested significant 

associations between glycerophospholipids and colorectal cancer risk (19,41). By utilizing 

prediagnostic samples, these studies were less prone to reverse causation and other biases. 

However, since the sample size of these studies remains relatively small, definitive evidence 

for the observed associations is still lacking (19,41). The current study, on the other 

hand, has leveraged unprecedentedly large consortium data to evaluate the associations of 

circulating metabolites with colorectal cancer risk. Importantly, by adopting an integrative 

design similar to the TWAS approach, we improved the statistical power and minimized 

the possibility of reverse causation and selection bias, which are limitations often seen 

in traditional biomarker studies, enhancing the validity of our findings and resulting 

in promising candidates for follow-up investigations. Furthermore, including data from 

two populations of different ancestry (i.e., European and EA), has in turn improved 

generalizability of the study findings. Therefore, the current study could provide strong 

evidence that glycerophospholipids and TAGs play an important role in colorectal cancer 

development.

Multiple glycerophospholipids and TAGs associated with colorectal cancer risk were shared 

across European and EA populations in the present study. TAGs are main components 

of very-low-density lipoprotein and chylomicrons, which are a main energy source and 

depot for the human body. The relationship between TAG and colorectal cancer remains 

inconclusive as some studies reported that elevated total TAG level was associated with 

an increased colorectal cancer risk, while others found null associations (42,43). The 

inconsistent findings could be due to the differences in study design, populations, and 
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potential residual confounders (44). In addition, few studies have conducted a detailed 

investigation on individual TAG species, which we reported herein. This highlights the 

importance of our work, which emphasizes that total TAG level could not serve as a reliable 

biomarker for colorectal cancer risk and more investigations are warranted for its species.

Glycerophospholipids like PCs are essential for maintaining structural integrity of cell 

membranes. Lysophosphatidylcholines are derived from the partial hydrolysis of PCs. 

Previous metabolomics studies have linked PCs to risks of different cancers; overall, an 

inverse relationship between levels of PCs and cancer risk was reported in the literature 

(18,19,45,46). One explanation is that the anti-inflammatory property of PCs may play a 

critical role in lowering cancer risk (47). However, the altered levels of PCs in circulation 

may be merely a reflection of increased activities of PC-specific phospholipase C and 

other relevant enzymes in cancer cells (48). Given that most cancers have a long disease 

latency period, it is conceivable that many colorectal cancer patients remain asymptomatic 

and undiagnosed for years. This implies that performing a sensitivity analysis to remove 

patients who are diagnosed shortly after cohort enrollment is critical to minimize the impact 

of reverse causation. Our study has eliminated such concern since genetically determined 

phenotypes like the genetically predicated levels of metabolites are not modified by cancer 

status.

Two chromosomal loci, chr2p23.3 (GCKR) and chr11q12.2 (FADS1-3), are known GWAS 

regions exerting strong pleiotropic effects (8,49-53). GCKR encodes glucokinase regulator, 

a protein that inhibits glucokinase by binding non-covalently to form an inactive complex 

with the enzyme in liver and pancreatic islet cells. Genetic variants in this locus associate 

with a variety of proteins, metabolites, and other traits. For instance, an early GWAS found 

that the locus was associated with fasting blood insulin and glucose levels and the findings 

were successfully validated in other studies (51,54). The locus was also related to C-reactive 

protein levels (55), amino acids (56), and Crohn's disease (53). A prior study has also 

shown that genetic variants in chr2p23.3 may exert a similar effect across different racial 

groups on colorectal cancer risk (57). Chr11q12.2 is a known colorectal cancer susceptibility 

locus (8), initially identified in EAs, then replicated among European populations. The locus 

also harbors regulatory variants that altered expression of fatty acid desaturases (FADS). 

As suggested by the name, these genes are key players in unsaturation of fatty acids, 

converting monounsaturated fatty acids to polyunsaturated fatty acids. It has been reported 

consistently in prior studies that Chr11q12.2 is associated with a variety of lipids including 

glycerophospholipids and TAGs in addition to fatty acids (31,38,52,58,59). In the present 

study, we were not able to evaluate the relationship between unsaturated fatty acids and 

colorectal cancer risk directly since they were not covered by the metabolomic platform 

used in the parental FHS Offspring study. However, our study highlighted a potential role 

of glycerophospholipids and TAGs in colorectal tumorigenesis, providing new evidence 

that the underlying mechanism linking the susceptibility locus on chr11q12.2 to colorectal 

cancer development may be mediated through a dysregulated lipid profile.

We observed generally larger effect sizes for the identified associations in EA populations 

than in European populations. This may be explained by the fact that the effect sizes of 

individual genetic variants on colorectal cancer risk involved in the current study were 
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systematically larger in the EA populations compared to European populations. This is 

not unexpected because the original colorectal cancer susceptibility locus, Chr11q12.2- 

FADS1-3, was initially reported by GWAS conducted in an EA population (8).

Despite many strengths of our study such as large sample size and inclusion of two racial 

groups, we acknowledge several limitations. First, we lacked an external dataset composed 

of genetics and metabolite data from independent subjects, which would be ideal for 

validating performance of our models. Second, the study findings were only generalizable to 

individuals of European and EA descent but not to other racial/ethnic groups. Furthermore, 

although the overall sample size was large, the Asian population samples size was smaller 

than our European cohort. However, the differences in magnitude of associations of 

genetically predicted metabolites and colorectal cancer found between the two racial groups 

may not be explained by the disparity of sample size of the two populations. Another 

limitation is that the variability of the identified metabolites such as TAGs were influenced 

by dietary intakes, which was not accounted for in the current study. We also lacked 

data on obesity and type 2 diabetes which are relevant to metabolic alterations in human 

body and serve as known risk factors for colorectal cancer. Thus, our study was unable 

to illuminate the interrelationship between metabolites and lifestyle risk factors and their 

separate and joint impact on colorectal cancer development. Finally, only a small proportion 

of circulating metabolites were investigated in this study. A more comprehensive analysis 

will be feasible when GWAS data, coupled with broader coverage of metabolome for 

global metabolite profiling, become available. For example, several GWAS of circulating 

metabolome have been published in recent years and summary statistics are accessible via 

public databases (60,61). Further investigations by including a larger reference panel for 

model building would be critical next step. On the other hand, metabolites lacking strong 

genetic determinants cannot be evaluated using our approach.

In conclusion, via an integrative approach, our study identified multiple metabolites that 

may help us better understand etiology of colorectal cancer in individuals of European 

and EA descent. The current study provided strong evidence to support the important role 

of certain lipids, particularly glycerophospholipids and TAGs, in colorectal carcinogenesis. 

Actual measurement of the identified metabolites in the prediagnostic samples and further 

evaluation for their association with colorectal cancer risk are warranted.
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Figure 1. Comparisons of effect size for identified associations between European and East Asian 
populations
Comparisons of effect size for genetically predicted metabolites on colorectal cancer risk 

between European and Asian populations.

Difference of EUR and EA populations: Mean of ∣βEUR∣- ∣βEA∣: −0.390, P paired t-test = 

9.91x10−8
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Figure 2. Comparisons of effect size for individual genetic variants on colorectal cancer risk 
between European and East Asian populations
Comparisons of effect size for individual genetic variants used as genetic instruments on 

colorectal cancer risk between European and Asian populations.

Difference of EUR and EA populations: Mean of ∣βEUR∣- ∣βEA∣: −0.0135, P paired t-test = 

2.2x10−16
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