Skip to main content
. 2022 Jul 22;13:935536. doi: 10.3389/fphar.2022.935536

FIGURE 1.

FIGURE 1

Metabolism reprogramming in cancer cells. Metabolism reprogramming is characterized by a class of altered pathway, including enhanced glycolysis with increased lactate production, and enhanced pentose phosphate pathway, fatty acid synthesis, and glutamine metabolism. These metabolic pathways support energy supply and macromolecule biosynthesis, such as nucleotides, amino acids, and lipids. Metabolites that are produced by altered metabolism have the potential to control signaling or epigenetic pathways by regulating reactive oxygen species, acetylation, and methylation. Upregulated genes or proteins are labels red, whereas downregulated genes or proteins are labeled blue. GLUT, glucose transporter; MCT, monocarboxylate transporter; SLC1A5, solute carrier family 1 member 5; TCA, Tricarboxylic acid cycle; G6PD, glucose-6-phosphate dehydrogenase; HK, hexokinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PKM, pyruvate kinase M 2; LDH, lactate dehydrogenase; ACSS2, Acyl-CoA short-chain synthetase-2; ACSS1: Acyl-CoA short-chain synthetase-1; ACLY: ATP citrate lyase; GLS, glutaminase; GDH, glutamate dehydrogenase; PDC: pyruvate dehydrogenase complex; FH, fumarate hydratase; SDH, succinate dehydrogenase; IDH1/2, isocitrate dehydrogenase 1/2; HCY, homocysteine; PPP, pentose phosphate pathway; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; OGT, O-GlcNAc transferase; OGA, O-GlcNAcase.