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a b s t r a c t 

This paper studies the formation and the spread of crisis-driven racial animus during the 

coronavirus pandemic. Exploiting plausibly exogenous variation in the timing of the first 

COVID-19 diagnosis across US areas, we find that the first local case leads to an immediate 

increase in local anti-Asian animus, as measured by Google searches and Twitter posts that 

include a commonly used derogatory racial epithet. This rise in animus specifically targets 

Asians and mainly comes from users who use the epithet for the first time. These first-time 

ch-word users are more likely to have expressed animosity against non-Asian minorities 

in the past, and their interaction with other anti-Asian individuals predicts the timing of 

their first ch-word tweets. Moreover, online animosity and offline hate incidents against 

Asians both increase with the salience of the connection between China and COVID-19; 

while the increase in racial animus is not associated with the local economic impact of the 

pandemic. Finally, the pandemic-driven racial animus we documented may persist beyond 

the duration of the pandemic, as most racist tweets do not explicitly mention the virus. 

© 2022 Elsevier B.V. All rights reserved. 

 

 

 

 

1. Introduction 

Racial animus can affect welfare in measurable ways, as economists have noted since the seminal work of Becker (1957) .

Recent papers have shown that racial animus can hinder economic development, affect political institutions, and induce 

social unrest (e.g., Charles and Guryan, 2008; Card et al., 2008; Stephens-Davidowitz, 2014; Healy and Searcey, 2020 ). To

curb racial animus at the outset and to mitigate its consequences, a crucial first step is to understand how it forms and

grows. 

In this paper, we shed light on what factors motivate racial animus, which individuals are more susceptible to such 

factors, and how racial animus spreads, using the coronavirus (COVID-19) pandemic as a natural experiment. The Centers 

for Disease Control and Prevention (CDC) has emphasized that people of Asian descent are at no greater risk of spreading

the virus than other Americans. Nonetheless, since the outbreak of the virus, news reports of hate crimes against Asian 
� An earlier version of this paper circulated under the title “From Fear to Hate: How A Pandemic Sparks Racial Animus in the United States.” We are 
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Americans have increased ( Mullis and Glenn, 2020 ). 1 The unexpected nature and regional variation of the pandemic provide

a valuable opportunity to study the rise and spread of racial animus – in this case, against Asians. 

To proxy for an area’s racial animus against Asians, we use the percentage of Google searches and Twitter posts (tweets)

that include the words “chink” or “chinks” (hereafter, the ch-word). 2 Google searches can capture private racial animus given 

others cannot view one’s searches. Past papers have documented a clear relationship between Google searches of racial slurs 

and racial animus against minorities ( Anderson et al., 2020; Depetris-Chauvin, 2015; Stephens-Davidowitz, 2014 ). Further- 

more, as we will show below, an area’s monthly Google searches for the epithet are positively correlated with monthly 

anti-Asian hate crimes and are negatively correlated with monthly visits to Chinese restaurants. Our second proxy is based 

on tweets, which has been used to measure public displays of racial animus ( Nguyen et al., 2018 ). These two proxies are

valuable alternatives to more traditional measures, such as offline hate crimes which may only capture the most extreme 

hatred and may not fully reflect the levels of racial animus due to blanket stay-at-home orders during the pandemic. In

addition, use of racial slurs online is an important outcome in and of itself, as researchers have shown a strong relationship

between exposure to racial discrimination online and depression and anxiety measured offline ( Tynes et al., 2008 ). 

To motivate, we exploit the timeline of COVID-19 developments in the United States to understand the general evolution 

of anti-Asian animus during the pandemic. We find little increase in the national racial animus upon the first US COVID-19

case and only a small uptick in the week when the World Health Organization (WHO) declared COVID-19 a pandemic. In

contrast, we observe a clear jump in the week when President Trump tweeted “Chinese virus.”

In order to causally identify the effects of COVID-19 on racial animus against Asians, we use a difference-in-differences

(DID) event study design exploiting the variation in the timing of the first local COVID-19 diagnosis across areas. Specifically, 

we compare the change in racial animus following the first diagnosis in an area to the change in other areas during the same

period. First local diagnoses are likely to increase the salience of the virus, and the salience of diseases has been shown to

induce xenophobia in lab experiments ( Faulkner et al., 2004 ). The identifying assumption is that the precise timing of the

first diagnosis in an area is plausibly exogenous; whether an area has its first diagnosis this week (day) or the next is largely

unpredictable and unlikely to correlate with other factors that simultaneously change local racial animus. 3 

Our DID event study reveals that, in the week after the first local COVID-19 diagnosis, an area’s Google search rate of the

ch-word increases by 22.6% of the area’s maximum search rate during the sample period, and an area’s Twitter post rate

of the epithet increases by 118.6% of the average post rate across all areas during the sample period. These effects persist

for at least six weeks after the first local case. Given the correlation based on historical data, the increase in Google search

rate of the ch-word would be associated with a 6.5% increase in anti-Asian hate crimes holding everything else constant. 

The results, where applicable, are quantitatively unchanged under a dynamic event study design which allows for varying 

treatment effects across event periods (see Sun and Abraham, 2020 ). Our results are also robust to using alternative racial

animus measures based on tweets which include other anti-Asian slurs and are not counter-hate; to excluding early- and 

hard-hit states; and to controlling for severity of local infection, existence of stay-at-home orders, general local attention to 

Asians, and area and year-month fixed effects. 

When we examine the content of ch-word tweets, we find that the share showing emotions of anger and disgust in-

creases from 23.3 to 40.8% after the first local diagnosis. This shift in sentiment suggests that the increase in racially charged

tweets represents a real change in attitude towards Asians. Moreover, the increase in racial animus is directed only at Asians

and not at other minorities. The singling out of Asians implies that the increase is likely not due to an overall rise of ethnic

distrust or tensions from general uncertainty about cross-group differences in health status or risk-taking behavior. Rather, 

it is targeted at a specific group associated with the geographical origin of the virus. In addition, 75% of ch-word tweets

posted following the first local case do not explicitly mention COVID-19, implying that the pandemic-induced racial animus 

towards Asians extends to broader topics and may persist beyond the duration of the pandemic. 

We also leverage the rich information in historical tweets and Twitter user network to study which individuals are more 

likely to start expressing hate because of the pandemic. We find that the surge in ch-word tweets is driven primarily by

the extensive margin (i.e., existing Twitter users who post the term for the first time) rather than the intensive margin (i.e.,

increase in tweets from users who have previously used the term). These first-time ch-word users are 40% of the mean more

likely than never users to have tweeted racial slurs against non-Asian minorities in the past, implying that the pandemic 

may have redirected their anti-minority sentiment towards Asians. They are also 58 and 28% of the mean more likely to list

“Trump” and “politics” in their user profiles. 

Finally, we turn our attention to the factors fueling the spread of racial animus among individuals. Exposure to anti- 

Asian users is one such factor. We find that interacting with anti-Asian users in a day predicts a 22% higher likelihood

(relative to the mean) of tweeting the ch-word the next day. The salience of the connection between COVID-19 and the

Asian population is another factor. We proxy for this salience by using the number of President Trump’s tweets that mention

China and COVID-19 simultaneously. We find that one additional such China-and-COVID tweet in a day corresponds to an 
1 For example, see NBC News , New York Times , and USA Today . 
2 We focus on the use of the ch-word because it is the most salient and unambiguously pejorative racial slur against Asians. According to the Philadelphia 

Bar Association, the epithet “is now widely used throughout the United States as a racial slur against people of Asian descent” ( Association ). Importantly, 

it has not been reclaimed by the Asian American community ( Anderson and Lepore, 2013 ). 
3 Papers like Egorov et al., 2020 have noted that areas with larger population sizes or better medical systems tend to have first diagnoses earlier. We 

include area fixed effects to control for these time-invariant characteristics. 
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eight percent increase in anti-Asian hate incidents and an increase in national ch-word tweets on the same day which is

equivalent to 14% of the daily average. An event study using hourly tweet data also reveals an immediate increase in ch-word

tweets following the president’s China-and-COVID tweets but not before. In contrast, we find little evidence that negative 

economic impacts from the pandemic motivates the initial rise of racial animus. Areas with a more severe economic damage 

from the pandemic do not exhibit a higher increase in racial animus than areas with a less severe impact. 

This paper contributes to the literature studying the causes of animus toward minorities. This body of work has shown 

that negative shocks such as terrorist attacks and deterioration of economic conditions induce animus against racial or 

religious minorities. For example, Kaushal et al. (2007) , Hanes and Machin (2014) , and Ivandic et al. (2019) document that

9/11 and jihadi terror attacks lead to increases in anti-Muslim hate crimes. Anderson et al. (2017) and Anderson et al.

(2020) find that the Great Recession and negative shocks to agricultural income in historical Europe contribute to animus 

against minorities. In addition, desire to avoid health threats has also been postulated to motivate racial bias ( Schaller and

Neuberg, 2012 ). Lab experiments have shown that exposing subjects to disease-related primes leads to increased xenophobia 

( Faulkner et al., 2004; O’Shea et al., 2020; Bartos et al., 2020 ). However, the causal evidence on whether infectious diseases

lead to racial animus in the field is still lacking. 4 An exception is Jedwab et al. (2019) , which documents that the black death

caused an increase in anti-Jewish pogroms in medieval Europe. 

Our contribution is to provide causal evidence on how negative shocks, such as pandemics, trigger racial animus, and 

shed light on who are more susceptible to such shocks and how racial animus spreads. Our findings have implications for

mitigating animus amid future crises. We find that the rise in racial animus is specific to Asians who are associated with

the geographical origin of the virus and that the salience of this association amplifies animus against the group. Therefore, 

careful naming of a disease (e.g., COVID-19 and Delta variant as opposed to Chinese virus and Indian variant) and debunking

claims of any purported connection between a disease and a group could be helpful in curbing animus. Additionally, our 

findings reveal that the extensive margin and social media play an important role in spreading racial animus, suggesting 

that moderating racist individuals and their interaction with others on social media could help constrain racial animus in 

the future. 

Finally, our paper speaks to the literature on political rhetoric. Political rhetoric has been shown to influence public 

opinion and behavior, such as presidential approval ( Druckman and Holmes, 2004 ), public perception of a foreign country 

( Silver, 2016 ), and anti-minority hate crimes ( Müller and Schwarz, 2019 ). We add to this literature by providing another

example of how the rhetoric of political figures regarding a public crisis influences racial animus at the national level. 

Harnessing the opinion-shaping power of these public figures could be useful in curbing animus. 

2. Measures of racial animus 

2.1. Google and twitter proxies 

We use two measures to proxy for an area’s racial animus against Asians: the percentage of Google searches and the

percentage of tweets that include the words “chink” or “chinks.” The ch-word is not uncommon in Google searches or 

tweets. Between June 2019 and June 2020, this racial epithet was included in more than a quarter million searches and

60,0 0 0 tweets. 5 Google searches and tweets that include the epithet are mostly negative. For instance, “chink eye” and 

“chink virus” are common terms in such Google queries and Twitter posts. People may search the epithet to look for jokes

or memes about Asians or to look for like-minded others with whom they can share anti-Asian sentiments. 

We use Google Trends to obtain weekly Google search data for the ch-word at the media market level between July 2019

and April 2020. The data are not the raw number of searches but the weekly percentage of searches that include the term

( search rate ), taken from a random sample of total searches representative at the media market and time levels and scaled

by the highest weekly search rate in the same market during the entire extraction period – in our case, between July 2019

and April 2020. In particular, the racially charged Google search index for media market m at time t extracted over period

T is 

Google search index mt,T = 100 ×
Searches including “chink(s) 

′′ 
mt 

Total searches mt 

max 
t∈ T 

{ Searches including “chink(s) 
′′ 
mt 

Total searches mt 
} 

(1) 

Note that Google returns a zero value when the racially charged search index for a given area and time falls below an

unreported threshold. Because of this, we only include media markets that have a valid racially charged Google search index 

in the baseline period (2014–2018) in our sample. This leaves us with 60 of 210 media markets, covering approximately 74%

of the 2019 US population and 78% of the 2019 US GDP across 33 states. Compared to other media markets, the ones in

our sample tend to have a larger population, higher percentage of Asians, slightly lower baseline anti-Asian hate crime rate, 
4 More recent papers on the prevalence of hate during the COVID-19 pandemic are mostly descriptive (e.g., Croucher et al., 2020; Lyu et al., 2020, Schild, 

Ling, Blackburn, Stringhini, Zhang, Zannettou, Ziems, He, Soni, Kumar ) or take a structural approach (e.g., Deng and Hwang, 2021 ). 
5 The number of Google searches is an approximation from https://searchvolume.io/ . The data are only available for the 12-month period before our 

query on June 8, 2020. 
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and more enplanements of international airports (Table A1 column (1)). Shaded areas in Fig. A1 panel A indicate the media

markets in our sample. Analyses using Google data are conducted at the media market level. 

The above metric can capture the timing but not the level of a change in an area’s search index. As an alternative, we

rescale the Google search index so that the search rate in different media markets is normalized by one base search rate.

We try three different bases: Huntsville-Decatur (Florence)’s search rate on March 15, 2020; Wilkes Barre-Scranton on March 

29, 2020; and Buffalo on April 5, 2020. We choose these bases to obtain rescaled indexes for as many media markets as

possible, i.e., 35, 29, and 29, respectively. As detailed in Appendix 1, rescaling drops many media markets whose search rate

is zero on the date when the base search rate occurs ( benchmark date ). For this reason, we only use the rescaled version as

a robustness check. 

We obtain Twitter data from Crimson Hexagon, which houses all public tweets through a direct partnership with Twit- 

ter. We download all geo-located tweets that include the ch-word between November 1, 2019, and May 2, 2020. Crimson 

Hexagon does not provide the total number of tweets posted in a given area and time. We thus extract the number of all

public tweets that include the word “the,” the most common word on Twitter, in a given area and time as a substitute.

Assuming that the proportion of tweets that include “the” is stable across areas, the number of tweets that include “the”

can approximate overall Twitter activity. We define the racially charged Twitter post index for a given area and time as the

number of tweets including the ch-word per 10 0,0 0 0 tweets including the word “the.”

We calculate the Twitter post index for 658 counties across 50 states and Washington D.C., encompassing 60% of the US

population and nearly 70% of the US GDP in 2019. Counties are included if their residents ever posted “the” tweets between

2014 and 2018. 6 Counties with Twitter data tend to have a larger population, higher support for the Democratic Party, and

higher enplanements of international airports, but show no difference in baseline anti-Asian hate crime rate compared to 

other counties (Table A1 column (2)). Shaded areas in Fig. A1 panel B are counties with Twitter data. Analyses using Twitter

data are conducted at the county level unless noted otherwise. 

The fact that Google and Twitter data do not cover the full of the US should not affect internal validity of our study, but

it could pose a threat to external validity. This is why we use both data sources, which could alleviate concerns about the

external validity of our findings. 

2.2. Relationship between racial animus, hate crimes, and restaurant visits 

For the racially charged Google search index and Twitter post index to be meaningful proxies for racial animus, the 

only assumption we need is that an increase in racial animus makes a person more likely to use the ch-word. Under this

assumption, higher racial animus results in a higher percentage of searches and tweets that include the racial epithet. Ex- 

isting papers that use similar proxies for racial animus suggest that the assumption is likely to hold ( Anderson et al., 2020;

Depetris-Chauvin, 2015; Stephens-Davidowitz, 2014 ). 

To better understand the above proxies, we check how they predict anti-Asian hate crimes and visits to Chinese restau- 

rants. Hate crime data come from the FBI Uniform Crime Reports (UCR) and are available up to 2018. A majority of these hate

crimes are simple or aggravated assault (30%) and in-person intimidation (34%). Table 1 , panel A, columns (1) through (4)

report the media market-level correlation between the monthly Google search index and the monthly number of anti-Asian 

hate crimes between January 2014 and December 2018, controlling for local population size, unemployment rate, year-month 

fixed effects, and media market fixed effects. On average, a one-standard-deviation increase in the Google search index cor- 

responds to an increase in the anti-Asian hate crimes in the same month, amounting to 8.9% of the monthly average. 7 The

correlation is robust to controlling for the Google search index for “Asian(s),” which is related to the ch-word but neutral 

in connotation, as shown in column (2). In columns (3) and (4), we include both the index in the current month and the

index in the prior month. The relationship between the Google search index and hate crimes is mainly contemporaneous. 

Next, we change the dependent variable to monthly visits to Chinese restaurants in a media market between January 

2018 and December 2019, additionally controlling for the monthly visits to all local restaurants. The visit data are from 

Safegraph and are available starting in 2018. 8 Table 1 , panel A, columns (5) and (6) show that a one-standard-deviation in-

crease in the Google search index is linked to 484 fewer monthly visits to Chinese restaurants, equaling 0.5% of the monthly

average. The relationship between the Google search index and visit rate is also contemporaneous. 

Finally, we replicate the above correlations using Twitter data in Table 1 , panel B. We aggregate hate crimes to the media

market level due to their low occurrences at the county level. To maintain consistency, we also aggregate restaurant visits 

to the media market level. Overall, the Twitter post index does not correlate with anti-Asian hate crimes or visits to Chinese

restaurants. One potential explanation is that Twitter data represent public displays of racial animus and undergo more 

social censoring. We may only see a change on Twitter when the shift in racial animus is substantially large. 
6 About half of the tweets in the sample lack geo-identifiers and hence cannot be associated with a certain county. 
7 The percent increase is calculated by multiplying the standard deviation of the index (23.07) with the coefficient and dividing the product with the 

outcome mean. 
8 Safegraph provides data on foot traffic to roughly 4.1 million points of interest in the United States. 
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Table 1 

Relationship between Racial Animus, Hate Crimes, and Chinese Restaurant Visits. 

(1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Incidents Incidents Incidents Incidents Visits Visits Visits Visits 

Panel A: Google search index 

Google ch-word(t) 0.00057 ∗ 0.00057 ∗ 0.00057 ∗ 0.00057 ∗ −21.069 ∗ −22.017 ∗ −23.489 ∗∗ −24.381 ∗∗

(0.00031) (0.00031) (0.00031) (0.00031) (12.629) (12.704) (11.632) (11.697) 

Google ch-word( t − 1 ) −0.00019 −0.00018 −13.934 −14.900 

(0.00035) (0.00035) (11.467) (11.594) 

Total visits 0.052 ∗∗∗ 0.052 ∗∗∗ 0.048 ∗∗∗ 0.048 ∗∗∗

(0.005) (0.005) (0.006) (0.006) 

Population(m) 0.51926 ∗∗∗ 0.51907 ∗∗∗ 0.52042 ∗∗∗ 0.52287 ∗∗∗

(0.19939) (0.19942) (0.19936) (0.19991) 

Google Asian(s)(t) −0.00005 −0.00018 −138.636 ∗∗ −120.800 ∗∗

(0.00109) (0.00111) (60.169) (54.317) 

Google Asian(s)( t − 1 ) 0.00075 10.816 

(0.00163) (59.669) 

Observations 3600 3600 3600 3600 1440 1440 1380 1380 

R-squared 0.309 0.309 0.309 0.309 0.996 0.996 0.997 0.997 

Outcome mean 0.147 0.147 0.147 0.147 104962.736 104962.736 104962.736 104962.736 

Panel B: Twitter post index 

Twitter ch-word −0.00041 −0.00037 −0.00048 −0.00047 −60.249 −61.190 −30.883 −30.178 

(0.00099) (0.00096) (0.00099) (0.00100) (49.798) (50.150) (42.641) (42.737) 

Twitter ch-word ( t − 1 ) −0.00063 −0.00064 −10.216 −10.089 

(0.00065) (0.00065) (36.060) (36.286) 

Total visits 0.047 ∗∗∗ 0.047 ∗∗∗ 0.044 ∗∗∗ 0.044 ∗∗∗

(0.005) (0.005) (0.006) (0.006) 

Population(m) 0.56488 ∗∗∗ 0.56517 ∗∗∗ 0.58097 ∗∗∗ 0.58136 ∗∗∗

(0.17387) (0.17391) (0.17623) (0.17630) 

Twitter Asian(s)(t) −0.00003 −0.00002 0.294 −0.279 

(0.00003) (0.00002) (0.682) (0.646) 

Twitter Asian(s)( t − 1 ) −0.00001 −0.266 

(0.00002) (0.693) 

Observations 11,116 11,116 10,921 10,921 4493 4493 4300 4300 

R-squared 0.220 0.220 0.220 0.230 0.996 0.996 0.997 0.997 

Outcome mean 0.057 0.057 0.057 0.057 41065.784 41065.784 41065.784 41065.784 

Notes : The table presents the relationship between the racially charged Google search index and the Twitter post index, anti-Asian hate crimes, and visits to 

Chinese restaurants. Hate crime data are from the FBI UCR, visit data are from Safegraph, and all data are at the media market ×year-month level. Outcome 

variables are the monthly number of anti-Asian hate crimes between January 2014 and December 2018 (columns (1)-(4)) and the monthly number of visits 

to Chinese restaurants between January 2018 and December 2019 (columns (5)-(8)). Google Asian(s) is the Google search index for the word “Asian(s).”

Twitter Asian(s) is the number of tweets including “Asian(s)” per 10 0,0 0 0 “the” tweets. All regressions control for local unemployment rate, year-month 

fixed effects, and media market fixed effects. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. 

 

 

 

 

 

 

 

3. Evolution of racial animus amid the pandemic 

To motivate, we study the general evolution of anti-Asian animus as the pandemic develops. An ideal experiment would 

be to contrast rates of racially charged Twitter posts and Google searches in the U.S. during the pandemic to counterfactual 

rates in the absence of the pandemic. However, a perfect counterfactual does not exist because all individuals and areas 

were more or less impacted by the pandemic. For this reason, we use racially charged Twitter posts and Google searches in

2019 as controls. The assumption is that the searches and tweets in 2020 would have been the same as in 2019 absent the

pandemic. 9 

We begin by comparing an individual’s weekly likelihood of tweeting the ch-word during the first 16 full weeks in 2020

and the same person’s likelihood of doing so in the corresponding weeks in 2019. An advantage of this analysis is that it

does not require geo-identifiers, so we can include all 26,065 Twitter users who ever tweeted the ch-word between 2014 

and 2018. 10 We use the following specification: 

Y iyw 

= 

16 ∑ 

w =2 

βw 

× 1 { y = 2020 } + αi + αw 

+ εiyw 

(2) 

where Y iyw 

is a binary variable which equals one if individual i tweets the ch-word in week w of year y . We use w = 1 , the

first full week of a year, as the comparison period. Our treatment variable is 1 { y = 2020 } , which equals one if the year is

2020, and 0 if the year is 2019. We include person fixed effects αi and week-of-year fixed effects αw 

to absorb individual

baseline propensity to tweet the racial epithet and the seasonality in such tweets. We cluster standard errors by individual. 
9 This assumption could be violated if there are other contemporaneous shocks affecting racial animus. Our strategy in the next section avoids this issue. 
10 We cannot look at the universe of Twitter users because Crimson Hexagon only allows tweet extraction based on keywords. 
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The individual-level analysis reveals that the likelihood of tweeting the ch-word co-moves with important developments 

of COVID-19. In Fig. A2 panel A, we plot βw 

from Eq. (2) and the timing of major COVID-19 developments. While we find

little to no increase in the likelihood of tweeting the term following the first US COVID-19 case or declarations of health

emergency and only a small uptick in the week when the WHO declared COVID-19 a pandemic, we observe a clear jump in

the week when President Trump first tweeted “Chinese virus.”

Lacking individual-level search data, we compare media market-level weekly racially charged Google search index in 

2020 and the index in the corresponding markets and weeks in 2019. Specification is the same as Eq. (2) except that Y iyw 

is now the Google search index in media market i in week w of year y . We plot βw 

in Fig. A2 panel B. While we also see

a spike in the Google search index in the week when President Trump tweeted “Chinese virus,” we cannot draw definitive 

conclusions for other weeks. 

4. Evidence from DID event study 

We now turn to our main empirical strategy, a DID event study design exploiting the variation in the precise timing of

the first COVID-19 diagnoses across the United States. We compare the changes in racially charged Google search index (or 

Twitter post index) in the weeks before and after the first local case to the changes in other media markets (or counties)

during the same period. This design allows us to avoid concerns about contemporaneous shocks that influence racial animus 

at the same time as the pandemic develops. 

4.1. Data and empirical strategy 

We download the data on US COVID-19 cases and deaths between January 21, and May 2, 2020, from the Johns Hopkins

University Coronavirus Resource Center. We match the date of the first case in each media market and county to those with

valid Google and Twitter data. Table A2 displays the number of media markets and counties by the timing of their first local

diagnoses. All media markets have their first diagnoses in the sample period and have Google data for at least six weeks

after the diagnosis. These media markets make up the Google sample. Seventeen counties with Twitter data are excluded 

because they did not have diagnoses in the sample period. 11 The remaining 641 counties make up the Twitter sample and

have data for at least one week after the first local diagnosis; the number of counties decreases to 636, 629, 613, 555, 416

in weeks two to six. 12 Therefore, the Google (or Twitter) sample is a panel of media markets (or counties) from six weeks

before to six weeks after the first local diagnosis. Table A3 reports summary statistics for each of the samples. 

To understand predictors of the diagnosis timing, we regress the week of first local diagnosis on a battery of local char-

acteristics in Table A4. The analysis reveals that a larger population size predicts earlier diagnoses for both the Google and

the Twitter samples, while enplanements of international airports predict slightly later diagnoses for the Google sample. 

However, the proportion of Asians does not have predictive power for the timing, consistent with the CDC’s statement that 

Asians are at no greater risk of spreading the virus. More importantly, pre-pandemic anti-Asian hate crime rate does not 

predict the timing, suggesting that the treatment timing is orthogonal to baseline racial animus. We then estimate the fol- 

lowing regression: 

Y it = 

6 ∑ 

t = −6 ,t � = −1 

βt + γ ′ X it + αi + αym (t) + εit (3) 

where Y it is the racially charged Google search index (Twitter post index) in media market (county) i in event time t , which

is the number of time periods relative to the first local diagnosis. βt represents event dummies for six weeks before to six

weeks after the first local diagnosis, excluding our comparison period t = −1 . X it is a vector of area-specific time-varying

characteristics such as the local number of COVID-19 diagnoses or deaths, an indicator for a state-level stay-at-home order, 

and the Google search index or Twitter post index for “Asian(s)”. We include county or media market fixed effects αi and

year-month fixed effects αym (t) to control for an area’s baseline racial animus and national trends in racial animus. We 

cluster standard errors by media market for Google data and by county for Twitter data. We also estimate Eq. (3) at the

daily level, where we include event dummies from 14 days before to 21 days after the first local diagnosis while omitting

the dummy for day −4 and additionally control for day-of-week fixed effects. 

If the trends of racially charged Google search index (or Twitter post index) across media markets (or counties) are 

parallel in the absence of local COVID-19 cases, and the treatment effect of the first local case does not vary across event

times, βt identifies the weighted average treatment effect across treatment areas on local searches or posts of the ch-word 

in time t . Testing for parallel pre-trends can shed light on the first identifying assumption. As we will show, this assumption

appears to hold. The second assumption is harder to test, and its violation could bias the estimates in unknown directions.

For example, if earlier treated areas experience an increasing (or decreasing) treatment effect over time due to evolving local 

pandemic situations, using these areas as controls for later treated places could bias the average treatment effect downward 

(upward). 
11 Results are unaffected when we include these counties. 
12 Crimson Hexagon was discontinued in July, 2020, so we cannot extend the Twitter sample. 
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Table 2 

The effect of the first local COVID-19 diagnosis on racial animus Google Search Index. 

(1) (2) (3) (4) 

VARIABLES Ch-word index Severity control Asian control Exclude states 

−6w −3.920 −2.694 −4.265 −8.979 

(6.379) (6.620) (6.404) (8.341) 

−5w 0.431 1.100 −0.198 −2.575 

(5.722) (5.820) (5.699) (7.083) 

−4w 9.764 10.088 9.419 9.205 

(6.263) (6.316) (6.233) (7.649) 

−3w 2.282 2.503 2.247 2.458 

(5.023) (5.085) (5.020) (5.912) 

−2w 4.739 4.899 4.771 2.564 

(5.469) (5.535) (5.467) (6.150) 

+ 0w 6.421 6.326 6.274 6.574 

(4.898) (4.911) (4.864) (5.127) 

+ 1w 22.628 ∗∗∗ 22.442 ∗∗∗ 22.030 ∗∗∗ 22.771 ∗∗∗

(5.210) (5.246) (5.280) (5.721) 

+ 2w 16.945 ∗∗∗ 15.936 ∗∗∗ 16.727 ∗∗∗ 18.104 ∗∗∗

(5.439) (5.443) (5.407) (5.621) 

+ 3w 8.155 5.702 7.894 8.614 

(5.359) (5.907) (5.403) (5.829) 

+ 4w 19.106 ∗∗∗ 15.972 ∗∗ 18.873 ∗∗∗ 19.527 ∗∗

(6.265) (6.999) (6.253) (7.461) 

+ 5w 18.263 ∗∗ 15.375 ∗ 18.041 ∗∗ 14.709 ∗

(7.411) (8.113) (7.428) (8.679) 

+ 6w 17.861 ∗∗ 15.002 ∗ 18.125 ∗∗ 18.017 ∗

(7.726) (8.046) (7.751) (9.267) 

Observations 780 780 780 663 

R-squared 0.190 0.192 0.193 0.180 

Outcome mean 30.03 30.03 30.03 30.03 

Notes : The table presents the effect of the first local COVID-19 diagnosis on the racially 

charged Google search index. All columns report the estimates of coefficients on the event 

dummies in Eq. (3) . Column (1) corresponds to Fig. A4, panel A. Column (2) controls for 

the number of COVID-related new cases and deaths, and whether the state has any stay-at- 

home orders in place. Column (3) controls for the Google search index for “Asian(s).” Column 

(4) excludes Washington, New York, and California. All regressions control for media market 

fixed effects and year-month fixed effects. Standard errors are clustered by media market. ∗∗∗

p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To alleviate concerns about time-varying treatment effects, we use a dynamic DID event study comparing areas with a 

first case before and after the case, using areas that have not had any cases as controls. To implement the dynamic event

study, we follow Novgorodsky and Setzler (2019) and stack our data as a series of 2 × 2 matrices (treated/not-yet-treated

× pre/post). We define areas which have their first cases in calendar week g as cohort g, and cohort-specific event time 

in calendar month m as e g = m − g. The treatment effect on cohort g in event time e g is labeled as βe g . Following Sun and

Abraham (2020) , we define the average treatment effect for event time e among all cohorts G as: 

βe = 

∑ 

g∈ G 
βe g × w g (4) 

where the aggregation weight w g is the population in areas belonging to cohort g. We calculate clustered standard errors at

the area level for βe via the delta method. 

A limitation of the dynamic event study is that it requires enough not-yet-treated areas in event time e g to estimate βe g .

Since counties are smaller than media markets, there is more variation in the timing of first local diagnoses at the county

level. As a result, most counties in the Twitter sample have control counties for multiple post periods while most media

markets in the Google sample have none after event 0. Therefore, we only apply the dynamic event study to Twitter data

and use this approach as a robustness check. 

4.2. Effects of the first local case on racial animus 

4.2.1. Main findings 

We start by examining how an area’s Google searches for the ch-word respond to the first COVID-19 case in the local

area. Fig. 1 , panel A plots βw 

from Eq. (3) using an area’s racially charged Google search index as the outcome. The Google

search index jumps markedly in the week after the first local case and persists at high levels in the following weeks. The

pre-trends are flat and statistically insignificant, suggesting that the parallel trend assumption is likely to hold. Regression 

results corresponding to this figure are found in Table 2 , column (1). For example, consider the +1 w coefficient: compared

to the week before the first local case, in the first week, an area’s racially charged search rate increases by 22.6% of the
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Fig. 1. The Effect of the First Local COVID-19 Diagnosis on Racial Animus. Note: The figure presents the effect of the first local COVID-19 diagnosis on 

the racially charged Google search index and Twitter post index. See Section 2.1 for the definitions of the indexes. Panels A and B plot the estimates and 

95% confidence intervals of the coefficients on the event dummies in Eq. (3) using the Google search index and the Twitter post index as the outcome, 

respectively. The estimates in panels A and B correspond to column (1) of Table 2 and column (1) of Table 3 . Regressions control for year-month fixed 

effects and media market (panel A) or county (panel B) fixed effects. Standard errors are clustered by media market (panel A) or by county (panel B). 

 

 

 

 

 

 

 

 

 

 

 

area’s maximum search rate over the sample period. The treatment effects remain mostly above 17% for the following five 

weeks. Given our findings of the correlation between the Google search index and hate crimes, the increase in the index

in the month after the first local diagnosis translates to an increase of 0.0095 anti-Asian hate crimes in a media market or

6.5% of the monthly average. 13 

Fig. A3 shows the event time plot when we replace the original Google search index with the indexes rescaled using

three different bases. The patterns are qualitatively similar to those using the original index, although the magnitude of the 

estimates is now roughly half the size. This is because base search rates for the rescaled indexes are higher than search

rates in most media markets. The standard errors of the estimates also become much larger because rescalling forces us to

drop nearly half of the media markets (see Appendix 1 for detail). Because of this, we only present results using the original

Google search index in the rest of the paper. 

We next turn to Twitter to understand how the first local case affects public use of the ch-word. In Fig. 1 , panel B, we

plot the effect of the first local case on the racially charged Twitter post index. Similar to the Google search index, the

Twitter post index also jumps in the week after the first case. Specifically, relative to the week before the case, the Twitter

post index increases by 0.7 per 10 0,0 0 0 “the” tweets in the week after, amounting to 118.6% of the weekly average during

the sample period. The effects remain high in weeks 2 through 6. Table 3 , column (1) reports the regression results. 

To confirm that our results are not driven by the functional form of the Twitter post index or the specific racial epithet

we choose, we use alternative functional forms and other ways of identifying anti-Asian content. Raw number of ch-word 

tweets and number of ch-word tweets per million population reveal similar patterns as the original Twitter post index, as 

shown in columns (2) and (3). Additionally, we construct a new index using COVID-related tweets posted between January 
13 We obtain the number by multiplying the average of +1 w through +4 w coefficients in Table 2 with the coefficient on Google ch-word(t) from Table 1 . 
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Table 3 

The effect of the first local COVID-19 Diagnosis on racial animus Twitter Post Index. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

VARIABLES Ch-word Ch-word Ch-word Exclude Dynamic Severity Asian Exclude Exclude 

index level per capita counter-hate DID control control states bots 

−6w 0.075 −0.022 0.061 −0.037 0.070 0.053 0.127 0.098 

(0.159) (0.276) (0.307) (0.097) (0.159) (0.255) (0.165) (0.151) 

−5w 0.030 −0.069 −0.036 −0.801 −0.085 0.027 0.091 0.056 0.039 

(0.143) (0.158) (0.267) (1.252) (0.091) (0.143) (0.242) (0.142) (0.153) 

−4w 0.098 −0.128 −0.117 −0.328 −0.025 0.095 0.248 0.113 0.075 

(0.140) (0.165) (0.240) (1.181) (0.107) (0.140) (0.239) (0.141) (0.144) 

−3w −0.004 0.024 −0.100 0.450 −0.082 −0.006 0.095 0.018 0.014 

(0.121) (0.091) (0.195) (1.152) (0.081) (0.121) (0.213) (0.129) (0.138) 

−2w 0.150 0.065 0.412 −0.361 0.120 0.149 0.331 0.136 0.242 

(0.137) (0.050) (0.308) (0.967) (0.094) (0.137) (0.212) (0.146) (0.180) 

+ 0w 0.158 0.012 0.390 ∗∗ 5.154 ∗∗∗ 0.120 ∗∗∗ 0.163 0.168 0.169 0.203 

(0.112) (0.069) (0.170) (1.005) (0.094) (0.159) (0.171) (0.122) (0.142) 

+ 1w 0.707 ∗∗∗ 0.227 ∗∗ 1.037 ∗∗∗ 5.075 ∗∗∗ 0.689 ∗∗∗ 0.718 ∗∗∗ 1.077 ∗∗∗ 0.572 ∗∗∗ 0.952 ∗∗∗

(0.169) (0.105) (0.197) (1.046) (0.159) (0.166) (0.238) (0.162) (0.228) 

+ 2w 0.460 ∗∗∗ 0.348 ∗∗∗ 1.140 ∗∗∗ 2.855 ∗∗∗ 0.428 ∗∗∗ 0.478 ∗∗∗ 0.763 ∗∗∗ 0.389 ∗∗ 0.538 ∗∗∗

(0.142) (0.109) (0.252) (1.039) (0.111) (0.145) (0.199) (0.151) (0.173) 

+ 3w 0.297 ∗∗ 0.631 ∗∗∗ 1.331 ∗∗∗ 2.688 ∗∗∗ 0.181 ∗ 0.315 ∗∗ 0.526 ∗∗ 0.300 ∗ 0.255 ∗

(0.141) (0.193) (0.396) (0.842) (0.095) (0.152) (0.204) (0.154) (0.137) 

+ 4w 0.286 ∗ 0.789 ∗∗ 1.947 ∗∗ 1.521 0.122 0.307 ∗ 0.361 0.273 0.132 

(0.173) (0.310) (0.771) (1.257) (0.103) (0.184) (0.269) (0.187) (0.157) 

+ 5w 0.394 ∗ 0.683 ∗∗∗ 1.650 ∗∗∗ 1.158 0.240 0.421 ∗ 0.535 ∗ 0.385 0.144 

(0.221) (0.201) (0.466) (1.396) (0.154) (0.248) (0.323) (0.240) (0.178) 

+ 6w 0.459 ∗∗ 0.696 ∗∗∗ 1.664 ∗∗∗ 2.264 0.340 ∗∗ 0.489 ∗ 0.533 ∗ 0.479 ∗∗ 0.373 ∗

(0.222) (0.223) (0.469) (1.566) (0.150) (0.252) (0.315) (0.243) (0.198) 

Observations 7930 7976 7976 3141 103,694 7930 5578 7188 11,811 

R-squared 0.121 0.809 0.270 0.611 0.112 0.121 0.142 0.123 0.060 

Outcome mean 0.591 0.681 1.075 6.779 0.591 0.591 0.591 0.591 0.569 

Notes : The table presents the effect of the first local COVID-19 diagnosis on the prevalence of ch-word tweets in an area. All columns 

report the estimates of coefficients on the event dummies in Eq. (3) , except for column (5). Column (1) corresponds to Fig. A4, panel 

B. The outcome variable in column (2) is the number of ch-word tweets, and the regression controls for the number of “the” tweets. 

The outcome variable in column (3) is the number of ch-word tweets per one million county population. Column (4) uses an alternative 

Twitter post index, which removes counter-hate tweets (see Section 4.2.1 ). Column (5) presents the estimates from a dynamic DID event 

study ( Sun and Abraham, 2020 ). Column (6) controls for the number of COVID-related new cases and deaths, and whether the state has 

any stay-at-home orders in place. Column (7) controls for the Twitter post index for “Asian(s).” Column (8) excludes Washington, New 

York, and California. Column (9) excludes tweets from users who are likely Twitter bots. All regressions control for county fixed effects 

and year-month fixed effects. Standard errors are clustered by county. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. 

 

 

 

 

 

 

 

 

15, and April 17, 2020 that are classified as anti-Asian via machine learning. 14 Column (4) shows that the effects estimated

with this new index share a similar pattern to the ones in column (1) but are seven times as large. The original Twitter post

index is thus likely a conservative measure of racial animus. 

An evolving local pandemic situation may produce time-varying treatment effects, which could bias results of a regular 

DID event study. To alleviate this concern, in column (5), we re-estimate the effect using a dynamic DID event study. The

estimates are quantitatively similar to those in column (1), implying that time-varying treatment effect is likely not an issue 

here. 

Fig. A4 presents results using indexes at the daily frequency. Both indexes start to rise two to three days after the first

local case, suggesting that residents react to the news of the first local COVID-19 case fairly quickly. 

4.2.2. Discussion and robustness check 

We now discuss alternative explanations for the rise in the ch-word use in an area after the first local COVID-19 case

and explore the robustness of our main findings. 

Increased ch-word usage may result from a general rise in online activities due to blanket stay-at-home orders rather 

than a change in racial animus. However, our indexes already account for an overall change in online activities because they

are normalized by the total searches and tweets in a given area and time. In addition, when we include an indicator for

state-level stay-at-home order in Table 2 column (2) and Table 3 column (6), results are quantitatively similar to those from

our main specification reported in column (1). 
14 We thank Ziems, He, Soni, Kumar for providing the data. These anti-Asian tweets include phrases like “Chinese Virus” and “Wuhan Virus” and exclude 

counter-hate tweets that may have racist keywords in them. Only counties that had their first diagnoses between February 16, and March 22, 2020 are 

included in this analysis. 
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Alternatively, an increase in general attention to Chinese or Asians may lead to higher ch-word usage. In Table 2 column

(3) and Table 3 column (7), we control for searches or tweets of terms that capture such general attention but are neutral

in connotation, i.e., “Asian(s).” Results are similar. 

Our results are also robust to excluding early- and hard-hit states like New York, Washington, and California, as shown 

in Table 2 column (4) and Table 3 column (8). Our findings thus represent a general phenomenon across the United States

rather than only in a few states particularly impacted by the pandemic. 

One may also worry that Twitter bots rather than actual users are responsible for the rise in ch-word use on Twitter.

However, only 10.4% of users who post anti-Asian tweets between January 2020 and April 2020 are potential bots ( Ziems

et al., 2020 ). Moreover, our results are quantitatively unchanged when we exclude users who are more likely to be bots, i.e.,

those who tweeted the ch-word more than five times (99 percentile in our sample) during the sample period, in Table 3 col-

umn (9). 

The increase in searches and tweets including the ch-word could also come from the seasonality in ch-word use and 

may exist absent the pandemic. To test this possibility, we generate a placebo diagnosis date for each area using the same

calendar day and month of its actual diagnosis date but changing the year from 2020 to 2019. We reestimate Eq. (3) using

the placebo dates and plot the effects in Fig. A5. Reassuringly, the Google search index and Twitter post index do not change

around the placebo dates, suggesting that seasonality cannot explain our findings. 

Finally, the increase in ch-word use on Twitter could reflect a change in the social cost of publicly expressing racial ani-

mus rather than a shift in attitudes towards Asians. However, this would not explain the increase in racist Google searches,

which are done in private. Several other pieces of evidence also support a shift in attitudes. First, the proportion of ch-word

tweets showing emotions of anger and disgust increases from 23.3% between November 2020 and the first local diagnosis to 

40.8% in the six weeks following the first diagnosis. 15 Second, data on self-reported hate incidents from Asian Pacific Policy 

and Planning Council (AP3CON) Stop Hate Reporting System show that the daily average of anti-Asian hate incidents na- 

tionwide was alarmingly 70 in late March 2020 and 13 between April and May 2020 (Fig. A6). Third, Pew Research Center’s

Global Attitudes Survey, conducted in June to August 2020, also shows that unfavorable views of China have reached historic 

high ( Wang, 2021 ). Taken together, the rise in ch-word usage likely represents a real change in animus against Asians and

not just a lower cost of publicly expressing it. 

4.3. What motivates racial animus and who responds the most 

Thus far, we have provided evidence that animus against Asians, as measured by Google searches and Twitter posts in- 

cluding the ch-word, surges immediately following the first diagnosis in an area. We next explore what motivates individuals 

to increase animus in response to the pandemic and who responds the most. 

As a first step, we test whether the rise is specific to Asians. If the racial animus is motivated by an overall increase in

ethnic distrust or tensions from general uncertainty about cross-group differences in health status or risk-taking behavior, 

we expect to see an increase in animus against non-Asian minorities too. By contrast, if the racial animus is targeted only

at Asians, it is more likely to be motivated by the association between Asians and the geographical origin of the virus. 

To proxy for racial animus against other minorities, we construct Google search and Twitter post indexes for common 

racial epithets against major minority groups in the United States, such as “nigger(s)” (n-word) against African Americans, 

“wetback(s)” (w-word) against Hispanics, and “kike(s)” (k-word) against the Jewish population. 16 We estimate Eq. (3) using 

racially charged searches and tweets against these minorities as outcomes. 17 The coefficients on the event dummies are 

plotted in Fig. A7. None of the examined racial epithets experience an increase in Google searches following the first local

diagnosis. A similar pattern is found for tweets using the w-word and the k-word. 18 The lack of response in the use of racial

epithets against other minorities suggests that the pandemic-induced racial animus is mainly driven by the connection 

between Asians and the geographical origin of the virus. 

Although the anti-Asian animus is motivated by the potential geographical origin of the virus, racially charged tweets 

extend to broader topics than just the virus. Fig. 2 demonstrates that the increase in ch-word tweets mostly comes from

those that do not explicitly mention COVID-19, i.e., no mention of “virus,” “COVID,” “pandemic” or “epidemic.” This finding 

implies that the pandemic-induced racial animus may persist beyond the duration of the pandemic. 
15 Crimson Hexagon assigns each tweet emotion tag(s) generated via a natural language processing algorithm. Please refer to https://www.brandwatch. 

com/blog/understanding- sentiment- analysis for more details. 
16 We do not use “spic(s)” as an epithet against Hispanics because the cleaner brand “Spic and Span” experienced growing interest during the pandemic. 

We do not include “redskin(s)” as an epithet against Native Americans because the corresponding queries and tweets are about an American football team 

formerly called “Washington Redskins.”
17 When using the n-word as the outcome, we include an indicator for the week of January 26, 2020 because the word’s use spiked due to an MSNBC 

anchor using the n-word when broadcasting Kobe Bryant’s death. When using the k-word as the outcome, we include an indicator for the week of February 

23, 2020 because Los Angeles Dodgers player Enrique (“Kiké”) Hernandez led to a spike in the word’s use. 
18 We present the result for tweets using the n-word in Fig. A7 panel C. N-word tweets may not be a valid proxy for racial animus against African 

Americans on Twitter because of Black Lives Matter protests, Black History Month in February, and seasonality which is evident when comparing the n- 

word usage between 2019 and 2020 in panel D. Note that we include an indicator for the week of February 9, 2020 in panel A because a viral n-word 

tweet unrelated to COVID-19 contributed to 95% of the n-word tweets on that day. 
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Fig. 2. The Effect of the First Local COVID-19 Diagnosis on Racially Charged Tweets COVID-Related vs Non-COVID-Related Tweets. Note: The figure presents 

the effect of the first local COVID-19 diagnosis on the racially charged Twitter post index by whether or not the tweets are related to COVID-19. COVID- 

related racially charged Twitter post index are defined as the number of ch-word tweets including keywords: “COVID-19”, “COVID”, “virus”, “pandemic”, 

or “epidemic”, per 10 0,0 0 0 “the” tweets. The solid blue (dashed red) line plots the estimates and 95% confidence intervals of the coefficients on the event 

dummies in Eq. (3) using the (non-)COVID-related Twitter post index as the outcome. All regressions control for year-month fixed effects and county fixed 

effects. Standard errors are clustered by county. 

Fig. 3. The Effect of the First Local COVID-19 Diagnosis on Racially Charged Tweets First-time vs Existing Ch-word Users. Note: The figure presents the 

effect of the first local COVID-19 diagnosis on the racially charged Twitter post index by whether the posting user is a first-time or an existing ch-word 

user. See Section 4.3 for definitions of first-time and existing ch-word users. The solid blue (dashed red) line plots the estimates and 95% confidence 

intervals of the coefficients on the event dummies in Eq. (3) using the racially charged Twitter post index based on first-time (existing) ch-word users as 

the outcome. All regressions control for year-month fixed effects and county fixed effects. Standard errors are clustered by county. 

 

 

 

 

 

We next study which individuals are more susceptible to the pandemic shock. We begin by examining whether the 

increase in ch-word usage comes from users who only start to harbor animus against Asians after the pandemic hits or from

existing anti-Asian users who step up their animosity. We define existing ch-word users as individuals who tweeted the ch- 

word at least once between 2014 and the sixth week before the first local COVID-19 diagnosis. We define first-time ch-word

users as individuals who never tweeted the ch-word between 2014 and the sixth week before the first local diagnosis and

who posted at least 10 tweets before their first ch-word tweet. This definition avoids counting newly registered Twitter 

users as first-time ch-word users. 

Fig. 3 plots the breakdown in effects by the first-time versus existing ch-word user status. The increase in ch-word tweets

from first-time users is roughly 4.5 times of that from existing users in the first two weeks after the first local diagnosis.

This breakdown suggests that the extensive margin plays an more important role than the intensive margin in driving racial 

animus during the pandemic. After the first local diagnosis, 4621 Twitter users started to use the racial epithet, potentially 

exposing their combined 13 million followers to racially charged content and creating a multiplier effect on racial animus. 

To better understand the type of individuals whose anti-Asian sentiment is easily influenced by the pandemic, we analyze 

user profiles and historical tweets of first-time ch-word users. 19 To form a comparison group, we extract information for 
19 We downloaded historical tweets and user profiles for 3033 of these users in August 2021. We cannot download the rest because their accounts are 

private, suspended, or deactivated. 
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Fig. 4. Predictors of Being First-time Ch-word Users. Note: The figure presents the relationship between being a first-time ch-word user and one’s Twitter 

activity and user profile keywords. Panels A and B plot the coefficients and 95% confidence intervals from regressing an indicator for being a first-time ch- 

word user on user’s pre- and mid-pandemic Twitter activity, and user profile keywords, respectively. Both regressions control for account age, log number of 

followers, and log number of followings. Regressors in panel A are defined as follows: “Anti-Asian user” is one if an user has interacted with other ch-word 

users before the pandemic; “Anti-minority” is one if an user has tweeted racial epithets against non-Asian minorities (the n-word, w-word, and k-word) 

before the pandemic; “Trump” is one if an user has ever mentioned #trump or @realDonaldTrump before the pandemic; “McCarthy”, “McConnell”, “Pelosi”, 

“Schumer”, “Fox”, “CNN”, and “CBS” are similarly defined using @kevinomccarthy, @McConnellPress (or @LeaderMcConnell), @SpeakerPelosi, @SenSchumer, 

@cnn, @foxnews, @cnn, and @cbsnews as keywords, respectively; “COVID consp.” is one if an user has ever tweeted keywords related to COVID-19 conspira- 

cies (i.e., plandemic, fakepandemic, scamdemic, film your hospital, 5gcoronavirus, or coronavirustruth) by the end of our sample period. Regressors in panel 

B are the 25 most common user profile words used by first-time ch-word users and the 25 most common user profile words by control users. There is an 

overlap between the two sets of words, so the number of words included in the regression is less than 50. Standard errors are heteroscedasticity-consistent. 

Regression results are reported in Tables A6 and A6. 

 

 

 

 

30 0 0 randomly selected Twitter users who registered before July 2019 and never tweeted the ch-word by the end of our

sample period (hereafter, control users). 

Table A5 reports the summary statistics for first-time ch-word users and control users. Both groups of users are seasoned 

Twitter users: their average account age is roughly six years, and their average number of followers is well over 10 0 0. Com-

pared to control users, first-time ch-word users are more likely to tweet racial epithets against other minorities and have 

interacted with anti-Asian users before the pandemic. They also appear to pay more attention to politics and news, as evi-

dent by their much higher interaction with twitter accounts of prominent politicians and major news outlets. Interestingly, 

very few ch-word users and control users ever tweeted COVID-related conspiracies. 

To formally characterize users that are more susceptible to the pandemic-driven racial animus, we run two user-level 

regressions. The first one regresses an indicator for being a first-time ch-word user on the user’s pre- and mid-pandemic 

Twitter activity, and the second one on user profile keywords; both regressions control for account age, log number of 

followers, and log number of followings. Regression results are plotted in Fig. 4 and reported in appendix Tables A6 and A7.
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Fig. 4 panel A presents the relationship between being a first-time ch-word user and user activity on Twitter. Users who

interacted with anti-Asian users before the pandemic are over twice the mean more likely than others to tweet the ch-word

for the first time upon the pandemic. As we will show in the next section, this interaction plays a key role in spreading

animus against Asians. In addition, users who tweeted racial epithets against non-Asian minorities before the pandemic are 

40% the mean more likely to be first-time ch-word users. This finding implies that the crisis may have redirected pre-existing

anti-minority sentiment towards Asians. Interestingly, paying attention to major politicians and news outlets also predicts 

a slightly higher chance of being a first-time ch-word user. Finally, tweeting COVID-related conspiracies has a precisely 

estimated zero effect on tweeting the ch-word, suggesting that such conspiracies are likely not the main cause of racial 

animus among users in our sample. 

Fig. 4 panel B plots the relationship between being a first-time ch-word user and user profile keywords. 20 Consistent 

with results in panel A, keywords indicating attention to politics have the largest positive predictive power. Users who 

list “Trump” and “politics” in their profiles have a 58 and 28% higher chance (relative to the mean) of tweeting the ch-

word for the first-time after the pandemic shock, respectively. As we will show in the next section, opinions of public

figures, such as those of President Trump, likely play a crucial role in inciting anti-Asian sentiment during the pandemic. In

contrast, keywords related to profession and family life, such as “artist,” “wife,” and “husband,” predict a significantly lower 

propensity to tweeting the ch-word upon the pandemic. 

5. Factors fueling racial animus 

In this section, we explore factors that may have helped propagate anti-Asian animus during the pandemic. Understand- 

ing these factors is crucial to stopping the spread of animus from the outset amid future crises. 

We know from the previous section that first-time ch-word users are the main driving force behind the rise of ch-word

usage on Twitter during the pandemic. In Table 4 , we zoom in on these users and their Twitter activity between the date of

the first local COVID-19 case and the end of sample (May 2, 2020) to understand what prompts their first ch-word tweets.

We regress a user’s likelihood of tweeting the ch-word in a given day on a series of indicators for whom they interacted

with and what they tweeted about in the day before. We control for user characteristics as well as county, year-of-week,

and day-of-week fixed effects to absorb the average propensity to tweet the ch-word in a county and the national trend of

such tweets. 

Exposure to anti-Asian individuals. Table 4 column (1) shows that interaction with anti-Asian users (i.e. users who 

have previously used the ch-word) in a given day is associated with a 0.28 percentage point increase in the likelihood of

tweeting the epithet in the following day, amounting to 22% of the sample mean. This finding highlights the importance

of social media in spreading racial animus and is consistent with papers which document how social media influence real 

outcomes like voting behaviors (e.g., Fujiwara et al., 2021 ). Our finding suggests that moderating racist individuals and their 

interaction with others on social media could constrain the spread of animus. 

Opinions of public figures. The only other positive predictor in column (1) is a user’s interaction with President Trump. 

(Re)tweeting, replying, or mentioning the president in a day is associated with a 0.33 percentage point increase in the likeli-

hood of tweeting the ch-word the next day, or 26% of the sample mean. This finding is consistent with Müller and Schwarz

(2019) which shows that President Trump’s tweets affect public behavior such as hate crimes. In contrast, mentioning other 

prominent politicians of either parties or national news accounts has little to no predictive power, or even predicts a lower

likelihood of tweeting the epithet. When we additionally control for the number of new COVID-19 cases or deaths in the

local area in column (2), the results remain similar. Taken together, certain public figures play a key role in shaping public

opinions of a subject matter. Harnessing their opinion-shaping power could be useful in curbing animus in the future. 

Salience of Asian-COVID connection. One potential factor mediating the relationship between ch-word use and inter- 

action with President Trump is the salience of the connection between COVID-19 and the Asian population. It is possible 

that President Trump’s tweets that simultaneously mention COVID-19 and China may increase the salience of the connection 

and influence racial animus. We categorize President Trump’s tweets between January 1, 2020 and May 2, 2020 that contain 

any of the words “china”, “chinese”, “huawei”, “xi”, “covid”, “covid-19”, “corona”, “coronavirus”, “virus”, “epidemic”, or “pan- 

demic” into three categories: those mentioning only China (China-only), only COVID-19 (COVID-only), and both China and 

COVID-19 (China-and-COVID). Table A8 presents examples of President Trump’s tweets. Fig. A8 plots the daily frequency of 

his tweets. 

In Table 5 , we regress the daily racially charged Twitter post index at the national level on the number of the president’s

tweets in each of the three categories while controlling for year-week and day-of-week fixed effects. Column (1) shows that 

one additional China-and-COVID tweet of President Trump in a day corresponds to roughly five more racially charged tweets 

per ten million “the” tweets nationwide on the same day. This increase is non-trivial and is equivalent to 14% of the national

daily average. Importantly, the Twitter post index does not co-move with the president’s China-only or COVID-only tweets, 

highlighting that the connection between China and COVID-19 is what matters. Results remain similar when we control for 

the daily number of new COVID-19 cases and deaths nationwide in column (2). 
20 For ease of presentation, we only include the 25 most common user profile words used by first-time ch-word users and those by control users. Since 

there is an overlap between the two sets of words, the number of words included in the regression is less than 50. 
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Table 4 

Predictors of Tweeting Ch-word among first-time Ch-word users after the first local COVID-19 diagnosis. 

(1) (2) 

VARIABLES P(ch-word) (t + 1) P(ch-word) (t + 1) 

Anti-Asian user(t) 0.281 ∗∗∗ 0.259 ∗∗∗

(0.072) (0.072) 

Anti-minority(t) 1.156 1.112 

(1.360) (1.368) 

COVID consp.(t) 1.314 1.177 

(1.861) (1.845) 

Trump(t) 0.325 ∗∗∗ 0.297 ∗∗

(0.122) (0.122) 

McCarthy(t) −0.184 −0.097 

(0.456) (0.456) 

McConnell(t) −1.969 ∗∗∗ −2.045 ∗∗∗

(0.351) (0.449) 

Pelosi(t) −0.373 −0.419 

(0.284) (0.285) 

Schumer(t) −0.031 −0.106 

(0.379) (0.379) 

CBS(t) −0.636 −0.692 

(0.824) (0.825) 

CNN(t) 0.164 0.173 

(0.277) (0.277) 

Fox(t) −0.430 −0.386 

(0.348) (0.346) 

Account years −0.002 −0.002 

(0.005) (0.005) 

Log(followers) −0.032 ∗∗ −0.031 ∗∗

(0.013) (0.013) 

Log(followings) −0.010 −0.009 

(0.020) (0.020) 

New diagnoses −0.000 

(0.000) 

New deaths 0.000 

(0.000) 

Observations 174,164 174,164 

R-squared 0.002 0.004 

Outcome mean 1.251 1.251 

Notes : This table presents the relationship between first-time ch-word users’ likelihood of tweeting the ch-word (in 

percentage point) and their Twitter activity in the day before, as well as their baseline characteristics. See note to Fig. 4 

for definitions of the independent variables. The data is at the user ×day level, and all regressions control for county, 

year-of-week, and day-of-week fixed effects. Standard errors are clustered by user. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. 

 

 

 

 

 

 

The time-series correlation may be confounded by contemporaneous shocks unrelated to the president’s tweets. To alle- 

viate this concern, we conduct an event study comparing nationwide racially charged Twitter post index in the hours before 

and after President Trump’s China-and-COVID tweets, using the index during the same hours-of-day on days without such 

tweets as controls. Fig. 5 shows that the index in the four hours leading up to the China-and-COVID tweets is no different

from other times, but it jumps in the first hour after such tweets and continues to grow. The immediacy of the change upon

the president’s tweets suggests a causal interpretation of the relationship between the salience of the China-and-COVID con- 

nection and the anti-Asian sentiment at the national level. 

In addition, we study whether the salience of the connection has translated into hate incidents against Asians. We obtain 

self-reported anti-Asian hate incidents from AP3CON Stop AAPI Hate Reporting Center , a hate incident self-reporting website 

that went online on March 17, 2020. This is the best hate-tracking organization specialized in anti-Asian hate incidents in 

the United States (CBS News, 2020) . In Table 5 , column (3), we regress the log of daily hate incidents at the national level on

the number of the president’s tweets in each of the aforementioned categories while controlling for year-week and day-of- 

week fixed effects. We find that one additional China-and-COVID tweet from the president in a day corresponds to a roughly

eight percent increase in self-reported hate incidents against Asians nationwide on the same day. 21 When we control for the

daily number of new COVID-19 cases and deaths nationwide in column (4), results are unchanged. 22 

In contrast to the clear relationship between anti-Asian sentiment and the president’s tweets, we find little evidence that 

the sentiment co-moves with tweets from other prominent politicians or national news outlets (Table A9). The difference 

is likely due to the large difference in the number of Twitter followers between the president and the others. President
21 We conduct the analysis at the daily level because the exact hour of the incidents is not available. We cannot estimate Eq. (3) with AP3CON data due 

to the lack of pre-periods given the late start date of the data. 
22 We find little relationship between the racially charged Google search index and President Trump’s tweets. Results are available upon request. 
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Table 5 

Relationship between trump tweets and racial animus nationwide. 

(1) (2) (3) (4) 

VARIABLES Twitter ch-word Twitter ch-word Log(incidents) Log(incidents) 

China-and-COVID(t) 0.0482 ∗∗ 0.0493 ∗∗ 0.0799 ∗ 0.0888 ∗∗

(0.0234) (0.0246) (0.0453) (0.0398) 

China only(t) −0.0126 −0.0130 −0.0592 −0.0332 

(0.0131) (0.0133) (0.0815) (0.0844) 

COVID only(t) 0.0008 0.0006 −0.0014 0.0004 

(0.0038) (0.0040) (0.0146) (0.0143) 

New diagnoses −0.0000 0.0000 ∗

(0.0000) (0.0000) 

New deaths 0.0001 0.0001 

(0.0001) (0.0003) 

Observations 123 123 45 45 

R-squared 0.519 0.522 0.812 0.829 

Outcome mean 0.344 0.344 3.1932 3.1932 

Notes : The table presents the relationship between the number of President Trump’s tweets about 

COVID-19 and/or China and racial animus nationwide. The outcome variable in columns (1) and (2) 

is the daily number of ch-word tweets per 10 0,0 0 0 “the” tweets nationwide between January 1, 2020 

and May 2, 2020. The outcome variable in columns (3) and (4) is the natural log of the daily number 

of anti-Asian hate incidents nationwide from AP3CON Stop AAPI Hate Reporting system between 

March 19, and May 2, 2020. We categorize the president’s tweets that include “china”, “chinese”, 

“huawei”, “xi”, “COVID”, “COVID-19”, “corona”, “coronavirus”, “virus”, “epidemic”, or “pandemic” into 

three categories: “China-and-COVID” is the daily number of the president’s tweets mentioning both 

China and COVID-19; “China only” those mentioning only China; and “COVID only” those mentioning 

only COVID-19. “New diagnoses” and “New deaths” are the daily number of COVID-related new cases 

and deaths in the United States. All regressions control for year-week fixed effects and day-of-week 

fixed effects. Standard errors are clustered by date. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. 

Fig. 5. Relationship between Racially Charged Tweets Nationwide and Trump Tweets. Note: The figure presents the relationship between the number of 

President Trump’s tweets that mention both Covid-19 and China (China-and-COVID tweets) in an hour and the number of ch-word tweets per 10 0,0 0 0 “the”

tweets nationwide in the four hours before and the four hours after the president’s tweets. The figure plots the estimates and 90% confidence intervals of 

the coefficients on the interactions between hourly event dummies and the number of Trump’s China-and-COVID tweets at hour zero. Event dummy for 

the hours outside of those being plotted are omitted. The regression controls for year-week fixed effects, day of week fixed effects, and hour fixed effects. 

Standard errors are clustered by date. 

 

 

 

 

 

 

Trump amassed 88.7 million followers before Twitter suspended his account in January 2021, while the follower number as 

of October, 2021 for the prominent politicians and national news outlets are mostly below 10 millions with only Fox and

CNN reaching 20.2 and 54.7 millions, respectively. 

Economic downturn. The COVID-19 pandemic poses risks on both lives and livelihoods. Existing work has documented 

that a deterioration of economic conditions can fuel animus towards minorities ( Anderson et al., 2017; 2020; Sharma, 2015 ).

We thus study the heterogeneity in the change in racial animus by the level of the pandemic’s negative impact on the local

economy. We partition the main regression samples by whether the proportion of an area’s annual average employment in 

“leisure and hospitality” and “education and health services,” the two hardest-hit industries in employment according to the 

Bureau of Labor Statistics (BLS), is above or below the sample median (32% in Google data and 35% in Twitter data). We also

partition the samples by whether the percent change in net revenue between January and March, 2020 among local small 

businesses is above or below the sample median ( −39% in the Google sample and −37% in the Twitter sample) using data

built by Chetty et al. (2020) . Fig. 6 shows that the areas that experience high versus low negative economic impact respond
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Fig. 6. The Effect of the First Local COVID-19 Diagnosis on Racial Animus by the Negative Economic Impact of COVID-19. Note: The figure presents the 

heterogeneous effects of the first local COVID-19 diagnosis on the racially charged Google search index and Twitter post index by the negative economic 

impact of the pandemic. Panels A and B partition the regression sample by whether the proportion of an area’s annual average employment in “leisure 

and hospitality” and “education and health services” is above or below the sample median (i.e., 32% in the Google sample and 35% in the Twitter sample). 

Panels C and D partition the regression sample by whether the percent change in net revenue among local small businesses between January and March 

is above or below the sample median (i.e., −39% in the Google sample and −37% in the Twitter sample). Panels A and C (B and D) plot the estimates and 

95% confidence intervals of the coefficients on the event dummies in Eq. (3) using the racially charged Google search index (Twitter post index) as the 

outcome. Specifications in panels A and C mirror those in column (1) of Table 2 , and specifications in panels B and D mirror those in column (1) of Table 3 . 

 

 

 

 

 

 

similarly to the first local COVID-19 diagnosis. In other words, the negative economic impact of the disease appears to play

a relatively weaker role in motivating the initial rise of racial animus. One potential reason is that the long-term economic

impact of the pandemic was not well understood at the beginning of the pandemic. 

6. Conclusion 

Growing racial tension is a serious challenge facing society. Understanding how racial animus forms and spreads is a 

critical step in addressing the issue. Using evidence from the COVID-19 pandemic, our paper sheds light on how and why

negative shocks incite racial animus, types of individuals susceptible to such shocks, and factors that help spread the animus. 

We exploit variation in the timing of the first COVID-19 diagnosis across US areas and find that the first local case leads

to an immediate increase in local racial animus. This rise in animus specifically targets Asians, implying that the association 

between this group and the potential geographical origin of the virus likely motivates the animosity. The majority of racist 

tweets come from users who post the epithet for the first time; these first-time ch-word users are more likely to have

expressed animosity against non-Asian minorities in the past, and their interaction with other anti-Asian individuals predicts 

the timing of their first ch-word tweets. These findings suggest that preconceived notions about minorities and social media 

network both help in the formation and the spread of racial hatred amid crisis. Moreover, users who list “Trump” in their

profiles are more susceptible to the pandemic shock; online animosity and offline hate incidents against Asians both increase 

when President Trump more frequently links China and COVID-19 in his tweets. These findings underscore the crucial role of 

public figures in influencing public opinions of a subject matter. Finally, the pandemic-driven racial animus we documented 

may persist beyond the duration of the pandemic, as most racist tweets do not explicitly mention the virus. 
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Our findings have practical implications. Careful naming of a shock, debunking claims of any alleged connection between 

a shock and a group, moderating racist individuals and their interaction with others on social media, and harnessing public 

figures’ opinion-shaping power could all be helpful in curbing animus amid future crises. 

This paper also opens up several avenues for future research. While we estimate the effect of pandemics on racial animus,

it would be interesting to know the downstream consequences of such crisis-driven animus, for example, on labor market, 

geographical sorting, and immigration. We characterize the users who are more susceptible to pandemic-induced animus 

against Asians, and it would be useful to characterize the users who express animosity against minorities in general so as

to predict such behaviors and proactively curb the spread of racist content online. 
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