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P L A N T  S C I E N C E S

Spatial resolution of an integrated C4+CAM 
photosynthetic metabolism
Jose J. Moreno-Villena1*, Haoran Zhou1,2*, Ian S. Gilman1, S. Lori Tausta3,  
C. Y. Maurice Cheung4, Erika J. Edwards1

C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose 
the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as 
distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. 
Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca 
oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely 
incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and 
predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photo-
synthetic metabolism presents a potential new blueprint for crop improvement.

INTRODUCTION
C4 and crassulacean acid metabolism (CAM) photosynthesis are 
two important adaptations that have evolved multiple times in 
terrestrial plants (1). Both act as carbon concentration mechanisms 
(CCMs) that alleviate energy losses caused by photorespiration, 
which can occur when atmospheric CO2 levels are low, internal leaf 
temperatures are high, or plant stomatal conductance is reduced, 
for instance, because of water stress (2). Both CCMs have repurposed 
a shared set of core metabolic enzymes that are present in all plants, 
but they differ in how they isolate and create a CO2-enriched envi-
ronment around ribulose-1,5-bisphosphate carboxylase-oxygenase 
(RuBisCO), the enzyme that fixes atmospheric CO2 into sugars via 
the Calvin cycle. In C4 metabolism, phosphoenolpyruvate (PEP) 
carboxylase (PEPC) first interacts with dissolved CO2 in mesophyll 
cells to form a temporary four-carbon molecule, typically malate or 
aspartate. These molecules are then transported to inner bundle 
sheath cells where they are decarboxylated, elevating CO2 concen-
trations to levels that saturate RuBisCO. There, CO2 enters the 
Calvin cycle and is assimilated into carbohydrates (3). Thus, C4 is 
essentially a temporally synchronous two-cell photosynthetic sys-
tem, with separate compartments for PEPC and RuBisCO, which 
results in C4 plants achieving the highest rates of photosynthesis (4). 
In CAM plants, stomata open and CO2 fixation by PEPC occurs 
during the night. The four-carbon malate is stored overnight in the 
form of malic acid in mesophyll cell vacuoles. During the day, 
stomata close, malate exits the vacuole for decarboxylation, and 
CO2 is released and assimilated by the Calvin cycle in the same cell 
(5). Thus, CAM is a temporally asynchronous, single-cell photo-
synthetic system, with initial carbon capture by PEPC occurring at 
night but eventual RuBisCO assimilation and carbohydrate produc-
tion occurring during the day in the same cell. The CAM inverted 
stomatal behavior provides increased water use efficiency by avoiding 
water loss through stomata during the hottest daytime hours (6). 

There is also notable variability in the degree to which CAM is 
expressed: Many species use CAM as their primary metabolism but 
possibly more common is a facultative CAM system, where plants 
operate a C3 metabolism but exhibit facultative CAM as a stress 
response [“C3+CAM” sensu (1)]. Both CCMs exhibit remarkable 
evolutionary convergence. C4 has evolved at least 60 times, and C4 
species include some of the most productive plants on Earth, com-
prising upward of 30% of gross terrestrial primary productivity and 
including several essential crops such as maize and sorghum (7). 
While the number of CAM origins is less well known, it is speculated 
to be higher than C4, and some form of CAM metabolism is domi-
nant in a variety of ecosystems (8).

Despite the large number of independent origins of both C4 and 
CAM, for the most part, plant lineages tend to evolve one CCM or 
the other. Over 40 years ago, Portulaca oleracea was identified as the 
first known C4 plant that also operates a facultative CAM cycle 
(C4+CAM) in response to drought or changes in photoperiod (9). Full 
integration of C4 and CAM cycles, whereby both operate in the same 
population of photosynthetic mesophyll cells, seemed implausible 
on multiple fronts: (i) The shared set of enzymes would need to be 
expressed at different times of day and in different cells, creating 
substantial regulatory conflict. (ii) The activity of RuBisCO (for 
CAM) and PEPC (for C4) in the same mesophyll cells during the 
day would result in futile competition for CO2 and metabolic 
cycling. (iii) The anatomical requirements for optimizing each CCM 
are distinct and potentially antagonistic. (iv) Each CCM might 
evolve under distinct selection pressures, as the benefits to CAM are 
primarily to increase water use efficiency, whereas C4 plants take 
advantage of high light environments and seasonally available water 
to achieve fast growth and high productivity (10). Only a handful of 
immunolocalization studies have pursued the spatial resolution of 
C4+CAM in Portulaca (11, 12), and results were equivocal because 
of lack of C4-specific versus CAM-specific molecular markers. 
Regardless, the most accepted hypothesis has been that CAM and 
C4 cycles operate independently in Portulaca, with C4 in bundle sheath 
and mesophyll cells and CAM in specialized water storage cells. 
Only (11) suggested a possible integration: that malate generated 
from CAM could theoretically be processed in the C4 bundle sheath.

Recent transcriptomic information for Portulaca has provided 
an opportunity to resolve the spatial configuration of C4 and CAM 
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reactions. Multiple studies revealed that PEPC is encoded by multi-
ple gene copies in Portulaca and its relatives. This redundancy of 
PEPC-encoding genes allowed one copy to be specifically used for 
C4 (PPC-1E1a′) and another for CAM (PPC-1E1c). On the basis of 
gene expression estimates in P. oleracea, PPC-1E1a′ shows a diurnal 
peak in expression during C4 and C4+CAM states, while the expres-
sion of PPC-1E1c peaks during the day-night transition in droughted 
plants expressing C4+CAM (13–15). C4- and CAM-specific ortho-
logs for these and other CCM-affiliated enzymes provide key markers 
of the cell populations where CAM and C4 CO2 fixation occur. The 
lack of significant up-regulation of distinct homologs of CAM 
decarboxylation genes in multiple Portulaca species is notable (15) 
and suggests that some elements of C4 and CAM biochemistry may 
be shared. However, these analyses were performed on whole-leaf 
transcriptomes and lacked the spatial resolution needed to identify 
where C4 and CAM processes were occurring. We performed two 
different spatially explicit gene expression analyses of P. oleracea 
leaves under well-watered and drought conditions that isolated 
mesophyll and bundle sheath cell populations. Moreover, we used 
constraint-based modeling to identify the most efficient biochemical 
model of C4 and CAM integration across mesophyll and bundle 
sheath cells under a variety of scenarios. These analyses of P. oleracea 
reveal a previously unknown type of plant photosynthesis: an inte-
grated C4+CAM metabolism.

RESULTS
Assessment of CAM induction
Titratable acidity analysis of well-watered P. oleracea leaves at 7 and 
19 hours did not result in significant accumulation of acids over-
night (two-sample t test, P = 0.62, t = −0.33, df = 5.95; Fig. 1A and 
table S1). This confirmed little or no accumulation of malic acid 
from CAM activity under well-watered conditions. After 7 days of 
total water withholding, significant accumulation of acids was 
detected in leaves collected early in the morning compared to those 

collected at the end of the photoperiod (t test, P = 0.00032, t = 7.34, 
df = 5.17; Fig. 1A and table S1), confirming CAM induction.

Laser microdissection–RNA sequencing and read alignments
To obtain cell-specific gene expression, we made paradermal 
sections from well-watered and droughted P. oleracea leaves (Fig. 1, 
A and B, and table S1) and captured groups of mesophyll and bundle 
sheath cells using laser microdissection (LCM) (Fig. 1, C to E). We 
isolated mRNA from populations of each tissue for short read se-
quencing. We sequenced 28 libraries that represented 1.05 billion 
100–base pair (bp) paired-end reads with a mean of 37.49 million 
(SD = 3.85 million) reads per library (Fig. 2 and table S2; see Mate-
rials and Methods). After quality filtering and trimming, a mean 
of 68.97% of the reads was kept. We used the P. oleracea de novo 
assembled transcriptome from (15) as the reference for read mapping 
and abundance quantification; this transcriptome consisted of 
444,307 contigs and 230,895 Trinity “unigenes.” Here, we used the 
software TransDecoder v5.5.0 (http://transdecoder.github.io) to 
predict coding sequences in 152,530 of the contigs and CD-HIT 
v4.8.1 (16) to reduce redundant contigs to a final set of 54,241 contigs 
of 37,518 unigenes (online table S1). The reduced dataset of mRNA 
contigs represented 83.20 Mbp with a 2101-bp N50. The mean 
reads mapped to the reduced set of P. oleracea mRNA contigs by 
Kallisto v-0.45.0 (17) were 75.30% per library (SD = 3.65%), and a 
mean of 59.96% (SD = 3.48%) of mapped reads had unique align-
ments (table S2). Reads mapping to CCM-related genes constituted 
10.97% (SD = 2.49%) of daytime mesophyll cell libraries and 12.18% 
(SD  =  2.94%) of the daytime bundle sheath cell libraries. We 
considered CCM-related genes to include all members of gene fami-
lies with known roles in C3, C4, and CAM photosynthesis, including 
those involved with starch metabolism, light sensing and circadian 
rhythm, and photorespiration. On average, 5.20% (SD = 1.83%) of 
reads from nocturnal libraries mapped to CCM-related genes, while 
11.62% (SD = 2.70%) of reads mapped to CCM-related genes in 
daytime libraries.

A B C

D E F

Fig. 1. Drought induction of CAM and laser capture microdissection. (A) Diel fluctuation of titratable acidity from whole leaves of well-watered plants and after a 7-day 
drought treatment. NS, not significant. (B) P. oleracea, illustrating the orientation of paradermal sections (blue box). (C) Fresh, flash-frozen paradermal leaf section in 
cryosection block. The red square indicates an area used for tissue dissection. (D) Microphotograph of a 12-m-thick leaf paradermal section indicating bundle sheath (BS) 
and mesophyll (M) tissues before (D) and after (E) BS cell capture. Orange arrows in (D) indicate calcium oxalate crystals in M cells. The red line in (E) indicates a laser-cut 
area of BS tissue, and the orange line illustrates an area of M tissue for laser capture. (F) RNA profile by electrophoresis for quality control. CP, chloroplast RNAs; RFU, relative 
fluorescence units.

http://transdecoder.github.io
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Global transcriptional differences across 
experimental variables
Multidimensional scaling of transcriptome-wide gene expression 
clustered time points and tissue replicates (n ≥ 3) along dimensions 
1 and 2, respectively (Fig. 2A). Multidimensional scaling further 
separated samples by water status within each time and tissue cluster. 
Of the 22,509 unigenes that passed the low read mapping filter, 
2702 (12.00%) were differentially expressed (DE) between meso-
phyll and bundle sheath (Padj < 0.05; Fig. 2B and online table S2). Of 
those, 1030 (38.12%) were more highly expressed in mesophyll and 
1672 (61.88%) in bundle sheath. A total of 1196 unigenes (5.31%) 

were significantly DE across watering treatments; of those, 745 
(62.29%) were more abundant in well-watered plants, and 451 
(37.71%) were more abundant during drought. We found 7513 DE 
unigenes (33.37%) across time points, with 3553 (47.29%) and 3960 
(52.71%) more abundant during the day and night, respectively.

Using all samples, gene DE analyses revealed that most detected 
gene expression shifts occurred between day and night, followed by 
cell type and water status (Fig. 2B). Gene ontology (GO) analyses of 
DE genes showed mesophyll enrichment of nonphotosynthetic 
carbon- related GO terms (carbon utilization GO:0015976) while Calvin 
cycle (GO:0019253) and photorespiratory terms (GO:0019264 and 
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Fig. 2. Transcriptome-wide gene expression patterns across M and BS samples. (A) All laser microdissection (LMD) samples projected into the first two dimensions 
of a transcriptome-wide multidimensional scaling analysis of log-transformed expression. Treatments: D, drought; WW, well-watered. (B) Venn diagram with number of 
DE genes across variables. (C) Heatmap with the log of gene expression of the 500 most variable genes across samples. Dendrograms cluster mRNA libraries (on the top) 
and genes (on the left) on the basis of gene expression similarities.
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GO:0009853) were enriched in bundle sheath cells (fig. S1A). Genes 
up-regulated under drought were enriched in stress response GO 
terms as response to salt and abscisic acid (GO:0009651 and 
GO:0009737), while genes more highly expressed when well-watered 
were enriched in photosynthesis and carbon utilization–related 
terms (GO:0009768 and GO:0015976; fig. S1B).

Transcriptional changes in CCM-related genes across 
cell types
We annotated 629 trinity unigenes into CCM-related gene families 
with roles including C3, C4, and CAM photosynthesis; photo-
respiration; starch metabolism; circadian rhythm; and associated 
transcription factors (TFs) as identified in other studies of P. oleracea 
(online tables S3 and S4) (13–15). Most core CCM (C4 and CAM) and 
starch metabolism unigenes were annotated to known eudicot and 
Portulaca gene lineages using reference sequences as in (15, 16, 18–20) 
(see Materials and Methods). When available, gene lineage no-
menclature is indicated after gene identifiers followed by a dash. A 
total of 480 unigenes were kept after filtering lowly abundant 
unigenes; of those, 170 (35.42%) were DE across cell types, with 83 
(48.82%) more abundant in bundle sheath and 87 (51.18%) more 
abundant in mesophyll. We found that 307 (63.05%) unigenes 
included in our curated set of gene families were DE over time, with 
230 (74.92%) more abundant at 7  hours and 77 (25.08%) more 
abundant at 23 hours (online table S3). Last, 75 (14.79%) unigenes 
were DE across water regimen, with 61 (81.33%) more abundant in 
well-watered plants and 10 (13.33%) more abundant in droughted  
plants.

Portulaca C4/CAM-specific orthologs were previously identified 
by high transcript abundances in comparison to non-CCM homo-
log genes and by matching to expected transcription patterns across 
time points and watering treatments using whole leaves (13–15). 
Here, DE analyses of C4-related genes were consistent with expecta-
tions of C4 mesophyll versus bundle sheath expression. Typically, in 
the C4 carboxylation subpathway,  carbonic anhydrases (BCAs) 
dissolve CO2 in the form of bicarbonate (HCO3), which is added to 
PEP by PEPC and affiliated enzymes to form oxalacetate (OAA) in 
mesophyll cells. OAA is then converted to malate by malate dehy-
drogenases (MDHs) or to aspartate by aspartate amino transferases 
(ASPATs). These molecules enter the decarboxylation pathway, 
where they are decarboxylated by malic enzymes [NAD(P)ME], and 
the released CO2 is lastly assimilated by the Calvin cycle. Our analyses 
show that, in well-watered and droughted plants, the initial C4 carbon 
fixation module that included a carbonic anhydrase (BCA-2E3), 
PPC-1E1a′, and an aspartate aminotransferase (ASPAT-3C1) occurred 
in mesophyll cells (mesophyll versus bundle sheath; MvsB log2 fold 
change (log2FC) > 1.5; Padj < 0.01; module 1; Fig. 3, figs. S2 and S3, 
and table S3). We identified a second bundle sheath–specific [MvsB 
log2FC = −1.31; Padj < 0.01] ASPAT homolog (ASPAT-1E1) as a 
candidate gene representing the entry point for C4 metabolites into 
the CO2 decarboxylation/assimilation module in the bundle sheath 
that includes malic enzyme (NADME-2E) and the Calvin cycle 
(MvsB log2FC > −1.4; Padj < 0.01; module 2; Fig. 3). We uncovered 
two malic enzymes (MEs) with C4-like expression, e.g., biased toward 
the morning and restricted to the bundle sheath cells. In addition 
to the primary P. oleracea ME used for C4-acid decarboxylation, 
NAD-ME (19), we found a chloroplastic ME (NADPME-1E1b) that 
may suggest an accessory decarboxylation route (Fig. 4 and fig. S4). 
However, previous Western blot analyses showed no detectable 

labeling for NADP-ME when P. oleracea is well-watered (19, 20), 
suggesting that NADP-ME activity may be posttranscriptionally 
regulated. In the PEP regeneration pathway, the pyruvate resulting 
from decarboxylation is used to regenerate PEP via alanine amino-
transferase, pyruvate, phosphate dikinase, and affiliated enzymes. 
In our analyses, the expression of genes involved in the regenera-
tion of PEP was restricted to the mesophyll (MvsB log2FC > 1.4; 
Padj < 0.01; module 3; Fig. 3 and fig. S2).

The ortholog identity and tissue localization of core C4 cycle 
genes generally remained the same in well-watered and drought- 
induced C4+CAM P. oleracea. Typically, in CAM, the carboxylation 
module composed of BCA, PEPC, and MDH operates at the end of 
the light period in mesophyll cells to store CO2 in the form of malate 
during the night. In P. oleracea, when CAM was induced, different 
homologs of carbonic-anhydrase (BCA-2), PEPC (PPC-1E1c), 
and MDH (NADMDH-6E1) markedly increased their mesophyll 
abundance (mesophyll, drought versus well-watered; M_DvsWW 
log2FC  >  1.7; Padj  <  0.01; Figs.  3 and 4). In the mesophyll, the 
CAM-specific paralog PPC-1E1c exhibited a 5.6 log2FC at night 
under drought, compared to daytime samples, which had near-zero 
abundance (Padj < 0.01; Figs. 3 to 4). In parallel, transcripts of the 
PEPC-activating protein, PEPC kinase (PPCK-1E), increased in 
abundance at night in drought samples (M_DvsWW log2FC > 2.3; 
Padj < 0.01; Figs. 3 and 4). PEPC is inhibited by malate (21); thus, 
increased PPCK activity might be a requirement to maintain 
PEPC activity, while malate is highly abundant during the dark 
period of CAM.

Malate produced at night is purportedly actively pumped into 
the vacuole by an aluminum-activated malate transporter (ALMT) 
(22), which is driven by cation currents created by a vacuolar-type 
proton adenosine triphosphatase (ATPase; VHA) (23), although 
neither showed genes increasing in expression during drought in any 
cell type (module 8 and fig. S3; see table S3 and online tables S2 and 
S3 for GO information). However, we found a sharp up-regulation 
of the gene encoding the plasma membrane proton pump ATPase 
10 (PMA10) in drought samples (M_DvsWW log2FC = 3; Padj < 0.05; 
module 0; Fig. 3) restricted to the mesophyll (MvsBS log2FC = 2.9; 
Padj < 0.01; Fig. 3), but a role in CAM is only speculative. The mecha-
nisms responsible for vacuolar malate efflux in CAM remain un-
known (24), but the most plausible is the tonoplast dicarboxylate 
transporter (TDT-1E), whose expression increased during drought, 
particularly in mesophyll (M_DvsWW log2FC = 1.6; Padj < 0.01; 
module 8; Fig. 3).

Unlike C4 plants, CAM plants generally produce PEP via degra-
dation of starch and sugars (25); however, our samples only showed 
significant up-regulation of amyloplastic phosphoglucan phospha-
tase DSP4 (DSP_SEX4) among starch and sugar degradation genes 
during CAM induction (modules 6 and 7; Figs. 3 and 4). Temporally, 
starch degradation genes were more abundant at night (module 7; 
Fig. 3 and fig. S2). Spatially, most of the transitory starch-related 
genes (module 6; Fig. 3 and fig. S2) were more abundant in meso-
phyll during the day, with the exception of chloroplastic fructose- 
bisphosphate aldolase (FBA gene family, ALFP lineage; orthology in 
table S3), which was restricted to bundle sheath (MvsBS log2FC = 1.8; 
Padj < 0.01; module 6; Fig. 3). This aldolase degrades fructose 
1,6-bisphosphate into glyceraldehyde 3-phosphate (G3P) before G3P 
is further degraded to PEP in a series of glycolytic reactions whose 
genes were mainly expressed in the mesophyll during the day (mod-
ule 6; Fig. 3 and fig. S2). Tonoplast and chloroplast sugar transporters 
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showed the highest expression specificity to bundle sheath (module 
5; Fig. 3 and fig. S2), suggesting a role in the Calvin cycle of C4 and 
C4+CAM Portulaca. Other sugar transporters, such as ERD6-like 
(EDL16) and the mesophyll-restricted SWEET13, also increased in 
abundance with CAM induction (M_DvsWW log2FC > 5,8; Padj < 
0.01; Fig.  3 and fig. S3). Our data suggest an increase in sugar 
transport linked to CAM induction, with G3P originating in the 
bundle sheath but the final steps of PEP regeneration mainly occur-
ring in mesophyll.

We also found up-regulated genes related to cell wall architec-
ture at night in CAM-induced plants: EXPA2 and SAU32 in the 
mesophyll and NAP2 in bundle sheath (table S4 and fig. S4). In 
relation to other transporters, mesophyll-specific up-regulation of 
the ion transporters probable magnesium transporter (NIPA7) and 
plasma membrane–type ATPase 10 (PMA10) and bundle sheath–
specific mitochondrial uncoupling protein 4 (PUMP4) (table S4, 
fig. S5, and online table S2). A gene involved in vacuole processes, 
vacuolar-processing enzyme -isozyme 1 (VPE1), is also up-regulated 
at night during CAM induction in bundle sheath. We detected ex-
pression shifts in transcription factors (TFs) including increased 
diurnal expression of the transcription repressor MYB4 in mesophyll 
and phenylacetaldehyde reductase PAR1 in bundle sheath and de-
creased diurnal abundance of TF BH062 in both cell types. During 
the night, we observed up-regulation in both cell types of the TFs 
scarecrow-like protein 15 (SCL15), protein nuclear fusion defective 4 
(NFD4), homeobox- leucine zipper protein ATHB7, probable WRKY 
TF7 (WRKY7), and protein light-dependent short hypocotyls 3 
(LSH3) in the mesophyll specifically (table S4 and fig. S5).

Visium spatial gene expression
To confirm laser microdissection (LMD) results, we captured and 
spatially tagged mRNA directly on leaf paradermal sections using 
the 10x Genomics Visium spatial transcriptomics platform (10x 
Genomics, Pleasanton, CA) across watering treatments (table S5). 
K-means clustering of total gene expression grouped areas corre-
sponding to mesophyll, bundle sheath, and water storage tissues 
(Fig. 5A). Genes with transcription estimates of less than 200 tran-
scripts per million (TPM) in the LMD analysis were poorly repre-
sented in the Visium libraries. Transcript abundance mapped onto 
leaf-section microphotographs revealed that CCM and Calvin cycle 
genes were lowly abundant or undetected in water storage tissue, 
including both C4- and CAM-specific PEPC paralogs (Fig. 5 and 
fig. S6). Our Visium analyses confirmed the near absence of CAM 
PPC-1E1c expression in well-watered samples and the day-night 
alternation of abundance of C4 and CAM PEPC paralogs in drought 
samples. Both C4 and CAM PEPC paralogs were mostly restricted 
to the mesophyll, with decarboxylation genes and RuBisCO con-
fined to the bundle sheath (Fig. 5 and fig. S6).

Flux balance model
To further explore how C4 and CAM might be integrated, we built 
a two-cell two-phase model adapted from a highly curated plant 
core metabolic model (26). The metabolic model includes all major 
metabolic enzymes and reactions found to be highly conserved 
across a wide array of plant genomes and represents a “core” 
stoichiometric model that captures the central carbon metabolism 
in leaves. Our new model represents how C4 and CAM could be 
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Fig. 4. Transcription abundance of selected CCM-related genes. Median of transcripts per million (TPM; y axis) across time points (7 and 23 hours, x axis) in LMD mRNA 
libraries. Black and red lines indicate M or BS samples, respectively. Plain lines indicate watered, and dotted lines indicate drought. Error bars represent the interquar-
tile range of expression.

Fig. 5. Visium spatial gene expression. (A) Microphotograph of a leaf paradermal section; K-means clustering of total gene expression; and abundance of the main 
C4, CAM, and Calvin cycle carboxylases using the 10x Genomics Visium platform. K-means clustering of sampling spots corresponds to BS (dark blue), M (light blue), and 
water storage (WS; orange) tissues; abundances of PPC-1E1a′, PPC-1E1c, and RBCS are shown relative to their observed unique molecule index (UMI) ranges. (B) Violin plots 
of transcript abundance in UMI across sample spots classified by tissue type in 2300-hour samples.
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integrated in a parsimonious manner from first principles of general 
plant metabolism. We used parsimonious flux balance analysis 
(FBA) to model the efficiency of possible C4 and CAM configura-
tions. In our models, metabolic fluxes were constrained by the rates 
at which metabolites were consumed or produced by each reaction. 
All reactions were permitted to occur in both cells and at any time, 
and we considered diel fluxes within mesophyll and bundle sheath 
cells as distinct compartments. The predicted fluxes for major 
reactions in the metabolic models were largely consistent with the 
differential gene expression results (Fig. 6 and fig. S7), and most 
inconsistencies fell within the predicted variance of flux variability 
analysis (FVA; fig. S8).

Under well-watered conditions, the flux balance model predicted 
a C4 photosynthesis pathway with a small amount of CAM cycling 
in the bundle sheath; under drought conditions, the model predicted 
the emergence of a C4+CAM pathway (Fig. 7 and table S6). While 
the model predicted a canonical C4 cycle, the predicted CAM cycle 
was a two-cell cycle spanning mesophyll and bundle sheath using 
both atmospheric and respired CO2 and a regular one-cell cycle in 
bundle sheath using respired CO2. For the two-cell CAM cycle, CO2 
was assimilated by PEPC, converted to malate, and stored in the 
mesophyll vacuole. During the day, malate was transferred to the 
bundle sheath and decarboxylated to provide CO2 to the Calvin 

cycle. All the essential C4- and CAM-related reactions (PEP carboxyl-
ation, carbonic anhydrase activity, RuBisCO carboxylation, CO2 
uptake, NAD-ME activity, and PEP dikinase regulation) had little 
variation in the FVA, indicating that they were robust processes 
(fig. S8). Most of the processes related to metabolite turnover (i.e., 
malate, oxaloacetate, alanine, aspartate, and pyruvate) were quite 
flexible and exhibited significant variation in FVA without affecting 
the efficiency of the system. (fig. S7). The predicted leaf area–based 
photosynthetic rates under well-watered conditions can be converted 
to 23.2 mol m−2 s−1 (see Materials and Methods), which is compa-
rable with the gas exchange measurements for P. oleracea (19).

We also investigated whether blocking intercellular malate 
transfer and malate storage would affect the efficiency of the 
C4+CAM system. Blocking malate transfer did not affect the effi-
ciency of the system under either well-watered or drought condi-
tions (table S7) because malate, aspartate, and alanine transfer 
between mesophyll and bundle sheath were interchangeable; there-
fore, blocking one metabolite induced conversion to an alternative 
metabolite for intercellular movement. Furthermore, modeling results 
indicated that malate transport between mesophyll and bundle 
sheath might have the smallest enzymatic and metabolic cost and 
was more efficient than other C4 acids in the C4+CAM system. 
Blocking malate storage in mesophyll or bundle sheath alone did 
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not affect the efficiency of the system; however, blocking malate 
storage in both mesophyll and bundle sheath greatly reduced 
efficiency. Malate storage capability is thus important for C4+CAM 
metabolism, but it is not necessarily important whether the malate 
is stored in mesophyll, bundle sheath, or both.

In summary, under well-watered conditions, FBA predicted a C4 
pathway with only a very small amount of CAM in the bundle 
sheath, but under drought, FBA predicted a C4+CAM system, con-
sistent with our gene expression results (Fig. 7 and figs. S7 and S8). 
Under drought, integrating malate from CAM into the C4 cycle 
maximized phloem photosynthate output with minimal enzymatic 
investment compared to models where C4 and CAM cycles ran 
independently of one another. In the integrated model, most 
nocturnal CO2 fixation occurred in the mesophyll, and malate was 
stored in vacuoles of both cells. During the day, fluxes of malate 
from mesophyll vacuoles moved to the bundle sheath to enter the 
C4 decarboxylation module. Under drought (45% stomatal clo-
sure compared with well-watered conditions), phloem outputs of 
C4+CAM plants were only reduced by 8% (table S6). However, 
without CAM, phloem output was reduced by 52% (table S7).

DISCUSSION
P. oleracea is a rare C4 species capable of expressing CAM photo-
synthesis as a stress response to water deficit. This metabolic flexibility 
allows P. oleracea not only to achieve high rates of photosynthesis 
when resources are plenty but also to tolerate extreme drought for 
a relatively long period, breaking a fundamental productivity-stress 
tolerance trade-off in plant physiology (27). Previous studies 
identified candidate enzymes linked to C4 and CAM, but how the 
two pathways were spatially organized within Portulaca leaves 
remained unknown. We compared well-watered and drought- 
induced P. oleracea plants using recent advances in spatial gene 
expression analysis and metabolic modeling to describe a previously 
unknown biochemical pathway that integrates C4 and CAM cycles 
into a single photosynthetic metabolism.

Spatial gene expression analyses confirmed CAM and C4 
operating in the same cells
The spatial description of gene expression across different tissues 
via in situ hybridization is necessarily limited to a handful of genes. 
Here, we estimated the expression of tens of thousands of genes in 
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mesophyll and bundle sheath cells using laser capture microdissection. 
Furthermore, using the Visium (10x Genomics) spatial gene ex-
pression workflow, we mapped and visualized the expression of 
C4- and CAM-related genes over paradermal anatomical sections of 
leaves. Spatially explicit gene expression analysis at the cellular scale 
is still quite rare in plants (28) and holds promise for addressing a 
diverse set of problems in plant molecular biology and function. On 
the basis of K-means clustering of total gene expression, our Visium 
spatial gene expression analysis predicted mesophyll, bundle sheath, 
and water storage cells across samples. Gene expression maps overlap-
ping microphotographs of leaf sections were congruent with findings 
in the laser captured cell samples: Genes related to C4 and CAM PEPC 
activity were more abundant in mesophyll, while decarboxylation 
and Calvin cycle genes were largely restricted to bundle sheath. 
Metabolic activity in water storage cells appeared very low, and 
almost no transcripts were captured for any CCM-related genes. 
Future work using spatial proteomics and metabolomic profiling 
would confirm that protein location matches transcription location.

A new photosynthetic pathway: CAM metabolic fluxes are 
connected to the C4 pathway for decarboxylation
We built a two-cell two-phase diel plant metabolic model that inte-
grates C4 and CAM on the basis of first principles of general plant 
metabolism. We adapted the highly curated model of (26) and used 
flux balance analysis (FBA) to test for the most efficient biochemical 
pathways in which C4 and CAM could operate and correlated the 
results with observed transcript abundance. Congruent with empiri-
cal observations of Portulaca, our model predicted that a purely C4 
system was more efficient when well-watered but that C4+CAM was 
more efficient under drought. Our FBA models further predicted 
cellular compartmentalization of the major C4 and Calvin Cycle 
reactions in agreement with our expression data, although FBA 
slightly underpredicted the transcript abundances of RuBisCO, 
NAD-MDH, and NAD-ME in mesophyll. These inconsistencies 
could be explained by an incomplete segregation of enzymes; the 
imperfect nature of laser microdissection for mesophyll and bundle 
sheath isolation; or more complex relationships among mRNA, 
active enzymes, and metabolites. Under drought conditions, the 
integration and processing of malate from CAM into the C4 cycle 
maximizes phloem output of photosynthates with the smallest 
enzyme cost compared to models without integration of cycles. 
This model predicts that most nocturnal CO2 fixation occurs in 
mesophyll, with a small fraction of respired CO2 fixed in the bundle 
sheath, and that malate is stored in vacuoles of both cells. During 
the day, fluxes of malate from mesophyll reach bundle sheath to 
enter the C4 decarboxylation module. Together, we present a two-
cell CAM system operating in P. oleracea, where CO2 is fixed by 
both C4 and CAM machinery in the same mesophyll cells but at 
distinct times, with CAM fluxes of malate entering the C4 cycle 
during the day in bundle sheath cells to be decarboxylated and 
assimilated into sugars by RuBisCO and the Calvin cycle.

The evolutionary assembly of a C4+CAM metabolism 
in Portulaca
Our analyses confirm that P. oleracea has an integrated C4+CAM 
photosynthesis, where initial C4 and CAM carbon fixation occurs in 
the same mesophyll cells over a 24-hour period, with decarboxylation 
and final CO2 assimilation restricted to the bundle sheath. Only a 
subset of core enzymes recruited distinct homologs for C4 versus 

CAM expression. Thus, the regulatory constraints that were pro-
posed to prevent this coordination appear easily surmountable; not 
all genes require a temporal or spatial shift in gene expression, and 
those that do simply use alternative homologs. So, why is the co- 
occurrence of C4 and CAM apparently rare, having only been 
identified in Portulaca, and quite recently, Trianthema (29)? It is 
possible that many C4+CAM species exist and have not been iden-
tified, as most known C4 species have not been investigated for 
CAM activity. At the same time, it is helpful to look at what Portulaca 
and Trianthema have in common. Both are mildly succulent plants 
that are unusual C4 members of clades with predominantly C3+CAM 
or CAM metabolism. Portulaca was most likely an ancestrally 
C3+CAM species that evolved C4 in parallel several times (13, 15), 
and we predict that Trianthema will be shown to have followed a 
similar evolutionary trajectory. Portulaca achieved the high bundle 
sheath:mesophyll ratio needed for efficient C4 photosynthesis by 
evolving a three-dimensional leaf venation system while still maintain-
ing some degree of tissue succulence and leaf thickness (30), thus 
traversing a potential antagonism of C4 and CAM co-occurrence. 
We predict that we are more likely to find additional C4+CAM 
species in mildly succulent C4 clades [e.g., (31)] or C4 clades closely 
related to CAM-evolving lineages [e.g., (32)].

C4+CAM metabolism and global food security
Facultative CAM cycles in C3 plants help maintain a positive carbon 
balance during stress (typically drought) (33). Our FBA modeling 
results were consistent with this expectation, demonstrating how 
CAM maintained productivity in a C4 plant under drought condi-
tions. P. oleracea is a fast-growing annual weed that achieves high 
rates of carbon assimilation similar to other highly productive C4 
plants (14, 19). In combination with C4, a facultative CAM cycle 
provides elevated drought tolerance in a plant that can also achieve 
exceptionally high rates of photosynthesis, essentially circumventing 
the fundamental productivity-tolerance trade-off that constrains 
plant function (27). Future work should generate more robust 
quantifications of the levels of contribution to net carbon gain and 
survival of facultative CAM in Portulaca experimentally via gene 
editing. Portulaca is highly amenable to development as a model 
system for photosynthesis research (34): It has a short life cycle and 
is self-compatible, and a high-quality genome of Portulaca amilis is 
already available (15).

An integrated C4+CAM photosynthesis inspires future avenues 
for crop improvement and food security, as there has been an ongoing 
global initiative to engineer C4 or CAM pathways into C3 crops 
(35, 36). Predictions of increasing evapotranspiration with warming 
climate point to the urgency of developing drought tolerant crops 
(37), but in maize, a C4 plant, decades of selection for more robust 
growth and higher yields resulted in significantly higher drought 
sensitivity (38). Because C4 crops such as maize already have the ability 
to process C4-originated malate for sugar production during the day, 
engineering a facultative CAM biochemistry where CAM-produced 
malate enters the C4 cycle may require fewer changes than a full 
C3-to-CAM or C3-to-C4 transition would require. One caveat is our 
uncertainty with regard to the anatomical requirements of a C4+CAM 
system; we note that the CAM cycle was not detectable in the large 
water storage cells of Portulaca but in, rather, the considerably 
smaller mesophyll cells. This suggests that this level of facultative 
CAM may not require extensive anatomical specialization, as has 
been hypothesized in recent models of CAM evolution (1). We 
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speculate that engineering a C4+CAM metabolism in a C4 crop is 
feasible and could confer substantial drought tolerance without 
sacrificing productivity and yield.

MATERIALS AND METHODS
Methods I: Spatial gene expression
Plant material, drought experiment, and sampling
Two P. oleracea plants were grown at the greenhouse facilities at 
the Marsh Botanical Garden, Yale University, New Haven, CT, 
USA. Plants were grown from (voucher accession PO-russ2018) 
in a greenhouse in soil mix FAFARD GROWING MIX #2 3.8CF, 
composed of 70% peat moss, 20% perlite, 10% vermiculite, starter 
nutrients, limestone, and a wetting agent (Sun Gro Horticulture, 
MA, USA). During the experiment, temperature was maintained at 
an average of 27° and 22°C during the 15 hours of light and 8 hours 
of dark a day, respectively. Natural light intensity at plant level 
peaked around 1600 mol m−2 s−1 (photosynthetically active radia-
tion) at the center of the light period. The light period began 
at ~5 hours (ending ~20 hours), and leaf samples were taken at 7, 19, 
and 23 hours under well-watered conditions and again after 7 days 
of complete water withholding (drought). Leaves used for titratable 
acidity assays were placed in 1-ml Eppendorf tubes and flash-frozen 
in liquid nitrogen; for cryosectioning, another three to four whole 
leaves were immersed in optimal cutting temperature (OCT) com-
pound in plastic histology molds and rapidly placed on an alumi-
num block partially submerged in liquid nitrogen to flash freeze. All 
samples were stored at −80°C.

To assess nocturnal accumulation of malate, leaves from 7- and 
19-hour samples from both well-watered and drought plants were 
boiled in 60 ml of 20% ethanol. After half of the volume evaporated, 
distilled water was added to return the initial 60 ml; this process was 
repeated twice. The final 30-ml solutions were cooled to room tem-
perature and titrated to a pH of 7.0 using 0.002 M NaOH. Acidity, 
measured as Eq H+ per gram of fresh mass, was calculated as volume 
titrant (in l) × titrant molarity (in M)/fresh tissue mass (in g).
Cell-specific laser microdissection, RNA isolation, 
and sequencing
LMD relies on cell identification for cell-specific capture. Here, we 
targeted mesophyll cells and bundle sheath cells for RNA sequenc-
ing. We chose to use fresh-frozen tissue, as opposed to fixed tissue 
and/or embedded in paraffin, to avoid potential RNA degradation. 
Although freezing can distort the leaf anatomy, bundle sheath cells 
are easily identified by their dense chloroplasts and proximity to 
veins, and mesophyll cells are easily identified by sparse chloroplasts 
and calcium oxalate crystals (Fig. 1D).

Frozen OCT molds containing fresh leaves were moved from −80° 
to −20°C inside a cryomicrotome (CM 3050S; Leica Biosystems, 
MA, US) to acclimate for 30 min. We obtained paradermal sections 
by cutting leaves parallel to the longitudinal axis with the cryo-
microtome. Paradermal sectioning results in larger areas of bundle 
sheath and mesophyll tissues compared to cross-sectioning. Sections 
12 m across were laid on PEN membrane glass slides for ultraviolet 
laser microdissection (Thermo Fisher Scientific, MA, USA) and 
stored at −80°C. At the time of laser microdissection, slides were 
brought to room temperature inside a desiccant box containing 
silica gel for ~10 min. Room temperature dry slides were laser cut 
using an LMD scope (LMD7000; Leica, Leica Biosystems, MA, 
USA) with the following laser parameters: power, 50; aperture, 9; 

speed, 4; and ×20 microscope magnification. This relatively wide 
cutting laser ensured clear separation of bundle sheath and mesophyll 
tissues. More than 10 areas containing tens of cells each were captured 
and accumulated in each sample of each tissue type. Mesophyll 
or bundle sheath samples were captured into separate caps of 0.5-ml 
microtubes filled with 20 l of extraction buffer (Arcturus PicoPure 
RNA Isolation Kit; Thermo Fisher Scientific; MA, USA).

RNA was isolated using PicoPure kits (Arcturus PicoPure RNA 
Isolation Kit, Thermo Fisher Scientific, MA, USA), with additional 
on-column deoxyribonuclease (DNase) digestion (RNase-free DNase, 
QIAGEN, Germany). Extraction quality was evaluated using a 
TapeStation DNF-472T33 (Agilent Technologies, CA, USA) with the 
high sensibility assay HS Total RNA, analysis mode: Plant RNA. Only 
extractions with RNA profiles clearly exhibiting the two plant cell 
ribosomal RNA peaks and the two chloroplasts ribosomal RNA 
peaks were sequenced (fig. S1A). We used SMART-Seq v4 Ultra 
Low Input RNA kits for sequencing (Takara Bio Group, Japan), 
which first generated high-quality cDNA from ultralow amounts of 
total RNA and then high-quality Illumina sequencing-ready libraries. 
The SMARTer anchor sequence and polyadenylate (poly-A) sequence 
served as universal priming sites for end-to-end cDNA amplifica-
tion of mRNA. We used 250 pg of total RNA input with 14 poly-
merase chain reaction (PCR) cycles for cDNA synthesis and 10 PCR 
cycles for library amplification, following the manufacturer’s guidance. 
mRNA libraries were pooled and sequenced on a NovaSeq 6000 
system (Illumina, CA, USA) to generate ~25 million 100-bp paired-end 
reads per library. Library preparation and sequencing were done at 
the Yale Center for Genome Analysis, New Haven, CT, USA.
Spatial whole-transcriptome sequencing
To obtain near-cellular resolution of gene expression across entire 
leaf paradermal sections, we used the Visium Spatial Gene Expression 
platform (10x Genomics, CA, USA) following the manufacturer’s 
directions. The Visium platform captures mRNA released from a 
tissue section fixed to a slide, spatially tagging each mRNA molecule 
before sequencing to later map their position and abundance over a 
corresponding microphotograph of the tissue section. We followed 
the Tissue Optimization workflow to confirm the compatibility of 
our leaf tissues with the solution and to optimize the permeabiliza-
tion conditions to release the maximum mRNA in the shortest 
time. First, using a cryomicrotome, 12-m paradermal sections were 
obtained from flash-frozen leaves and each placed within the frames of 
one of the eight, 6.5 mm–by–6.5 mm capture areas on an optimization 
slide. Sections were fixed with methanol and stained with hematoxylin 
and eosin. The slide was scanned under a bright field using a micro-
scope (Axio Imager.M1; Zeiss, Germany) with a magnification 
of ×10 per tile for comparison with final fluorescent images. We used 
permeabilization test times of 3, 6, 12, 18, 24, and 30 min in each 
capture area, including negative (tissue section not exposed to 
permeabilization reagents) and positive controls (stock isolated plant 
mRNA). cDNA was generated from the mRNA that bound to probes 
on the slide during permeabilization using fluorescently labeled nucleo-
tides. Tissue was then enzymatically removed from the slide, and the 
remaining fluorescently labeled cDNA was analyzed to select the 
optimal permeabilization time based on the fluorescence of each test 
area. Using the fluorescence capacity of the microscope (TRITC filter 
cube; filter Rhod; 800-ms exposure time), we observed maximum 
fluorescence in the corresponding sample area after 12 min of per-
meabilization. The software ZEN 2.6 (Zeiss, Germany) was used 
to control the microscope and stitch the microphotograph tiles.
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Once the tissue permeabilization conditions were optimized, a 
total of eight sections, comprising two technical replicates at 7 and 
23 hours under well-watered and drought conditions, were used for 
spatial mRNA sequencing. Each replicate was placed on one of two 
slides containing four capture areas. Each area contained 5000 
barcoded capture spots that were 55 m in diameter to 100 m 
center to center between spots. Spots were populated with primers 
that included Illumina sequencing primers, unique spatial barcodes 
per spot, unique molecular identifiers (UMIs), and 30-nt of repeating 
deoxythymidines poly(dT) sequences to capture poly-A mRNA.  
Tissue sections were processed as in the optimization steps: cryo-
sectioning, followed by fixation, staining, slide imaging, and per-
meabilization. The mRNA released from overlying cells was captured 
by the primers on the spots and incubated with a mix containing 
reverse transcription reagents, producing spatially barcoded cDNA.  
After the second strand was synthesized, a denaturation step released 
it from the slide, and cDNA was transferred from each capture area 
to a corresponding tube for amplification and library construction 
following the manufacturer’s specifications. Amplification, library 
preparation, and sequencing were done at the Yale Center for Genome 
Analysis, following the manufacturer’s directions, with a sequencing 
depth of at least 50,000 read pairs per spot in the capture area.

P. oleracea lacks genomic resources and only transcriptome 
sequencing data have been produced to date. The closest relative 
reference genome available is that of P. amilis. However, on average, 
only the 32% of our LMD-RNA reads align to the P. amilis genome, 
preventing further guide for transcriptome assembly or gene ex-
pression analyses. Our laboratory previously de novo assembled a 
P. oleracea transcriptome using Trinity (39) and using more than 
1 billion 100-bp pair-end reads from whole leaves (15), and here, we 
used that assembly to map reads from both LCM and Visium experi-
ments. Before that, we reduced the dataset to contigs containing 
coding sequences. For that, we first used the software TransDecoder 
v5.5.0 (code was obtained from http://transdecoder.github.io and 
accessed in May 2020) to predict coding sequences within the 
transcripts, providing the software with precomputed BLASTX (40) 
alignments to the UniProt protein sequences database (41) to 
improve prediction. Next, we used CD-HIT v4.8.1 (16) to cluster 
coding sequences sharing 95% identity, retaining one represent-
ative. The indexes of the remaining sequences were used to subset 
the initial transcriptome assembly, yielding a reduced transcriptome 
for read mapping. Transcripts were functionally annotated using the 
software Trinotate v3.2.1 (code was obtained from http://trinotate.
github.io and accessed in May 2020), selecting the best Blast hit 
(lowest e-value score) of all the possible alignments. Annotation 
of transcripts into gene lineages for gene families with a previously 
known role in any plant lineage in CCMs and starch metabolism 
was performed as with gene lineage notations as in (13–15, 18, 42). 
For that, we used the original set of sequences per gene family 
annotated in those studies to retrieve homolog coding sequences 
from our dataset using Blast (e-value, 0.01). For each gene family, 
the retrieved sequences were aligned on the basis of codon positions 
to the reference sequences using MAFFT alignment software (43) 
and manual curation. Maximum likelihood gene family trees were 
inferred from the alignments using IQ-TREE (44) with automatic 
model selection and 100 bootstraps. Query sequences were assigned 
to gene lineages on the basis of the annotation of its sister refer-
ence sequence on the tree. Our gene lineage annotations matched 
those in (15).

mRNA reads from mesophyll and bundle sheath tissues cap-
tured using laser microdissection were filtered and trimmed using 
Trimmomatic-0.39 (45). With this tool, ten base pairs were removed 
from the beginning of the read; Illumina adapters, poly-A tails, and 
SMART-Seq primers were removed from the reads; a 5-bp sliding 
window trimming approach was used to clip the read at the 5′ end 
where the average quality score within the window fell below 20; 
and single, low- quality bases from the beginnings and ends were 
also clipped. Only reads longer than 18 bp were kept after filter-
ing. To quantify abundance, reads were mapped to the transcrip-
tome assembly using the pseudo-aligner Kallisto v-0.45.0 (17) 
with 100 bootstrap replicates.

We used DEseq2 (46) to test for gene DE across experimental vari-
ables. To generate Trinity unigene-level counts (as opposed to transcript- 
level counts), we used Sleuth (47) in “gene_mode” to compile the 
Kallisto transcript counts into unigene counts. The resulting matrix 
of estimated counts was used to measure DE with DEseq2 in R (48). 
To estimate the magnitude and direction of the change in expression 
(measured as log2FC) and to statistically test for DE unigenes across 
cell types, time points, and water status, we included those variables 
and controlled for sequencing batch and plant individuals using all 
samples for DEseq2 normalization. In addition, to specifically mea-
sure the effect of drought on each cell type at each time point, we 
separated our counts matrix by 7 and 23 hours and ran the DEseq2 
function for each partition, including, in these cases, a cell type and 
water status interaction term for normalization. The P values obtained 
from each test were adjusted (P-adjusted) for multiple testing by 
means of false discovery rate using the Benjamini and Hochberg 
method (49). We then tested for enrichment of GO terms in the lists 
of significant DE unigenes from each test (Padj < 0.05). First, we ex-
tracted the corresponding GO terms from the Trinotate analysis and 
then used Fisher’s exact test, as implemented in TopGO (50), using 
the GO terms from all unigenes as the background “gene universe.”
Visium Spatial Gene Expression analysis
Reads obtained from tissue sections using the Visium Spatial Gene 
Expression platform were processed using the analysis pipelines im-
ple mented in Space Ranger v1.1.0 (10x Genomics; https://support. 
10xgenomics.com/spatial-gene-expression/software/pipelines/latest/
what-is-space-ranger). We used the “spaceranger mkref” to construct 
a reference transcriptome, parsing the exon unigene information 
generated by TransDecoder and the sequence of the longest isoform 
by unigene. We mapped reads to the most highly expressed unigene 
per Portulaca CCM-related gene lineage when possible or per gene 
family from the above LCM analysis, with a total of 140 sequences. 
We manually aligned the bright-field microphotograph based on 
fiducial markers and selected the areas where capture spots covered 
tissue. We then ran “spaceranger count” to filter-trim reads and align 
them to the reference transcriptome, with default parameters. UMIs 
were later used to correct and estimate counts of aligned reads per 
unigene per spatial capture spot. Principal components analysis and 
K-means clustering of spots by expression similarity were performed 
automatically in Space Ranger and visualized in the Loupe Browser 
5.0 (10x Genomics).

Methods II: Flux balance model
To further explore how C4 and CAM might be integrated, we built 
a two-cell two-phase model adapted from a highly curated plant 
core metabolic model (26). The core metabolic model includes 
all major metabolic enzymes and reactions found to be highly 

http://transdecoder.github.io
http://trinotate.github.io
http://trinotate.github.io
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger
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conserved across a wide array of plant genomes and represents a 
“core” stoichiometric model, which captures the central carbon me-
tabolism in leaves. Our new model represents how C4 and CAM 
could be integrated in a parsimonious manner from first principles of 
general plant metabolism.
Model construction
Previous models only considered C3 or CAM metabolism in a 
single-cell model or C4 metabolism in a two-cell model but without 
diel variation (26, 51, 52). To consider the C4 and CAM cycles 
together, we built a new metabolic model including both mesophyll 
and bundle sheath cells and diel-flux changes. Our model is an 
extension of the model in (26), which considered diel-flux and charge 
balance in each cellular compartment. The advantage of including 
charge balance is that it considers the effects of organellar pH on 
the metabolites’ charge states, which is important for the CAM acid-
ification process. Starch was allowed to accumulate in the plastid, 
and sugars (glucose, sucrose, and fructose), carboxylic acids (malate, 
citrate, and isocitrate), proteinogenic amino acids, and nitrate were 
allowed to accumulate in the vacuole for storage and were used 
during both day and night. We duplicated all the reactions to repre-
sent bundle sheath and mesophyll cell types individually. We then 
added transport reactions between bundle sheath and mesophyll 
for daytime and nighttime conditions. We allowed particular 
metabolites to be transferred between bundle sheath and mesophyll 
on the basis of previous studies (53–56): malate, aspartate, alanine, 
pyruvate, G3P, dihydroxyacetone phosphate, PEP, 2-phosphoglyceric 
acid, sucrose, sulfate, ammonium, nitrate, and CO2. We also added 
charge and proton balances for these reactions following the method 
in (26). Our model had the following four first-order compartments: 
daytime mesophyll, nighttime mesophyll, daytime bundle sheath, and 
nighttime bundle sheath. Under each of these first-order compart-
ments, there were the following second-order compartments where 
corresponding biochemical reactions happen: plastid, peroxisome, 
vacuole, thylakoid, mitochondrion, extracellular, cytoplasm, mito-
chondrial intermembrane space, and inner membrane spaces. We 
also made the following revisions to the model: allowed proton and 
oxygen transfer between day and night, fixed mannan biosynthesis 
reactions, and allowed protons to be transferred reversibly between 
cytoplasm and mitochondria, vacuole, and extracellular space. Thus, 
our model contains all the major biochemical reactions related to 
C3, C4, and CAM photosynthesis. Our model is available on Dryad 
(https://datadryad.org; DOI: 10.5061/dryad.931zcrjm6).
Modeling constraints
We used the COBRApy package (57) to perform the flux balance 
analysis. The non–growth-associated maintenance costs were con-
trolled by constraining an ATPase and three reduced form of 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
pseudo-reactions (cytoplasmic, mitochondrial, and plastidic) to a 
3:1 (adenosine triphosphate hydrolysis:NADPH oxidase) ratio, based 
on (58) and used by previous studies (26). The maintenance costs, 
which were represented by ATPase fluxes, had a linear relationship 
with photon uptake fluxes (26). We used a photon uptake flux similar 
to light levels in our greenhouse experiments described above and a 
corresponding non–growth-associated maintenance ATPase flux of 
33.66 mol m−2 s−1. We also set an anatomical constraint that 
bundle sheath cells occupied 30% of the leaf area and mesophyll 
cells occupied 70%. All the fluxes in mesophyll and bundle sheath 
were adjusted according to the above ratios. RuBisCO carboxylation 
to oxygenation ratio was set to 3:1 in mesophyll but to 10:1 in bundle 

sheath because of lower diffusion of O2 and the CCM (56). We used a 
relatively lower RuBisCO carboxylation to oxygenation ratio com-
pared to other studies of C4 models, but sensitivity analysis indicated 
that our results were robust to varied and higher ratios (table S8). 
Last, as P. oleracea primarily uses NAD-type C4 (20, 59), we con-
strained our model to use NAD-ME as the decarboxylation enzyme 
and accordingly blocked the transfer of pyruvate, PEP, 2PG, and G3P 
between mesophyll and bundle sheath (60). We did not constrain 
any other major biochemical reactions related to C3, C4, or CAM.
Modeling scenarios
We parameterized the models with the growth environmental con-
ditions in the greenhouse experiment and performed the FBA. The 
primary objective function maximized phloem output, which meant 
letting the model dictate which pathways were most efficient (i.e., 
generate the highest phloem output) under given environmental 
conditions. The secondary objective function minimized the abso-
lute sum of fluxes, which was a proxy for reducing enzymatic costs 
while fulfilling the primary objective function (61). We then per-
formed FVA to examine the potential flux space without affecting 
the primary objective in FBA analysis. We first let the model freely 
determine the potential pathways among C3, C4, and CAM with two 
objectives, without adding additional constraints, under two environ-
mental conditions: well-watered, under which we did not specifically 
constrain the CO2 uptake to mimic stomata open to well-watered 
condition, and drought conditions, under which we constrained 
CO2 uptake to be 55% of well-watered condition to represent a 
drought condition, stomata closure of 45%. We also modeled another 
two drought conditions, which represent 25 and 75% stomatal 
closure, to support the conclusions and results are robust.

We then tested several scenarios related to malate transfer and 
storage: (i) blocking malate transfer between bundle sheath and 
mesophyll, (ii) blocking malate storage in mesophyll, (iii) blocking 
malate storage in bundle sheath, and (iv) blocking malate storage in 
both mesophyll and bundle sheath.

Last, we performed alternative modeling scenarios related to C4 
anatomy. We revised the constraint of CO2-proof bundle sheath 
cells (typical C4 anatomy) by allowing CO2 to diffuse into bundle 
sheath but maintained the same atmospheric CO2 as in modeling 
scenarios with CO2-impermeable bundle sheath. To set a CAM 
scenario, we set daytime CO2 at 0 and the RuBisCO carboxylation–
to–oxygenation ratio to 5.15, following (27). All the other settings 
and constraints were the same for C3, C4, and CAM scenarios. The 
unit for the fluxes is “mmol gDW−1 day−1.” “DW” represents “dry 
weight.” The flux unit can be converted to net CO2 uptake on a leaf 
area basis as follows

    
Net  CO  2   uptake flux

  ────────────  SLA × s × h    

Thus, the net CO2 uptake flux is 127.7 − 7.2 = 120.5 mmol 
gDW−1 day−1 at well-watered condition, and specific leaf area (SLA) 
for P. oleracea is 600 cm2 g−1on average (62). s represents 3600 
seconds per hour and h represents 24 hours per day. Then, the CO2 
uptake predicted by the model is converted to be 23.2 mol m−2 s−1 
on a leaf area basis.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn2349

View/request a protocol for this paper from Bio-protocol.
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