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O P T I C S

Propagation-induced revival of entanglement 
in the angle-OAM bases
Abhinandan Bhattacharjee1*, Mritunjay K. Joshi1, Suman Karan1, Jonathan Leach2, Anand K. Jha1*

Although the continuous-variable position-momentum entanglement of photon pairs produced by parametric 
down-conversion has applicability in several quantum information applications, it is not suitable for applications 
involving long-distance propagation. This is because entanglement in the position-momentum bases, as 
seen through Einstein-Podolsky-Rosen (EPR)–correlation measurements, decays very rapidly with photons prop-
agating away from the source. In contrast, in this article, we show that in the continuous-variable bases of angle–
orbital angular momentum (OAM), the entanglement, as seen through EPR-correlation measurements, exhibits a 
remarkably different behavior. As with the position-momentum bases, initially, the entanglement in the angle- 
OAM bases also decays with propagation, and after a few centimeters of propagation, there is no angle-OAM 
entanglement left. However, as the photons continue to travel further away from the source, the entanglement 
in the angle-OAM bases revives. We theoretically and experimentally demonstrate this behavior and show that 
angle-OAM entanglement revives even in the presence of strong turbulence.

INTRODUCTION
Quantum entanglement (1–4) is the key resource behind the advance-
ment of many applications such as quantum imaging (5), quantum 
communication (6), quantum information processing (7), and quan-
tum computing (8). Spontaneous parametric down-conversion 
(SPDC) is one of the most widely used methods for generating en-
tangled photons in which a pump photon at a higher frequency in-
teracts with a nonlinear crystal and produces two separate photons 
at lower frequencies called the signal and idler photons. The entan-
glement of down-converted photons has been extensively studied in 
the discrete finite-dimensional bases such as polarization (9), time-
bin (10, 11), and orbital angular momentum (OAM) (12, 13) as well 
as in the continuous-variable bases such as position-momentum 
(14–16), angle-OAM (17), radial position–radial momentum (18), 
and time-energy (19, 20). Although there are several ways of quan-
tifying two-photon entanglement in two-dimensional bases (21), 
there is no quantifier for more than two-dimensional bases and 
continuous-variable bases in which cases one can talk only in terms 
of entanglement certifiers (4). For continuous-variable bases, there 
are several entanglement certifiers such as the Einstein-Podolsky- 
Rosen (EPR) criterion (1, 14–17, 22), partial transpose (23, 24), and 
Rényi entropy (25, 26). Among these certifiers, the EPR criterion is 
the most widely used one and is used even beyond photonic quan-
tum systems (27, 28).

The practical implementation of quantum information tasks re-
quires entanglement to be sustained over long distances and in tur-
bulent environments. The feasibility of using entanglement in the 
finite-dimensional bases for long-distance quantum-information 
applications has been demonstrated in several experimental works 
(29–32). However, the suitability of entanglement in the continuous- 
variable bases for long-distance applications has not been established 
so far. Among the continuous-variable bases, position-momentum 
bases have been extensively investigated for its applicability in 
several applications such as quantum imaging (33–36), quantum 

holography (37, 38), quantum metrology (39), and quantum secure 
communication (40, 41). Although position-momentum entangle-
ment has found uses in many of these applications, it has not been 
found suitable for applications involving long-distance propagation. 
This is because of the fact that as the photons propagate away from 
the down-conversion crystal, the entanglement in the position- 
momentum bases, seen through EPR correlation measurements, 
decays very rapidly (42, 43), and this effect becomes worse in the 
presence of turbulent environments.

In this article, we explore entanglement of down-converted pho-
tons in the continuous-variable bases of angle and OAM. We certify 
entanglement through EPR correlation measurements (14–17, 22, 44) 
and demonstrate that the entanglement of down-converted photons 
in the angle-OAM bases exhibits a different behavior than the en-
tanglement in the position-momentum bases. Just as in the case of 
position-momentum bases, initially, the angle-OAM entanglement 
decays with propagation, but as the photons continue to travel fur-
ther away from the source, the entanglement in the angle-OAM bases 
comes back. We refer to this behavior as the propagation-induced 
revival of entanglement in the angle-OAM bases. We theoretically 
and experimentally demonstrate this behavior and show that this 
propagation-induced revival takes place even in the presence of 
strong turbulence.

RESULTS
We present a quantitative analysis of the propagation of conditional 
position and angle uncertainties of the signal photon in SPDC. For 
a Gaussian pump with beam waist at the crystal plane z = 0, the 
two-photon wave function in the position basis at a propagation 

distance z is given by (15, 42, 43) ​​(​​ s​​, ​​ i​​; z ) = Aexp ​[​​ − ​​∣​​ s​​ + ​​ i​​∣​​ 2​ _ 
4w ​(z)​​ 2​

 ​​ ]​​exp ​

[​​ − ​​∣​​ s​​ − ​​ i​​∣​​ 2​ _ 
4 ​(z)​​ 2​

 ​​ ]​​ ​e​​ i(​​ s​​,​​ i​​,z)​​​, where s ≡ (xs, ys) and i ≡ (xi, yi) are the 

transverse positions of the signal and idler photons, respectively at z, 
and where ​w(z ) = ​w​ 0​​ ​√ 

____________
  1 + ​z​​ 2​ / (​k​​ 2​ ​w​0​ 4​) ​​, ​(z ) = ​​ 0​​ ​√ 

___________
  1 + ​z​​ 2​ / (​k​​ 2​ ​​0​ 4​) ​​, and 

k = /p. In addition, w0 is the pump beam waist at z = 0, ​​​ 0​​  = ​
√ 

___________
 0.455L ​​ p​​ / 2 ​​, L is the length of the crystal, p is the wavelength of 
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the pump field, and ​​e​​ i​(​​​ρ​ s​​,​ρ​ i​​,z​)​​​​ is a phase factor. The two-photon position 
probability distribution function P(s, i; z) = ∣(s, i; z)2∣ at z is 
therefore given by

	​​ P(​​ s​​, ​​ i​​; z ) = ​∣A∣​​ 2​ exp ​[​​ − ​ ​∣​​ s​​ + ​​ i​​∣​​ 2​ ─ 
2w ​(z)​​ 2​

 ​​ ]​​exp ​[​​ − ​ ​∣​​ s​​ − ​​ i​​∣​​ 2​ ─ 
2 ​(z)​​ 2​

 ​​ ]​​​​	 (1)

For a fixed idler position, say in the y direction, the two-photon 
position probability distribution is referred to as the conditional po-
sition probability distribution of the signal photon at z and is denoted by 
P(ys∣yi; z). The standard deviation of P(ys∣yi; z) is referred to as the 
conditional position uncertainty (ys∣yi; z) of the signal photon 
(see Fig. 1A for illustrations). Similarly, by writing the two-photon 
wave function (s, i; z) in the transverse momentum basis, one can 
calculate conditional momentum uncertainty (pys∣pyi; z) of the 
signal photon at z. According to the EPR criterion of entanglement, 
if the product (ys∣yi; z)(pys∣pyi; z) < 0.5 ħ, then the two photons 
are entangled in the position-momentum bases (1, 14).

In addition to the position-momentum bases, the down-converted 
photons are rendered entangled in the angle-OAM bases as well. Using 
Eq. 1 and the transformations s = (rs cos s, rs sin s) and i = (ri 
cos i, ri sin i), we can write the two-photon angle probability dis-
tribution function P(s, i; z) as

	​ P(​​ s​​, ​​ i​​; z ) = ∬ ​r​ s​​ ​r​ i​​ P(​r​ s​​, ​​ s​​, ​r​ i​​, ​​ i​​; z ) d ​r​ s​​ d ​r​ i​​​	 (2)

where (rs, s) and (ri, i) are the polar coordinates of the signal and 
idler photons. Using P(s, i; z), one can obtain the conditional 
angle probability distribution function P(s∣i; z) and thereby the 
conditional angle uncertainty (s∣i; z) of the signal photon (see 
Fig. 1B for illustrations). Denoting the conditional OAM uncertainty 
by (ls∣li; z), we write the EPR criterion for entanglement in the 
angle-OAM bases as (s∣i; z)(ls∣li; z) < 0.5 ħ[1 − 2P(0∣i; z)] 
(17, 45), where P(0∣i; z) represents the conditional probability of 
detecting the signal photon at the boundary s = 0.

Now, using Eqs. 1 and 2 and the relevant experimental parameters 
w0 = 507 m, L = 5 mm, and p = 355 nm, we numerically evaluate 
P(ys, yi; z) and P(s, i; z) at different propagation distances z and 
plot them in Fig. 1 (C and D, respectively). In plotting P(ys, yi; z) and 
P(s, i; z), we scale them to make their maximum values equal to 
one. Next, by fixing yi = 0 in P(ys, yi; z) and i = 0 in P(s, i; z), 
we calculate P(ys∣yi; z) and P(s∣i; z) and thereby the conditional 
position uncertainty (ys∣yi; z) and the conditional angle uncertain-
ty (s∣i; z), and we plot them in Fig. 1 (E and F, respectively). 
From the plots in Fig. 1 (E and F), we find that as the down-converted 
photons propagate away from the crystal, the conditional position 

A B

C

D

E F

Fig. 1. Propagation of conditional position and angle uncertainties. (A and B) Schematic illustrations of conditional position and conditional angle uncertain-
ties. (C and D) Numerically evaluated two-photon position probability distribution function P(ys, yi; z) and the two-photon angle probability distribution function P(s, i; z), 
respectively, at various z values. (E) Numerically calculated conditional position uncertainty (ys∣yi; z) as a function of z. The two dashed lines show the z-scaling of the 
uncertainty in the near- and far-field regions. (F) Numerically calculated conditional angle uncertainty (s∣i; z) as a function of z. The two dotted lines show the 
z-scaling of the uncertainty in the near- and far-field regions.
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uncertainty increases monotonically. However, the conditional an-
gle uncertainty increases initially but later begins to decrease mono-
tonically. (See sections S1 and S2 for more detailed analysis and 
numerical simulations.) We emphasize that to observe revival of 
entanglement in the angle-OAM bases, one needs to collect the 
entire transverse field. If a part of the field is rejected because of the 
finite size of the detector, then that will result in a loss of entangle-
ment. We have carried our numerical simulation of the effects of a 
finite-size detector on the propagation of angle-OAM entangle-
ment (see section S9 for more details.) We have found that increas-
ing the detector size increases the propagation distance up to which 
the angle-OAM entanglement remains intact. Therefore, one can 
decide the minimum aperture size for a given application based 
on the distance up to which one needs the entanglement in the 
angle-OAM bases to be intact.

Although it is very difficult to derive the general analytical ex-
pressions for the conditional position and angle uncertainties as a 
function of z, we derive expressions for how the conditional uncer-
tainties scale with z in the near- and far-field regions. The two dot-
ted lines in Fig. 1E show how the conditional position uncertainty 
(ys∣yi; z) scales with z in the near and far fields. We find that 
(ys∣yi; z) increases as (z) in the near field, while it increases as 
w(z) in the far field. The two dotted lines in Fig. 1F show how the 
conditional angle uncertainty (s∣i; z) scales with z. We find that 
while (s∣i; z) increases as z in the near-field regions, it decreases as 
1/z in the far-field regions. (For the detailed theoretical calculations 
of the scaling laws, see sections S1.2 and S1.3).

The plots in Fig. 1 (E and F) depict how the conditional position 
uncertainty (ys∣yi; z) and conditional angle uncertainty (s∣i; z) 
change as a function of z. We note that the conditional momentum 
and OAM uncertainties (pys∣pyi; z) and (ls∣li; z) remain constant 
as a function of z because of the conservations of momentum and 
OAM, respectively, in SPDC. As a result, the functional dependence 
of (ys∣yi; z)(pys∣yyi; z) and (s∣i; z)(ls∣li; z) on z is same 
as that of (ys∣yi; z) and (s∣i; z), respectively. Therefore, the 
entanglement in the position-momentum bases as seen through 
EPR correlation product was found to decay very rapidly as a func-
tion of z, and after a few centimeters of propagation, there is no 
entanglement left in the position-momentum bases. On the other 
hand, although there is no entanglement left in the angle-OAM 
bases after a few centimeters of propagation just as in the case of 
position-momentum bases, the entanglement in the angle-OAM 
bases comes back after further propagation. We refer to this as the 
propagation-induced revival of entanglement in the angle-OAM 
bases. Although in our analysis, so far, we have used EPR uncertain-
ty product as an entanglement witness, we observe qualitatively the 
same features in the propagation of angle-OAM entanglement with 
another witness, entanglement of formation (46, 47) (see section S10 
for details).

We note that the propagation of entangled photons can be mod-
eled in terms of local unitary transformations, and therefore, it can-
not change the total entanglement of the two-photon state (48). The 
simulations we conducted do not depict how the total entanglement 
of the two-photon state changes upon propagation. They instead 
depict how the total entanglement manifests in the position-
momentum and angle-OAM bases upon propagation. Such 
propagation-dependent manifestations of entanglement in dif-
ferent bases have also been reported in the amplitude and phase 
bases (49, 50). In the context of the amplitude and phase bases, it 

has been shown, under the very restrictive double-Gaussian ap-
proximation for the two-photon wave function, that although the 
entanglement in amplitude and phase changes individually as a 
function of z, the sum of the entanglements in the amplitude and 
phase remains constant (51). However, it has so far not been possi-
ble to show this for a two-photon state without the double-Gaussian 
approximation or for a mixed two-photon state. In our present 
work, we find that in the far field, entanglement revives in the angle-
OAM bases but not in the position-momentum bases. This fact 
could be used for long-distance applications involving angle-OAM 
entanglement. Nonetheless, how the total entanglement of a general 
two-photon state could be expressed as an invariant of propagation 
in terms of its manifestations in the position-momentum, angle- 
OAM, and other bases still remains an open question.

Next, we present a pictorial illustration of how the conditional 
angle uncertainty decreases upon propagation in the far field causing 
entanglement in the angle-OAM bases to revive. Figure 2A shows the 
cross section of the down-converted field as it propagates. For an 
idler position yi, shown by a green dot, the signal has the appreciable 
probability to be found in a circular area of radius (ys∣yi; z), which 
is the conditional position uncertainty of the signal photon at z. 

Far fieldC

Near field
B

A

Fig. 2. Pictorial illustration of propagation of conditional angle uncertainty. 
(A) The cross section of the down-converted field as it propagates. For a line of idler 
positions, shown by green line, the signal photon has the probability of being found 
in the blue shaded region. The conditional angle uncertainty (s∣i; z) is of the order 
of (ys∣yi; z)/ws(z), where (ys∣yi; z) is the conditional position uncertainty of the 
signal photon and ws(z) is the size of the down-converted field. (B) and (C) illustrate 
that the conditional angle uncertainty increases as a function of z in the near field, 
while in the far field, it decreases as a function of z.
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Therefore, if we have a line of idler positions, shown by green 
line, the signal photon has the appreciable probability of being found 
in the blue shaded region. This green line represents the angular 
position i = 0 of the idler. The corresponding conditional angle 
uncertainty (s∣i; z) of the signal photon can be estimated by 
averaging the angle over the radial extent of the down-converted 
field from the center up to beam width ws(z) of the field. However, 
to a very good approximation, we can take the conditional angle 
uncertainty (s∣i; z) to be of the order of (ys∣yi; z)/ws. Figure 1E 
shows how (ys∣yi; z) changes as a function of z, and fig. S3 in the 
Supplementary Materials shows how ws(z) changes as a function 
of z. We find that in the near field, (ys∣yi; z) increases much faster 
compared to ws(z), while in the far field, it increases much slower 

compared to ws(z). Because of this, as a function of z, the conditional 
angle uncertainty (s∣i; z) increases in the near field, while it 
decreases in the far field (illustrated in Fig. 2, B and C).

Figure 3 shows the schematic of the experimental setup for mea-
suring the two-photon probability distribution functions P(ys, yi; z), 
P(pys, pyi; z), P(s, i; z), and P(ls, li; z) through coincidence measure-
ments of the two photons. An ultraviolet (UV) continuous wave (CW) 
Gaussian pump (Coherent Genesis STM UV laser) of wavelength 
p = 355 nm, beam waist w0 = 507 m is incident on a 5 mm–
by–5 mm–by–5 mm -barium borate (BBO) crystal. The crystal is cut 
in a manner that it produces signal and idler photons with collinear 
type I phase-matching condition. A long-pass filter is placed after 
the crystal to block the UV pump. We use an Andor iXon Ultra-897 

A

B

C

Fig. 3. Experimental setup. (A) Schematic of the experimental setup for measuring position and angle coincidences. Inset shows the EMCCD images of the SPDC field 
and the corresponding two-photon position and angle probability distribution functions. (B) Schematic of the experimental setup for measuring the two-photon 
momentum probability distribution function. Inset shows EMCCD images of the SPDC field and the corresponding two-photon momentum probability distribution 
function. (C) Schematic of the experimental setup for measuring OAM coincidence and the OAM correlation. LPF, long-pass filter; BS, beam splitter; SLM, spatial light 
modulator; SMF, single-mode fiber; F, interference filter. The BH is used for generating turbulence, and it is switched on in the path of the SPDC field when studying the 
effect of turbulence on entanglement propagation.
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electron-multiplied charge-coupled device (EMCCD) camera that 
has a 512 × 512 pixel grid with each pixel being 16 m by 16 m in 
size. A 10-nm bandpass filter centered at 710 nm is used to detect 
the down-converted photons. The blower heater (BH) produces 
turbulence by blowing hot air, and it is switched on during our ex-
periments involving turbulence.

For the coincidence measurements of P(ys, yi; z), P(pys, pyi; z), 
and P(s, i; z), we use an EMCCD camera (52, 53), as depicted in 
Fig. 3 (A and B). For measuring P(ys, yi; z) and P(s, i; z) and thereby 
the corresponding uncertainties (ys∣yi; z) and (s∣i; z), we image 
the transverse plane at z onto the EMCCD camera plane using a 
4f-imaging system, as depicted in Fig. 3A. For measuring P(pys, pyi; z) 
at z, we use a 2f imaging system and keep the EMCCD camera plane 
at the Fourier plane of the transverse plane at z, as depicted in Fig. 3B. We 
then measure the two-photon position probability distribution func-
tion at the EMCCD camera plane, which is proportional to the 
two-photon momentum probability distribution function P(pys, pyi; z) 
at z. The conditional momentum uncertainty (pys∣pyi; z) is ob-
tained by multiplying the conditional position uncertainty at the 
EMCCD plane by kħ/f, where f is the focal length of the lens. (For 
details regarding measurement techniques and results, see sections 
S3 to S5). For the coincidence measurements of the two-photon 

OAM probability distribution P(ls, li; z), we make use of two elec-
tronically gated single-photon avalanche diode (SPAD) detectors 
(17), as depicted in Fig. 3C. We image the transverse plane at z onto 
the spatial light modulators (SLMs) kept in the signal and idler arms. 
Specific holograms are displayed onto both the SLMs, and then, the 
signal and idler SLM planes are imaged onto the input facets of 
single-mode fibers (SMFs) kept in the signal and idler arms. The com-
bination of the hologram and SMF in each arm projects the input 
field into a particular OAM mode, which then gets detected by the 
SPAD detector through the SMF. An electronic coincidence circuit 
then yields the coincidence counts. By displaying different holo-
grams on the SLMs, we measure the two-photon OAM probability 
distribution. Next, we report our measurements of the condition 
uncertainty products (ys∣yi; z)(pys∣pyi; z) and (s∣i; z)(ls∣li; z) 
at various z values in the absence of turbulence. In our experiments, 
we measure (pys∣pyi; z) to be 2.13ħ ± 0.1ħ mm−1, which is in good 
agreement with the value 1.97 ħ mm−1 calculated using Eq. 1. We 
note that with our theoretical modeling based on the Gaussian 
pump beam, (ls∣li; z) should be zero. However, because of the im-
perfection in the spatial profile of the beam and other background 
issues, (ls∣li; z) is always finite in realistic experimental situations. 
We measure (ls∣li; z) to be 0.72 ± 0.04 ħ radian−1 and use this in our 
experiments (see section S2 of the Supplementary Materials for more 
details). Last, we measure (ys∣yi; z) and (s∣i; z) at various z values 
and plot the conditional uncertainty products (ys∣yi; z)(pys∣pyi; z) 
and (s∣i; z)(ls∣li; z) as a function of z in Fig. 4 (A and B, respec-
tively). Figure 4 (A and B) also shows the numerical simulations 
using Eqs. 1 and 2. We find that there is no entanglement left in 
either the position-momentum or the angle-OAM bases at few 
centimeters away from the down-conversion crystal. However, 
while the entanglement in the position-momentum bases never 
revives, the entanglement in the angle-OAM bases, as simulated 
numerically, revives after the photons have propagated 24 cm away 
from the crystal; experimentally, we find this distance to be about 
28 cm. After the revival, the entanglement in the angle-OAM bases 
stays intact.

We next investigate whether the propagation-induced entangle-
ment revival takes place in turbulent environments, which is quite 
often the limiting factor in the practical implementations of many 
entanglement-based applications. For this, we repeat our experiments 
depicted in Fig. 3 (A and B) in the angle-OAM bases with the BH 
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A
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Entangled Entangled = 24 cm
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1.5

0.0

0.5

1.0

1.5
Simulations
Experiment

Simulations
Experiment

Fig. 4. Propagation of entanglement in the position-momentum and angle-OAM bases. (A) Conditional position-momentum uncertainty product (ys∣yi; z)(psy∣piy; z) as 
a function of the propagation distance z. The solid dots are the experimental results, and the solid line is the numerical simulation. (B) Conditional angle-OAM uncertainty 
product (s∣i; z)(ls∣li; z) as a function of the propagation distance z. The solid dots are the experimental results, and the solid line is the numerical simulation. As indi-
cated on the plot, the theoretical prediction for entanglement revival is at z = 24 cm, while we observe it experimentally at about z = 28 cm.

= 35 cm
 
Entangled

Experiment
Simulations

0 20 40 60 (cm)
0.0
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Fig. 5. Entanglement revival in the presence of turbulence. Conditional angle-
OAM uncertainty product (s∣i; z)(ls∣li; z) as a function of the propagation 
distance z in the presence of a turbulent medium. As indicated on the plot, in the 
presence of turbulence, the theoretical prediction for entanglement revival is at 
z = 35 cm, while we observe it experimentally at about 45 cm.
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switched on and kept at z = 15 cm to introduce turbulence (54) in 
the path of the down-converted photons. We experimentally mea-
sure the product (s∣i; z)(ls∣li; z) at different propagation dis-
tances ranging from z = 15 cm to z = 60 cm and plot them in Fig. 5. 
The solid line represents the numerically calculated value of the 
uncertainty product. For the detailed modeling of turbulence (55) 
and the numerical calculations of (s∣i; z)(ls∣li; z) in the pres-
ence of turbulence, see sections S6 and S7 of the Supplementary 
Materials. Our numerical simulations show that in the presence 
of turbulence, the angle-OAM entanglement revives at z = 35 cm; 
experimentally, we find this distance to be about 45 cm. Therefore, 
we find that although turbulence does affect entanglement in the 
angle-OAM bases in an adverse manner, its effect can be com-
pletely undone by just propagating the photons further away by 
some distance.

We find a very good qualitative agreement between our experi-
ment results and numerical simulations reported inFigs. 4 and 5. 
However, quantitatively, there is a systematic difference between 
the experimental results and simulations. We attribute this mostly 
to the unavoidable background noise floor involved in the EMCCD- 
based coincidence measurements. The noise floor results in the 
overestimation of conditional uncertainties causing all the experimen-
tal data points to have a systematic difference with the simulations. 
In addition, in our analysis, we approximate the two-photon wave 
function in Eq. 1 to have a double-Gaussian form. However, it is 
known that this is not a very good approximation (51). Nevertheless, 
we make this approximation otherwise the numerical simulations 
become extremely time consuming. This double-Gaussian approx-
imation also adds to the systematic difference between the simula-
tions and the experimental results. We further note that it is relatively 
easier to measure (ys∣yi; z)(pys∣yyi; z) and (s∣i; z)(ls∣li; z) 
close to the crystal (z < 3 cm) or in the far field (z > 10 cm). However, 
because of the signal-to-noise limitations of the EMCCD camera, it 
is not possible to make measurements in the intermediate regions. 
(For details on these measurements, see sections S4 and S5 of the 
Supplementary Materials.)

DISCUSSION
In conclusion, using the two-photon field produced by SPDC, we 
have reported experimental observations of propagation-induced 
revival of entanglement in the angle-OAM bases. We have demon-
strated this entanglement revival even in the presence of turbulence, 
the only effect of which is to increase the propagation distance for 
revival. Once revived, the two photons remain entangled up to an 
arbitrary propagation distance in the angle-OAM bases. We note 
that the entanglement revival strategies in turbulence or random 
media are usually based on adaptive optics techniques (31, 56, 57), 
which involve feedback mechanisms and thus are quite difficult to 
implement. On the other hand, in our work, we have shown that 
entanglement in the angle-OAM bases can be revived simply by 
further propagating the two-photon field by some distance, without 
having to use any adaptive optics techniques. Thus, the angle-OAM bases 
brings in an independent parameter—the propagation distance—
for entanglement revival in turbulent environments and can therefore 
have important implications for long-distance quantum informa-
tion applications. In this context, we note that most of the quantum 
imaging and metrology applications that are based on using entan-
glement in the position-momentum bases do so by imaging the z = 

0 plane of the down-conversion crystal onto a suitable z plane in the 
far field (33–39). However, this severely limits the ways in which 
entanglement in the position-momentum bases could be used. On 
the other hand, because the entanglement in the angle-OAM bases 
is naturally present in the far field, it does not suffer from such lim-
itations and could therefore prove very useful for quantum imaging 
and metrology applications. We also note that although we have 
demonstrated entanglement revival over laboratory scale only, the 
effect could very well be demonstrated over a kilometer scale, because 
it has been experimentally demonstrated that even a 3-km atmospheric 
turbulence has only a small effect on OAM mode superpositions (58). 
This implies that even a few-kilometers-thick atmospheric turbu-
lence should not have too bad an effect on two-photon OAM mode 
superpositions and thus on the revival effect.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abn7876
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