
Kimesurface Representation and Tensor Linear Modeling of 
Longitudinal Data

Rongqian Zhang1,4, Yupeng Zhang2,4, Yuyao Liu1,4, Yunjie Guo3,4, Yueyang Shen3,4, 
Daxuan Deng3,4, Yongkai Joshua Qiu2, Ivo D. Dinov4,5,*

1Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA

2Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

3Electrical Computer Engineering Division, University of Michigan, Ann Arbor, MI 48109, USA

4Statistics Online Computational Resource, Department of Health Behavior and Biological 
Sciences, University of Michigan, Ann Arbor, MI 48109, USA

5Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 
MI 48109, USA

Abstract

Many modern techniques for analyzing time-varying longitudinal data rely on parametric 

models to interrogate the time-courses of univariate or multivariate processes. Typical analytic 

objectives include utilizing retrospective observations to model current trends, predict prospective 

trajectories, derive categorical traits, or characterize various relations. Among the many 

mathematical, statistical, and computational strategies for analyzing longitudinal data, tensor-

based linear modeling offers a unique algebraic approach that encodes different characterizations 

of the observed measurements in terms of state indices.

This paper introduces a new method of representing, modeling, and analyzing repeated-

measurement longitudinal data using a generalization of event order from the positive reals to 

the complex plane. Using complex time (kime), we transform classical time-varying signals as 

2D manifolds called kimesurfaces. This kime characterization extends the classical protocols for 

analyzing time-series data and offers unique opportunities to design novel inference, prediction, 

classification, and regression techniques based on the corresponding kimesurface manifolds. We 

define complex time and illustrate alternative time-series to kimesurface transformations. Using 

the Laplace transform and its inverse, we demonstrate the bijective mapping between time-series 

and kimesurfaces. A proposed general tensor regression based linear model is validated using 

functional Magnetic Resonance Imaging (fMRI) data. This kimesurface representation method can 
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be used with a wide range of machine learning algorithms, artificial intelligence tools, analytical 

approaches, and inferential techniques to interrogate multivariate, complex-domain, and complex-

range longitudinal processes.

1. Introduction

Contemporary scientific studies rely on large volumes of multi-source, heterogeneous, 

and incomplete data anchored at specific spatiotemporal locations. Many state-of-the-art 

methods for handling time-varying longitudinal data involve parametric models that 

enable investigation of retrospective, current, and prospective process characterizations. 

Participant outcomes, experimental conditions (e.g., treatments or exposures), cross-

sectional characteristics, and other information is often tracked at multiple points in time. 

Common strategies for analyzing repeated longitudinal measurements include mixed linear 

modeling, time-series analysis, growth and decay modeling, forecasting or prospective 

outcomes, prognostication, causality, survival analysis, and time-to-event inference [1–5].

To account for low signal-to-noise ratio, many study-designs employ repeated data 

acquisition at controlled experimental conditions. For each unit in the experiment, this 

leads to assembling multiple samples representing scalar, vector, matrix, or tensor data. 

In the simplest case, univariate data is collected for a longitudinal process and the goal 

is to predict the prospective behavior of the process using the observed retrospective 

(training) data. In more pragmatic settings, the data is represented as a (time) dynamic 

multi-dimensional array generalizing the classical samples × variables matrix format. In this 

paper, we build on the notion of complex time (kime) [6] to generalize the classical temporal 

time-series representation of repeated longitudinal data. Specifically, we model the observed 

repeated-measurement longitudinal data as 2D kime surfaces. The structure (e.g., geometry 

and topology) of these higher dimensional manifolds carries more information compared 

to the original time-series corresponding to cross-sectional kimesurface foliation curves. 

Model-based methods, such as tensor-based linear modeling [7], and model-free artificial 

intelligence (AI) approaches, such as unsupervised clustering and classification [3, 8, 9], 

can then be designed and applied to the kimesurface representations of the time-varying 

processes.

The main drivers of examining longitudinal data include (1) direct identification of 

intra-individual change (and stability) and/or of inter-individual differences (similarity); 

and (2) analysis of interrelationships in behavioral change, causes (determinants) of intra-

individual change, and/or of determinants of inter-individual differences [10, 11]. Time-

series methods for modeling continuous responses include analysis of response profiles, 

linear mixed-effects models, hierarchical linear model, and support vector regression [12, 

13]. Response profile analysis is typically employed with a relatively small number 

of repeated measurements, obtained on a common set of occasions [12]. Linear mixed-

effects models are generally applicable for data with expected interdependencies, or 

presence of explicit or implicit hierarchical structure [14]. Mathematical modeling and 

statistical inference on longitudinal data involves preprocessing to ensure stationary, proper 

representation of seasonal and non-seasonal effects, accounting for known interventions and 
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outliers, regression estimation and classification analysis. The classical goals of time-series 

analysis include model fitting, parameter estimation, diagnostic checks, forecasting, and 

inference [15]. Many model-based approaches rely on autoregressive integrated moving 

averaging (ARIMA); however there are different classes of techniques for joint modeling of 

multivariate longitudinal data, e.g., models of evolution of the measured outcomes, marginal 

models, and models for latent evolution of latent variables [16]. Recent mathematical 

advances propose using geometric and topological techniques to represent, track, model, 

and analyze time-series and longitudinal processes [17–19]. Other machine learning and 

artificial intelligence techniques for time-series analysis include recurrent neural networks, 

long short-term memory networks, and deep Boltzmann machines [3, 20].

Functional Magnetic Resonance Imaging (fMRI) represents an example of time-varying data 

that requires careful assessment of underlying model assumptions, method limitations, and 

data processing challenges associated with longitudinal designs, e.g., task design, sampling 

strategies, and within subject and cohort-level analyses [13, 21, 22]. Changes in the fMRI 

time-course corresponds to neuronal activity tracked as variations of the ratio of oxygenated 

to deoxygenated blood levels, subject to a mediating process known as the Hemodynamic 

Response Function (HRF). Under various stimuli, e.g., audio, visual, and tactile, a change in 

the observed fMRI signal is detected in the relevant brain region, subject to HRF mediation 

with certain response delay, e.g., 2–3 seconds. Magnetic resonance scanners are extremely 

sensitive to electromagnetic fields and can be used to track brain anatomical structure, 

tissue spectral composition, and functional network activity. Brain functional activation is 

a proxy of the level of oxygenated blood hemoglobin molecule, which contains four iron 

atoms whose magnetization response depends on their oxygen binding; hence oxygenated 

vs. deoxygenated blood have distinct diamagnetic and paramagnetic properties. As the 

concentration of oxygenated blood in a brain region reflects changes (increases or decreases) 

of neuronal activation in response to a specific stimulus, the regional fMRI signal is a proxy 

indicator highly correlated with the associated brain area processing the specific stimulation 

task [23].

Tensor-based linear modeling represents longitudinal data using higher-dimensional arrays 

(tensors) that encode different characterizations of the observed measurements in terms of 

state indices, e.g.,

Conditions× Repetition
experimental design

× SpaceX  × SpaceY × SpaceZ × Time
spatiotemporal characterization

× …
other 

.

For each given tensor element, the observed data may be a (coupled) scalar, vector, 

matrix, or another tensor. In general, the typical goals of tensor-based linear modeling 

(TLM) involve obtaining computed class-labels, deriving prospective trajectory forecasts, 

estimating Bayesian posterior predictive probabilities, and predicting of an outcome tensor 

Y  of dimension Q1 × ⋯ × QM from another observed tensor X of dimension N × P1 × ⋯ 
× PL, where N is the number of observations [7]. One example of TLM inference is the 

prediction of several facial attributes from a set of recorded images [24]. In this application, 

the outcome tensor Y :Faces × Attributes is predicted using data in the observed feature tensor 

X:Faces × X × Y × ColorCℎannels [25]. Another application is the prediction of EEG from 
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fMRI data [26]. Typically, EEG has low spatial but high-temporal resolution along the brain 

cortical surface, whereas fMRI provides better spatial but poorer temporal resolution over 

the entire 3D spatial domain. TLM allows predicting the association between these two 

non-invasive functional neuroimaging modalities. Such TLM can be used to enhance derived 

neuroimaging biomarkers, impute missing or incomplete spatiotemporal information, and 

derive better prediction for normal and pathological conditions [27, 28].

Appendix A provides some additional background on the tensor definition, representation, 

and operations. Tensors naturally provide a mechanism for extending unconstrained or 

regularized linear models for prediction and inference based on high-dimensional and 

longitudinal data. Consider an observed (training data) outcome Y :N × Q1 × ⋯ × QM and a 

corresponding observed covariate tensor X:N × P1 × ⋯ × PL. Then we can perform (tensor) 

linear-model fitting:

Y = X, B L + E .

where the two new tensors are B:P1 × ⋯ × PL × Q1 × ⋯ × QM, representing the TLM 

coefficient (effect-size) tensor, and E:N × Q1 × ⋯ × QM, denoting the residual error tensor. 

Note that the first L modes of B contract the dimensions of the covariate tensor, X, which are 

not in the outcome tensor Y , and the last M modes of B expand along the outcome Y  tensor 

modes in Y  not present in the covariate tensor X. Assuming we have sufficient data to fit this 

model and estimate the effect tensor B and the residual error tensor E, then we can perform 

prediction and forecasting of the outcome tensor using classical linear modeling strategies. 

For a given outcome tensor index-set (q1, ⋯, qM) the TLM prediction of the outcome tensor 

element for each case 1 ≤ n ≤ N is:

Y n, q1, ⋯, qM ≅ ∑
p1 = 1

P1
⋯ ∑

pL = 1

PL
X n, p1, ⋯, pL B p1, ⋯, pL; q1, ⋯, qM .

To simplify the notation, the TLM model excludes the static tensor-intercept term and 

assumes that the observed data tensors Y  and X are centralized.

This paper is focused on representing, modeling, and analyzing repeated-measurement 

longitudinal data as complex time (kime) surfaces. This characterization of time-

varying information facilitates the analysis of classical time-series as higher-dimensional 

kimesurface manifolds. The manuscript is organized as follows. In Section 2, we 

define complex time and present alternative time-series to kimesurface transformations. 

The following Section 3 describes the general tensor regression based linear modeling 

approach. Section 4 includes applications of spacekime TLM analytics to functional 

Magnetic Resonance Imaging (fMRI). Finally, in Section 5, we summarize the spacekime 

analytics approach and interpret the reported findings. The supplementary materials section 

(Appendix) contains specific implementation details and additional examples.

Zhang et al. Page 4

Neural Comput Appl. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Complex-time (kime) and Spacekime Representation

Complex time (kime) extends the familiar notion of event order (time) to the complex plane. 

The kime representation of longitudinal data involves indexing measurements by κ = teiθ, 

where t and θ represent the longitudinal event order (time) and a directional kime-phase 

(repetition index), respectively. The kime-phase θ is indirectly related to the classical 

repeated random (independent and identically distributed) sampling during the process of 

recurrent measurement. The rationale for this extension of time from the positive reals (ℝ) to 

the complex plane (ℂ) is three-fold. First, in a classical mathematical sense, the longitudinal 

axis of spacetime represents only a positive cone over the field of the real numbers [29]. 

The time dimension forms a subgroup of the multiplicative group of the reals, however 

it’s not closed under addition. On the other hand, complex-time describes an algebraic 

prime field [30] that naturally extends the reals and hence, the classical temporal domain. 

Although time is ordered, whereas kime is not, the intrinsic time ordering is preserved in 

the kime magnitude. Second, the kime dimensionality lift addresses some of the physical 

problems of time [31]. Third, repeated-measurement longitudinal data are represented in 

terms of kime as 2D manifolds. This enables a higher-dimensional view of longitudinal 

processes and offers unique opportunities to design and validate innovative data-driven 

artificial intelligence (AI) and statistical approaches for modeling, analysis, inference, and 

prediction on temporal signals [6].

Although there are multiple strategies to transform longitudinal processes to kimesurfaces, 

we will demonstrate this transformation using two specific kimesurface representation 

methods [6]. Both methods can translate observed time-varying signals, such as spacetime 

fMRI data, into spacekime kimesurfaces. The first empirical strategy is based on discretely 

estimating the “missing/unobserved” kime-phases and directly mapping the observed 

longitudinal-indexed time-series into kime-indexed surfaces. The second analytical strategy 
for mapping between time-domain data and kime-domain data utilizes the Laplace 

Transformation [32].

For more specificity, we will explicate both time-series to kimesurface transformation 

strategies in terms of a finger-tapping fMRI experiment. In the empirical strategy, the 

longitudinal (time) indexing, x(t), includes one epoch of the fMRI design. The second 

component, kime-phase indexing, x(φ), runs over the number of epochs of one specific 

stimulus (e.g., finger-tapping or rest). These phase directions are generally unknown and 

may be randomly drawn (or estimated) from the appropriate kime-phase distribution for 

the specific stimulus condition. Figure 1 shows a direct mapping between fMRI time-series 

and their corresponding kimesurface counterparts. The entire fMRI time course is spliced 

and arranged according to the epoch curves into an approximate piecewise parametric 

surface indexed over kime with complex-time intensities derived from the corresponding 

complex-valued fMRI signal. The complex-value of the function f(t, φ) = Aeiθ is in the 

range-space and has magnitude A = A(t, φ) and (range) phase θ = θ(t, φ) that correspond to 

the polar coordinate representation of complex time (kime), i.e., (t, φ).

Figure 2 demonstrates two views of the same 3D scenes depicting an empirical kimesurface 

reconstruction of the on (stimulus) vs. off (rest) fMRI signal. The graphs show the kime 
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domain areas where the on vs. off differences are small (surface valleys) or large (extreme 

high or low surface peaks). The former indicate kime ranges where the voxel location 

corresponding to the kimesurface does not exhibit significant brain activation. Whereas the 

latter, surface peak regions, correspond to kime areas of potentially statistically significant 

on vs. off brain activation associated with the cognitive stimuli. Note that the practical and 

statistical significance of these peaks and valleys can be evaluated using Gaussian random 

field theory of the excursion sets above certain threshold values [33, 34].

To map longitudinal time-series into kimesurfaces using an alternative analytical strategy, 

we can employ the Laplace Transform (LT). LT converts complex-valued functions of 

positive real variables (e.g., time) to complex-valued functions defined on complex variables 

(e.g., kime). In general, for a function f(t):ℝ+ ℂ, the continuous LT is defined by:

F(z) ≡ ℒ(f)(z) = ∫
0

∞
f(t)e−ztdt:ℂ ℂ .

In our situation, complex-valued fMRI time-series signal f(t):ℝ+ ℂ can be represented as 

an ordered (discrete) sequence of complex-valued fMRI BOLD intensities:

f(t) = at + ibt:1 ≤ t ≤ T .

The discrete LT of f is represented as an infinite series corresponding to the discretized 

LT integral above. For a specified step-size η > 0, the discrete Laplace transform ℒ(f) is 

computed by:

ℒη(f)(z) = η ∑
k = 0

∞
e−zkηf(kη) .

To demonstrate the Laplace Transform-based analytical strategy, we apply the Inverse 

Laplace Transform (ILT) on an fMRI kimesurface and then convert it back to the original 

fMRI time-series, see Figure 3. Given a complex function F(z), which represents a 

kimesurface, and a positive real argument t, the ILT algorithm, developed by Valsa and 

Brancik [35], involves iterative continuous approximations to generate an approximation of 

the output f(t) = ℒ−1(F)(t). This iterative approximation approach estimates the exponential 

term e−zt using a series where each term is a Bromwich integral obtained through residue 

calculus [36]:

f(t) = ℒ−1(F)(t) = 1
2πi lim

T ∞∫γ − iT
γ + iT

eztF(z)dz = fc(t, a) + O e−2a

= ea
2i∫γ − i∞

γ + i∞
F(z) ∑

n = 0

∞ ( − 1)n n + 1
2

n + 1
2

2
π2 + (a − zt)2

ds + O e−2a = − ea
t ∑

n = 0

∞
( − 1)n Im F a

t + j n + 1
2

π
t

+ O e−2a ,
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where a > 0 is a parameter that can be chosen arbitrarily large to control the error rate, and 

the subscript c stands for cosh(·), which is involved in the intermediate steps. In practice, the 

Euler transformation [37] may be used to accelerate the convergence of the alternating series 

above.

3. Methods

3.1 Datasets

We tested the process of mapping observed time-series data to kimesurfaces, reconstruction 

of the time-series process, the subsequent analytical modeling, and statistical inference using 

real Functional Magnetic Resonance imaging (fMRI) data.

Specifically, we describe the results of a neuroimaging study using an “on-off” fMRI 

finger-tapping experiment, which models the brain response via an oscillatory step-wise 

characteristic function with a delayed correlation to the on-off stimulus paradigm. The 

observed data represents complex-valued fMRI time-series of the blood oxygenation 

dependent (BOLD) response to a dichotomous finger-tapping “on vs. off” (activation vs. 

rest) event-related experiment [38, 39]. The raw signal is acquired in the Fourier k-space 

over a period of 8-minutes tracking the functional BOLD signal of a normal volunteer 

during the finger-tapping “on-off” task. Using the inverse Fourier transform, the data 

was mapped into spacetime and stored as a 4D double-precision array of complex-valued 

intensities. The size of the data is about ½ GB (gigabytes) and the dimensions of the data are 

64x × 64y × 40z
3D spatial voxel, v

× 160t
time 

. Each epoch of the longitudinal (time) finger-tapping task represents a 

basic pattern of 10 ON (activation) time-points followed by 10 OFF (rest) time-points. The 

ON and OFF epochs are intertwined and repeated 8 times for a total of 160 time-points, each 

of about 3 seconds. We applied an established fMRI data preprocessing protocol, e.g., using 

the R package fmri, to motion-correct, skull-strip, register, and normalize the raw fMRI 

signal [40, 41]. The target of the registration was the LONI Probabilistic brain atlas [42], 

which allows anatomically parcellating the functional brain data into 28 left and 28 right 

hemisphere cortical regions. This last step was important for the subsequent three-phase 

statistical inference aiming to identify the spatial locations in the brain, {ν = (x, y, z)}, 

associated with the finger-tapping motor task.

3.2 Tensor-based linear modeling

In order to detect brain activated areas associated with the finger-tapping somatosensory 

motor task, we apply tensor-based linear modeling to the spacekime represented fMRI 

data. Our analytical protocol includes three phases. In phase 1, classical statistical methods 

are used to raw fMRI data in order to identify any Regions of Interest (ROIs) that may 

be activated by the external stimulus. In phase 2, we apply tensor regression to the 

corresponding kimesurface representations of the fMRI data. And finally, to reduce the 

false-positive rate, in phase 3, we apply post-hoc correction to the p-values computed in 

phase 2.

In the preprocessing step, the real- or complex-valued fMRI data can be co-registered or 

aligned with a specific brain atlas using linear or nonlinear transformation techniques [42–
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44]. Then, we continued partitioning the brain anatomy into Regions of Interest (ROIs) 

by using the probabilistic atlas, which assigns likelihoods to be inside any 56 ROIs [42]. 

In this way, each voxel is effectively tagged with a label representing its most likely ROI 

anatomical localization. In this case, we used the LONI probabilistic brain atlas to tessellate 

the entire brain anatomical space into 56 complementary ROIs.

The aim of phase 1 analysis is to select important ROI candidates that can subsequently 

be interrogated voxel-by-voxel to further localize the statistical significance maps reflecting 

the activated brain areas associated with the finger-tapping task. We used a measure called 

temporal Contrast-to-noise Ratio (tCNR) [45] to represent the average signal-change or 

task-related variability relative to the non-task-related variability over time. In fMRI studies, 

two strategies are commonly used the estimate the tCNR [46]. The first one is based ion 

modeling the known stimulus design and utilizing the hemodynamic response function. The 

second strategy involves low-pass filtering and assumes only that most high-frequency fMRI 

components contain temporal noise. For a fixed ROI, the most general form of the tCNR is 

represented by:

tCNR = ΔS
σnoiset ,

where the numerator ΔS is the average signal-change reflecting task-related variability and 

the denominator σnoiset  represents the non-task-related variability over time. Strong tCNR 

evidence of a task-specific effect within an ROI is indicated by tCNR ≫ 1, whereas tCNR 

≈ 1 suggests the regional may not be involved in stimulus processing. We compute an 

estimate of the true fMRI signal at a given voxel location ν by using polynomial regression, 

low-pass filtering, or a convolution with a smoothing kernel. This smoother fMRI signal is 

used to compute the numerator, ΔSν, and the variability of the time-series noise, σv, noiset , is 

estimated as the difference between the observed and smoothed fMRI signals. The overall 

ROI tCNR is computed by pooling the local estimates, tCNRv =
ΔSv

σv, noiset , over all voxels ν ∈ 

ROI.

Parametric or non-parametric statistical tests, such as t-test and Wilcoxon test [47], can 

be used to quantify the ROI-wise stimulus related to brain activation. In our case, we 

used a t-test to assess the statistical significance in each of the 56 ROIs independently. 

The test-statistics can be computed using the observed tCNR vector (tCNR1, tCNR2, ⋯, 

tCNRN)T, where N is the number of voxels in the ROI. To control the type-I (false-positive) 

error rate, we used Bonferroni correction for multiple testing to adjust the resulting ROI 

p-values (α=0.000892).

In phase 2, the tensor linear regression models were estimated separately on each of the 56 

ROIs to obtain efficient model parameter estimates. For each (irregularly shaped) ROI, we 

first encapsulated it with the smallest bounding box. This facilitates the tensor arithmetic 

by padding the fMRI intensities with zeros outside of the ROI boundaries. We can denote 

the general dimensions of the smallest bounding box for each ROI by a × b × c. Suppose 
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Y : t × a × b × c is the response tensor, i.e., fMRI intensity and X:t × p × 1 is the predictor 

tensor. Thus, the proposed tensor-based linear model is given by:

Y = X, B L
tensor

product

+ E,

where B: p × 1 × a × b × c is a tensor linear model coefficient and E:t × a × b × c is the residual 

error tensor.

The design tensor X contains the information corresponding to the on-off stimulus, i.e., 

finger-tapping task indicator {+1(On), −1(Off)}, adjusted by the Hemodynamic Response 

Function (HRF) which models the expected blood oxygen level dependent (BOLD) 

response. In addition, X includes a pair of polynomial drift terms; one of order one (linear) 

and the other of order two (quadratic) to adjust for low-frequency noise.

We fitted this model by using the R package MultiwayRegression [25], which estimates 

coefficients using penalized least-squares. Then, parametric or non-parametric statistical 

tests can be applied to the estimated BOLD coefficients β  to enable statistical inference. 

In this case, we used t-tests on the estimated coefficients β  in each ROI. The smaller the 

corresponding p-values are, the more significant the neuro-activation is in the respective 

brain area.

Phase 3 of the protocol involves post-hoc analysis, which is necessary for filtering potential 

false positive discoveries and only exposing true-positive brain activation regions. In this 

final phase of the analysis protocol, we used a two-fold strategy. First, we applied a false 

discovery rate (FDR) correction to account for multiple testing [48], and second, we used 

a spatial clustering filter to control for the size of the activation region [49]. The pair of 

post-hoc correction strategies used in this phase are designed to temper erratic noise (FDR), 

as well as, to annihilate smaller-in-size regions of activated voxels (clustering), which are 

more likely to represent sporadic random activations.

4. Applications

To compare classical space-time analytics vs. spacekime inference, we applied this three-

phase tensor-based analytical protocol to the original spacetime fMRI finger-tapping task, 

as well as to its corresponding spacekime representation. Then we contrasted the statistical 

significance maps, i.e., computed and compared the p-values corresponding to the on-off 

stimulus. The results were visualized in terms of the ROI cluster size and the p-values 

corresponding to brain activation blocks within the specific ROIs, see Figure 4.

The results on Figure 4 show some important advantages of our three-phase tensor-based 

analytical protocol. First, unlike traditional voxel-by-voxel statistical inference on fMRI 

data, our method takes spatial correlation into consideration by using tensor regression, 

which is more in line with the fact that the signal at a particular voxel is likely to be similar 

to the signals of nearby neighboring voxels. Second, this method substantially reduces the 
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dimensionality of fMRI data, which leads to efficient estimation and prediction. In addition, 

the comparison of the results obtained using the time-series and kimesurface analyses 

clearly indicates that spacekime represented fMRI data can retain more information than 

the raw fMRI time-courses. This suggests that kimesurface representation and spacekime 

analytics may provide more reliable activation brain maps. The activated brain areas 

revealed by the tensor-based statistical analysis of the kimesurfaces associated with the 

finger-tapping task paradigm are consistent with the evidence of observing such activation 

in the somatosensory cortex (motor area), which validates the performance of the spacekime 

analytical strategy for modeling, inference and prediction based on fMRI signals. Appendix 

B provides some additional renditions of 3D scenes showing the results of each phase of the 

3-tier spacekime analytical protocol.

5. Conclusions and Discussion

Introducing complex-time provides a foundation to address many interesting scientific 

challenges, including proposing novel techniques for interrogating time-varying longitudinal 

data, addressing some of the problems of time, and extending and generalizing mathematical 

equations describing natural laws of physics. The kime representation of longitudinal 

observations lifts the familiar notion of event order (time) to the complex plane. The induced 

spacekime representation expands the longitudinal dimension of time and generalizes the 

classical 4D universal spacetime to a 5D spacekime manifold whose topological structure 

facilitates novel data analytics. Spacekime representation of data can be used to design, 

test, and validate novel statistical models for risk estimation, probabilistic modeling, 

trajectory forecasting, parametric and non-parametric inference, as well as supervised and 

unsupervised artificial intelligence.

In this paper, we proposed discrete and continuous kimesurface representation strategies 

for transforming longitudinal data into kimesurfaces. Applying general tensor regression to 

the resulting kimesurfaces allows the comparison and contrasting of classical time-series 

analysis with tensor regression on kimesurfaces. Using fMRI data, we presented a three-

phase tensor-based analytical protocol for the spacetime and spacekime represented data. 

We showed that this protocol substantially reduces the dimensionality of fMRI data, which 

leads to efficient estimation and prediction. We also showed that spacekime fMRI data 

representation can retain more information than spacetime represented fMRI data, thus 

revealing more activated brain areas. Therefore, one advantage of kimesurface is its ability 

to potentially expose supplemental information that may enhance traditional spacetime 

observation-based scientific inference, improve data-driven predictions, and refine evidence-

based decision-making processes.

The main contribution of this article revolves around the introduction of a tensor-based 

linear model applicable for representation, analysis, and inference of repeated-measure 

longitudinal data following a transformation from the linear (positive real) time domain to 

the (complex) kime plane.

Two alternative strategies for mapping time-series data to kimesurface manifolds are 

presented and tested on neuroimaging fMRI data. This spacekime analytical technique 
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offers a new mechanism to represent time-varying and high-dimensional datasets and 

provides a foundation for developing innovative ML/AI methods that capitalize on the 

intrinsic topological structure of the spacekime data manifolds. In addition to applications 

in biomedical sciences [50], econometrics [51], and environmental sciences [52], the 

spacekime representation and tensor analytics may be useful in a number of biophysics 

studies [53], thermoelastic diffusion solutions [54], and boundary value problems [55].

As firm supporters of open-science, we have documented, packaged and released the 

source-code in a time complexity and inferential uncertainty (TCIU) R-package. The source 

code, the TCIU package, vignettes and documentation are available on GitHub (https://

github.com/SOCR/TCIU) and CRAN (https://cran.r-project.org/web/packages/TCIU/). More 

information, interactive demonstrations, and additional materials are available on the 

spacekime website (https://spacekime.org). Community input is always welcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A.: Introduction to Tensors

A tensor is an important mathematical object defined as a multilinear map from a vector 

space (module) over a fixed field (or ring) into the field (or ring). In the special case where 

the field is ℝ or ℂ and the vector space is finite dimensional, these multilinear maps coincide 

with the common computational and data science tensor definition as multidimensional 

arrays. The space of multidimensional arrays is then naturally isomorphic to the space of 

multilinear maps. In physical sciences, a tensor maps a set of K vector-space elements and 

M dual-space elements into the base field, F .

Tensor as multilinear map
abstract tensor product

:V 1 × ⋯ × V K
K elements

F, Tensor as multiway array
data science

:FI1 × I2 × ⋯ × IK

Tensor
physics

:V 1* × ⋯ × V K*
M elements
in dual space

× V 1 × ⋯ × V K
K elements in
vector space

F,

where F  can be either ℝ or ℂ, Vi is a vector space over F , and V i* is its dual, ∀ 1 ≤ i ≤ 

K. Throughout this paper, we refer to the data science definition of tensors as multiway 

arrays representing computable data objects tracking observed collections of multivariate 

features organized into K-way arrays. Common TLM notation uses lowercase bold symbols 
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(a) for vectors, bold uppercase (A) for matrices, and uppercase blackboard symbols (B) as 

tensors of any dimension. Note that the base fields are also denoted by blackboard symbols 

(F). A Kth order tensor is a multidimensional array B:I1 × ⋯ × IK with Ik representing the 

dimension of the kth mode of the tensor, ∀1 ≤ k ≤ K. The tensor elements are specified 

as B i1, ⋯, iK , where 1 ≤ ik ≤ IK, ∀1 ≤ k ≤ K. Computable data tensor objects can be 

represented as outer products, °, of a set of vectors bk k = 1
K :

B = b1 ∘ b2 ∘ ⋯ ∘ bK,

with its elements indexed as:

B i1, ⋯, iK = ∏
k = 1

K
bk ik .

The outer product operation ° takes a pair of a K1
tℎ‐order and a K2

tℎ‐order tensors as inputs, 

and returns a (K1 + K2)th-order tensor. In general, transformation tensors can be considered 

as multilinear mappings between vector spaces. If F  denotes the real (ℝ) or complex (ℂ) field 

including the tensor elements, then a data tensor is an object that can be represented as

FI1 × I2 × ⋯ × IK ≅ FI1 ⊗ FI2 ⊗ ⋯ ⊗ FIK
vector space tensor product

≅ ℒ
multilinear map

FI1 × FI2 × ⋯ × FIK, F .

The order of a given tensor, K, represents the number of tensor modes. For each tensor, there 

exists an integer R (min R is the tensor rank) that allows an expansion of the tensor as a 

linear combination of R rank-1 tensors:

vec(B) = ∑
r = 1

R
λr(bK, r ⊗ bK − 1, r⋯ ⊗ bk, r ⊗ ⋯ ⊗

Kronecker tensor product
b1, r),

B = ∑
r = 1

R
λrb1, r ∘ b2, r ∘ ⋯ ∘ bk, r ∘ ⋯ ∘ bK, r,

where λr ∈ F, bk, r ∈ FIk, and 1 ≤ k ≤ K. The minimal min R that permits such representation 

is called the rank of the tensor and the associated tensor decomposition is called minimal 

CANDECOMP/PARAFAC (CP) or Polyadic tensor decomposition [7, 56].

The tensor vectorization operation vec(B) restructures (or vectorizes) the tensor as a 1D 

vector containing all tensor array entries. The length of the corresponding vec(B) is ∏k = 1
K Ik

and the indexing transformation is defined by:
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vec(B) i1 + ∑
k = 2

K
∏

l = 1

k − 1
Il ik − 1 = B ii, i2, ⋯, iK .

Tensors can also be unwounded as matrices by unfolding them along a specified tensor 

mode k. The mode-k matrix representation of the tensor B is B(k):Ik × ∏l ≠ kIl and contains 

the vectorized representation of each sub-tensor in the kth mode.

Finally, for a pair of tensors A and B, we can define the contracted tensor product, A, B L, 

which naturally leads to tensor-based linear modeling, tensor inference, and linear tensor 

model prediction.

A: I1 × ⋯ × IK × P1 × ⋯ × PL   and   B:P1 × ⋯ × PL × Q1 × ⋯ × QM, A, B L:I1 × ⋯ × IK × Q1 × ⋯

× QM, A, B L i1, ⋯, iK; q1, ⋯, qM = ∑
p1 = 1

P1
⋯ ∑

pL = 1

PL
A i1, ⋯, iK; p1, ⋯, pL B p1, ⋯, pL; q1, ⋯, qM .

Notice that in this example the contracted tensor product takes an order-(K + L) tensor and 

an order-(L + M) and returns a (K + M)-tensor, as opposed to (K + 2L + M)-tensor with 

an outer product. Specifically, the tensor product contraction clears the common dimensions 

shared by the two tensors.

Appendix B.: Additional 3D Views of the Results

The composite figure below extends the results shown in Figure 4 of the paper by providing 

additional 3D views of different scenes of the results of each of the proposed 3-phase 

spacekime analytical protocol.

Zhang et al. Page 13

Neural Comput Appl. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix C.: Implementation of Tensor-based linear modeling

I. Time Complexity and Inferential Uncertainty (TCIU) R-Package Loading

II. Data Manipulation
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III. Three-phase ROI Analysis

a. Phase1: Detect Potential Activated ROI

b. Phase2: ROI-Based Tensor-on-Tensor Regression

c. Phase3: FDR Correction and Spatial Clustering.

Appendix D.: R Implementation of the Laplace Transformation

I. Discrete Laplace Transformation
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II. Continuous Inverse Laplace Transformation

III. fMRI Data Example

This example illustrates testing LT/ITL on real fMRI time-series. First download the data.

Define the parametric sampling strategy in the complex plain (ℂ).
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Apply the NuLT to fMRI time-series.

Recover the function of time by applying the ctILT to the NuLT as analytic complex-valued 

LTF (function).
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Figure 1. 
Schematic diagram of an empirical mapping between an fMRI time-series and its 

corresponding kimesurface.
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Figure 2. 
A pair of 3D surface renditions of the ON-OFF fMRI kimesurface differences at a 

fixed spatial location. Blue and yellow colors indicate positive and negative kimesurface 

differences, respectively.
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Figure 3. 
The duality between a real fMRI time-series (red curve on the right panel), its corresponding 

kimesurface (left panel), and the reconstructed fMRI time-source using the ILT on the 

kimesurface (blue scatterplot on the right panel).
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Figure 4. 
Results of the three-phase statistical analysis protocol on native fMRI time-series data 

(left) and the corresponding fMRI kimesurface representations (right). The 3D renderings 

illustrate different point-of-view orientations. Note: The Phase 1 results for the classical 

(left) and proposed space-kime analytics are identical, as the ROI-analytics are done on the 

raw space-time data.
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