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Abstract

Background: Air pollution epidemiological studies usually rely on estimates of long-term 

exposure to air pollutants, which are difficult to ascertain. This problem is accentuated in 

settings where sources of personal exposure differ from those of ambient concentrations, including 

household air pollution environments where cooking is an important source.

Objective: The objective of this study was to assess the feasibility of estimating usual exposure 

to PM2.5 based on short term measurements.

Methods: We leveraged three types of short-term measurements from a cohort of mother-child 

pairs in 26 communities in rural Ghana: (A) personal exposure to PM2.5 in mothers and age 

four children, ambient PM2.5 concentrations (B) at the community level and (C) at a central 

site. Baseline models were linear mixed models with a random intercept for community or for 

participant. Lowest root-mean-square-error (RMSE) was used to select the best performing model.

Results: We analyzed 240 community-days and 251 participant-days of PM2.5. Medians (IQR) 

of PM2.5 were 19.5 (36.5) μg/m3 for the central site, 28.7 (41.5) μg/m3 for the communities, 70.6 

(56.9) μg/m3 for mothers, and 80.9 (74.1) μg/m3 for children. The ICCs (95% CI) for community 

ambient and personal exposure were 0.30 (0.17, 0.47) and 0.74 (0.65, 0.81) respectively. The 

sources of variability differed during the Harmattan season. Children’s daily exposure was best 
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predicted by models that used community ambient compared to mother’s exposure as a predictor 

(log-scale RMSE: 0.165 vs 0.325).

Conclusion: Our results support the feasibility of predicting usual personal exposure to PM2.5 

using short-term measurements in settings where household air pollution is an important source of 

exposure. Our results also suggest that mother’s exposure may not be the best proxy for child’s 

exposure at age four.
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Introduction

Air pollution is a leading cause of morbidity and mortality worldwide. The Global Burden 

of Disease study estimates that approximately 4 million deaths are attributable to ambient 

air pollution (1). PM2.5, particulate matter less than 2.5 micrometers in diameter, is the most 

studied form of air pollution and is linked to a wide range of diseases in several organ 

systems. The strongest causal associations are seen between PM2.5 pollution and pulmonary 

and cardiovascular disease (2). Importantly, children are particularly vulnerable to the effects 

of air pollution because their lungs are still maturing (3). They also tend to be outside for 

longer periods and are usually more active when outdoors (4). Exposure to air pollution in 

infancy and early childhood causes lung damage, impairs lung growth, and can increase risk 

for pneumonia, asthma, and chronic pulmonary disease later in life (5–8). Recent evidence 

also suggests associations with neurodevelopmental outcomes, further underscoring the 

disproportionate vulnerability of children to fine particulate matter exposure (9,10).

Epidemiological analyses and data fusion approaches aimed at quantifying the health burden 

of air pollution typically rely on exposure estimates provided by central-site monitors or 

satellite-based models, which are rarely available in low- and middle-income countries 

(LMICs) (11,12). Exposures common in LMICs, such as solid fuel combustion for cooking 

and heating, result in large variability in individual-level exposures over time that ambient 

measures will likely miss (7). This complicates the estimation of true exposure (13–15). 

Further, seasonal phenomena such as the Harmattan season - a yearly trade wind that blows 

from the Sahara towards the Gulf of Guinea and carries with it a large amount of dust - are 

an additional significant driver of temporal variability in exposure (16).

As a result, air pollution epidemiologists frequently encounter the challenge of estimating 

health effects of long-term exposures that vary widely over time (17). Continuous 

measurements of personal exposures for all study subjects over the study period might 

be considered the “gold standard” for exposure assessment, but is rarely feasible (18). 

Short-term surrogate measures, which are imprecise estimates of longer-term average 

exposure, are typically used, leading to potentially biased exposure-response relations 

(19). In addition, in LMICs, when children’s exposure has been of interest, the use 

of their mother’s exposure as a proxy has been considered. Two factors underlie this 

approach. First, measuring children’s personal PM2.5 exposure used to be particularly 

difficult because previous generations of PM2.5 monitors were bulky and heavy, making 
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it difficult for a small child to carry a monitor for many hours (20). This explains, in part, 

why direct measurements of personal exposure to air pollution among children in settings 

with prevalent biomass combustion are scarce (21). Second, it has been suggested that 

children often spend most of their time in close proximity to their mothers. This widespread 

reliance on surrogates of long-term exposure suggests that alternative approaches could 

prove beneficial for air pollution epidemiology studies, especially in LMICs.

Given these limitations, we leveraged personal and community exposure measurements 

from a well-characterized longitudinal cohort to estimate long-term exposure to PM2.5. 

Specifically, we concurrently measured: 1) personal exposure to PM2.5 in mother-child pairs, 

2) ambient PM2.5 concentration at the community level, and 3) ambient PM2.5 concentration 

at a central site. Using these measurements, we assessed sources of variability in community 

ambient concentration of and personal exposure to PM2.5, and developed prediction models 

to estimate long-term exposure to be used in epidemiological studies of the health impacts of 

PM2.5.

Methods

Study population

We used data collected through the Child Lung Function study, an extension of the Ghana 

Randomized Air Pollution and Health Study (GRAPHS). GRAPHS is a cluster-randomized 

cookstove intervention trial in rural Ghana that has been described elsewhere (22). Briefly, 

between August 2013 and March 2016, a total of 1,414 nonsmoking, pregnant women 

were recruited from communities in the Kintampo North Municipality and Kintampo South 

District of Ghana and were followed through the first year of life of their children. In 2017, 

additional funding was obtained to continue longitudinal follow-up of N = 700 mother-child 

pairs with continued exposure and lung phenotyping assessments (Child Lung Function 

Study). The GRAPHS study objectives dictated 48-hr PM2.5 exposure assessment in mothers 

after birth, which was expanded to include their age four children as part of the Child Lung 

Function Study. Thus, mothers could have undergone exposure assessment twice whereas 

children only participated in one exposure assessment session. In the current analyses, 

we included participants who are enrolled in the Child Lung Function Study, underwent 

personal exposure assessment at the time of community exposure assessment, and who had 

at least two, valid 24-hr personal exposure monitoring sessions. Therefore, the analyses 

in this manuscript include 121 Child Lung Function Study mothers and children (up to 

age four) living across 26 communities whose personal exposure to PM2.5 was ascertained 

between October 2016 and April 2019. Table S1 illustrates the impact of exclusion decisions 

on sample size in greater detail (Table S1). Procedures were approved by human studies 

and institutional ethics committees at Kintampo Health Research Centre (KHRC), the Icahn 

School of Medicine at Mount Sinai, and the Columbia University Mailman School of Public 

Health, and written consent was obtained from all mothers.

Study context

The communities included in our study were located in the Bono East Region of Ghana, 

which is formerly known as the Brong-Ahafo Region (Figure 1). A pilot study in the 
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GRAPHS study population demonstrated that 99% of households cooked with biomass 

(wood or charcoal) as their primary cooking fuel (23). Further, a recent nationally 

representative survey indicated that, in 2017, 91% of rural households and 73% of all 

households relied on biomass fuels for cooking. This region of Ghana experiences both 

a tropical wet and dry savanna climate. In particular, the Harmattan season (December to 

March) is characterized by episodes of dry and dusty winds blowing from the Sahara Desert. 

Annual bushfires are common during the Harmattan season (24). After data cleaning (Table 

S2), 29 out of 36 communities were included in the final ambient monitoring sample.

Personal exposure assessment

Personal exposure was measured via the MicroPEM v3.2b, a small aerosol exposure monitor 

that measures PM2.5 in both real time and on a filter. Specifically, the MicroPEM includes 

a nephelometer for real-time monitoring at 5 second resolution, a Teflon filter for analysis 

of integrated concentrations at a 0.5 LPM flow rate over a 48-hour sampling period, and 

an accelerometer for assessing wearing compliance of subjects. As previously done as 

part of GRAPHS, each deployment was calibrated by a gravimetric correction factor (field 

blank adjusted filter mass to nephelometer average) (25). To do so, Teflon filters were pre- 

and post-weighed on a microbalance after equilibration in an environmentally controlled 

glovebox, following established protocols at Columbia University (25). Filters were installed 

in and removed from the MicroPEM in a clean air hood at the KHRC laboratory. During 

the first and last 5-min periods of each deployment, a low back pressure HEPA filter was 

attached to the MicroPEM to aid in correction of the nephelometer baseline drift. A constant 

baseline drift was assumed, leading to a linear interpolation between the pre- and post-

deployment HEPA readings. Negative values and values less than 0.5 μg/m3 were replaced 

by 0.5 μg/m3 for statistical analysis. Further details on exposure validation procedure have 

been described elsewhere (25). After cleaning and adjustment by gravimetric correction of 

the continuous data, daily averages were isolated by splitting each 48-hr session into two 

observations: the first 24 hours were averaged to obtain the first daily average whereas the 

second daily average was computed by averaging the next 20–24 hours to allow inclusion of 

runs that had been cut short due to battery issues or field pick up schedules. If the duration 

of the second session did not meet the 20 hours threshold, that session was excluded from 

further analysis and modeling.

Ambient air pollution

Central site monitoring: Continuous monitoring of PM2.5 was implemented from 

September 2016 to July 2019 at Kintampo Health Research Center, which is the 

study’s central site. Throughout the study period, an ambient continuous (nephelometer) 

and integrated (filter) air sampler (E-Sampler by Met-One) measured PM2.5 ambient 

concentrations at the central site. Specifically, an E-Sampler was set at a flow rate of 2.0 

LPM to collect PM2.5 data every 10 minutes. A 47-mm Teflon filter sample was collected 

every month for gravimetric correction. Data points with flow > 2.2 or < 1.9 LPM and 

showing alarm statuses with typically zero PM2.5 values were discarded for further analysis. 

In parallel, a meteorological station (Onset HOBO RX3000), located next to the central site 

E-sampler, provided continuous data on meteorological variables including wind speed and 

direction, temperature, and relative humidity.
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Community ambient monitoring: Similarly to central site monitoring, PM2.5 ambient 

concentrations in study communities were assessed with the Met-One E-Sampler. Due to 

limited equipment availability, E-Samplers were rotated between communities with each 

event spanning two to ten days. In each community, the E-Sampler location was determined 

by identifying central coordinates relative to the study participants’ addresses. Figure S1 

illustrates the overlapping PM2.5 measurements.

Covariates

Information on mother’s age, education level, secondhand smoke exposure, defined 

as a smoking household member, and primary cooking fuel was collected through 

questionnaires at baseline (22). Following methodology adapted from Gunnsteinsson et 

al (26), questionnaires determined household assets that were enumerated as counts 

when possible (eg, number of livestock, number of electronic devices) and were used 

to determine the wealth index, a household-level socioeconomic status measure relative 

to other households in the study. Child sex and date of delivery were recorded at 

birth. To potentially capture air pollution emissions coming from neighboring households, 

we estimated population density by calculating the number of compounds located and 

individuals living within a 50 m radius of each study household using local census data (27).

Statistical analysis

Variance component of community ambient and personal exposure: A linear 

mixed model with only a random intercept per community - referred to as community 

baseline model – was used to partition community ambient PM2.5 variability into within 

community and between community variability components. Similarly, a linear mixed 

model with a random intercept per participant (participant baseline model) was used to 

decompose personal exposure variability into within-participant and between-participant 

variability components. Using the variance components from a one-way ANOVA, intra-class 

correlation coefficients (ICC) were computed to determine the proportion of total variability 

attributable to between-community (or between-participant) variability (28). Subgroups 

analyses were performed by 1) stratifying the results by season and 2) stratifying the results 

between mothers and children.

Prediction models of community ambient and personal exposure: For modeling 

purposes, all PM2.5 measurements were log-transformed to ensure normal distribution of 

residuals. Our modeling strategy relied on a two-step approach (Figure S2). In Step 1, 

we developed linear mixed models that could predict 24-hr community ambient PM2.5 

concentration based on central site ambient concentration. In Step 2, we developed linear 

mixed models that could predict 24-hr personal exposure to PM2.5 based on community 

ambient concentration. This was done separately for mothers and children. In both Step 1 

and Step 2, we started with the following base (intercept-only) models:

Step 1:  ln Yik = β0 + bi + εik
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Step 2:  ln Y jk = β0 + bj + εjk

where ln(Yik) is the kth measurement of log-transformed PM2.5 concentration for 

community i (Step 1) or participant j (Step 2), bi (or bj) is the community (or participant) 

random effect, and εik (or εjk) is the remaining error.

Predictors of community ambient PM2.5 included factors that could affect pollutant 

transport such as meteorological variables. We included seasonality (Harmattan vs no 

Harmattan), wind speed, wind direction, temperature, and relative humidity. For personal 

exposure (Step 2) models, we evaluated participant characteristics, household characteristics 

and seasonality as predictors of mothers’ personal exposure. Fuel type, kitchen type, 

ventilation, and geographical location of the household have all been shown to be strong 

predictors of household level PM2.5 concentrations (29). Based on data available through 

baseline data collection surveys, we selected similar covariates that have the potential 

to influence individual exposure. These variables included wealth index (categorical 

variable), secondhand smoking status (dichotomous variable), primary cooking fuel type 

(categorical variable), primary cooking location (categorical variable) and neighboring 

density (continuous variable). For children’s models, we additionally compared mother’s 

exposure to community ambient concentration as potential predictors of personal exposure. 

Model parameters were estimated using restricted maximum likelihood. For each model, 

the proportion of variance explained by the fixed effects alone (marginal R2) and the 

proportion of variance explained by the fixed and random effects jointly (conditional R2) 

were calculated. All models were evaluated using leave-one-out cross validation and the 

lowest RMSE was used to select the best performing Step 1 and Step 2 models.

Analyses were conducted with R version 3.6.0 (R Foundation for Statistical Computing, 

Vienna, Austria). Models were implemented and evaluated using “lme4”, “modelr”, and 

“mgcv”.

Results

The mean (sd) age among mothers was 28.8 (7.01) years old (Table 1). Most of them (59.5 

%) did not receive formal education. The primary cooking fuel most commonly used was 

wood (96.2%). Secondhand smoking in the household or compound was not a common 

occurrence (16.4%). On average, 54 people resided within a 50m radius of a given study 

household.

We analyzed 240 community-days and 251 participant-days of PM2.5. On average ambient 

daily concentrations of PM2.5 were lower than personal exposure to PM2.5 on the same day 

(Table 2). Medians (IQR) of PM2.5 were 19.5 (36.5) μg/m3 for the central site, 28.7 (41.5) 

μg/m3 for the communities versus 70.6 (56.9) μg/m3 for mothers, and 80.9 (74.1) μg/m3 

for children. Wearing compliance was high among both groups (Figure S3). Further, PM2.5 

ambient concentrations and personal exposure were higher during the Harmattan season than 

throughout the rest of the year. Seasonality appeared to have a greater influence on the 
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distribution of community ambient concentrations than on that of personal exposure (Figure 

2).

The correlation between daily central site ambient PM2.5 and daily community ambient 

PM2.5 (r = 0.86) was stronger than that between daily community ambient PM2.5 and daily 

personal exposure to PM2.5 (Figure 3). In general, personal exposure to PM2.5 was higher 

than community ambient PM2.5 (Figure 3B).

The ICCs (95% CI) for community ambient and personal exposure were 0.3 (0.17, 0.47) 

and 0.74 (0.65, 0.81) respectively (Table 3). Most of the ambient PM2.5 variability came 

from within community (i.e., temporal) whereas most of the variability in personal exposure 

to PM2.5 came from between individuals, which could be due to a mixture of behavioral, 

temporal and spatial variations. The partitioning of variability differed during the Harmattan 

season, especially for community ambient concentrations (Figure S4). It is important to note 

that, by design, community ambient monitoring was asynchronous between communities. 

As a result, temporal variability is also captured by the community level ICC. Similarly, 

the daily averages were always consecutive for children since they only participated 

in one round of exposure measurement. For the mothers, however, the ICC captures 

additional temporal variability due to the time elapsed between the two potential round 

of measurements that they could have partaken in. ICC results stratified between mothers 

and children are presented in Table S3.

We present results for the baseline model and the corresponding model that yielded the 

lowest RMSE for community ambient (Table 4), mothers (Table 5) and children (Table 5) 

separately. In community ambient models, windspeed and seasonality lowered the baseline 

model’s RMSE from 0.339 to 0.336 (Table 4). Mother’s daily exposure to PM2.5 was best 

predicted by models that included seasonality and primary cooking fuel type (Table 5). 

The lowest RMSE was obtained for children’s daily exposure, which was best predicted by 

models that used community ambient compared to mother’s exposure as the main predictor 

(log-scale RMSE: 0.165 vs 0.385). For both participant groups, the models with the lowest 

RMSEs also explained the highest proportion of variance; the conditional R2 values were 

0.63 and 0.92 for mothers and children respectively.

Discussion

We analyzed community level ambient and personal exposure to PM2.5 in a cohort of 

mother-child pairs in rural Ghana. We identified sources of variability in exposure that are 

specific to the region (ie, Harmattan season). We leveraged concurrent measurements of 

PM2.5 at the central site and at the community level as well as personal exposure to PM2.5 to 

develop predictions of long-term exposure. The models performed best for children exposure 

to PM2.5; the log RMSE for the best performing model was 0.165 and the proportion of 

variance explained was 0.92. Our results support the feasibility of using predicted long-term 

personal exposure for epidemiological studies in rural Ghana and similar contexts. The 

applicability of this approach to other exposure settings awaits assessment.
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Few studies have attempted to predict long-term exposure to PM2.5 from short-term personal 

exposure measurements in LMICs. The findings of the only other study that, to our 

knowledge, also uses a combination of ambient concentrations and short-term personal 

exposure measurements to predict long-term exposure support ours. Using a cohort of the 

general population in peri-urban South India, Sanchez et al. developed long-term exposure 

models for men and women separately. Similarly to our results, the models that performed 

best included time invariant predictors such as primary stove type. The lowest log RMSEs 

were 0.43 and 0.53 for men and women respectively. The authors concluded that these 

models performed moderately well (30). Using a simulation approach allowing them to 

compare multiple study designs, Keller et al. found that the addition of a time adjustment 

(eg, temporal splines) to a linear mixed model yielded the best performing modeling 

approach to combine short-term measurements into predictions of long-term exposure (31). 

Notably, the improvement in model performance was greater for study designs, such as ours, 

in which baseline measurements do not occur simultaneously (31). These results suggest 

that future studies employing designs similar to ours should consider a time adjustment to 

increase their predictive ability.

Compared to other studies that evaluated variance components of exposure metrics in 

LMICs populations, our results showed higher between participant variation. In an analysis 

of repeated 48-hr personal exposure to CO measurements in Guatemala, McCracken et 

al. reported lower ICCs than we did; 33% in children and 29% in adult women (17). 

The authors pointed to this large within-participant variability to suggest that short-term 

personal exposure measurements present low reliability as a measure of long-term exposure. 

Similarly, in a study conducted in The Gambia, Dionisio et al. reported an ICC of 39% for 

personal exposure to CO for children, which decreased to 27% in the complete model (20). 

Further, studies from high-income countries have also reported between-participant variation 

in PM2.5 personal exposure lower than our results (32). In a study of the general adult 

population in Sweden, Johannesson et al. found that 84% of the total variance in personal 

exposure to PM2.5 was attributable to within-individual variability (32). The comparatively 

high between participant variance that we obtained could be explained by the fact that our 

study area included 26 different communities with potentially different microenvironments 

(Table S4).

This study provided a unique opportunity to characterize exposure among children, a 

subgroup that is particularly vulnerable to effects of air pollution exposure but whose 

exposure patterns -especially in rural settings - are scarcely documented (21). Previous 

studies have found an association between carriage of the child on the mother’s back and 

pneumonia in children, and suggested that this childcare behavior is associated with higher 

exposures (33,34). However, our results indicate that using community ambient PM2.5 - as 

opposed to mother’s exposure - as a predictor of children’s exposure at age four yields 

better model performance. This might suggest that, in this study population, and given that 

the children were already four years old, the time-activity patterns of children are distinct 

from those of their mothers. Further, because women are often the primary cooks, their 

personal exposures is driven by emissions during cooking events (7). In contrast, children’s 

exposure is more closely related to ambient levels given the share of time spent playing 

outside (35). Characterizing children’s exposure with greater precision and reliability should 
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remain the focus of future studies as evidence of the association between solid fuel use and 

developmental outcomes continues to emerge (36).

This study had some limitations. The feasibility of our two-step modeling approach relies 

on having complete subsets with overlapping central site, community ambient, and personal 

exposure measurements of PM2.5. As highlighted in Tables S1 and S2, participants for 

whom long-term exposure could be predicted must have had their personal exposure 

measured concurrently with community ambient level. Further, the random intercept 

computation required that each participant had at least two daily exposure averages. Both 

requirements led to a significant decrease in our sample sizes (Table S5), limiting our ability 

to exposure for the entire Child Lung Function Study cohort of mother-child pairs.

To accurately estimate long-term exposure, the models’ predicting ability should have 

been assessed against longer exposure measurements. Given the limited data availability 

in this study, we approximated long-term exposure using a daily exposure average 

measured several months apart from the daily exposure average used as a predictor, which 

constitutes another limitation of this study. This problem is accentuated for children for 

whom measurements were consecutive. In addition, ideally the cross-validation would 

have been performed for a subset of participants for whom we had measured long-term 

exposure to PM2.5 – as opposed to using a holdout approach. Finally, since the community 

ambient measurements did not occur simultaneously for all communities, the proportion of 

variability in ambient concentrations explained by between community differences cannot 

be fully separated from temporal variability.

Conclusion

We found that the Harmattan season -characterized by episodes of dry and dusty winds 

blowing from the Sahara Desert- is a significant driver of personal exposure to PM2.5 

for both mothers and children in rural Ghana. Our exposure models were parsimonious 

but required a complete set of three overlapping short-term measurements (central site, 

community ambient, and personal). Our results support the feasibility of predicting usual 

personal exposure to PM2.5 using short-term measurements in settings similar to rural Ghana 

and suggest that mother’s exposure may not be the best proxy for child’s exposure at age 

four.
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Figure 1. Map of study area.
The light grey lines represent main roads. The dark black line is the Black Volta River. The 

shaded area is a monkey sanctuary.
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Figure 2. 
Probability density of measured daily PM2.5 ambient concentration and personal exposure.
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Figure 3. Correlations between daily averages of (A) central site and community ambient PM2.5 
concentrations and (B) community ambient PM2.5 concentration and personal exposure.
The black line represents the 1:1 ratio line. The colored lines represent the respective linear 

regression lines.
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Table 1.

Descriptive characteristics of the participants and study households, N = 79

Mean (SD) or N (%)

Participant characteristics

Mother’s age, Mean (SD) 28.8 (7.0)

Child’s age, Mean (SD) 4.13 (0.32)

Mother’s educational level, N (%)

 None 47 (60)

 Primary school 12 (15)

 Middle/Junior High School 15 (19)

 Technical/Commercial/Senior High School and above 5 (6)

Wealth index, Mean (SD) −0.13 (1.68)

Primary cooking fuel type, N (%)

 Wood 76 (96)

 Charcoal 2 (3)

 Other 1 (1)

Primary cooking location, N (%)

 Totally open 40 (51)

 Roof only 9 (11)

 Veranda 9 (11)

 Partially enclosed (2–3 walls with roof) 5 (6)

 Fully enclosed 16 (20)

Household characteristics

Secondhand smoking, N (%) 13 (16)

Count of compounds within a 50m radius, Mean (SD) 7.4 (3.9)

Count of residents within a 50m radius, Mean (SD) 54 (33)
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Table 2.

Summary of air pollution measurements, N = number of daily PM2.5 averages*

N Mean SD Median Min Max IQR

Central site – community observations

Central Site Daily Average PM2.5 (μg/m3) 240 30.2 24.9 19.5 3.17 106 36.5

Community Daily Average PM2.5 (μg/m3) 240 43.5 36.2 28.7 4.72 173 41.5

Central Site Temperature (°C) 240 27.1 1.7 27.4 22.8 31.0 2.13

Central Site Relative Humidity (%) 240 67.9 18.7 74.1 14.6 95.5 22.7

Central Site Wind Speed (m/s) 240 0.226 0.117 0.203 0.0121 0.652 0.148

Community – personal observations (mothers)

Community Daily Average PM2.5 (μg/m3) 167 35.5 32.2 22.5 5.2 177 25.9

Personal Daily Average PM2.5 (μg/m3) 167 83 53.2 70.6 10.3 390 56.9

Community – personal observations (children)

Community Daily Average PM2.5 (μg/m3) 84 49.9 43.6 34.4 5.2 189 51.6

Personal Daily Average PM2.5 (μg/m3) 84 82.3 43.6 80.9 21.6 185 74.1

*
Measurements were matched based on the date and time they were taken.
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Table 3.

Decomposition of variability in ambient and personal PM2.5 (non-simultaneous measurements)

ICC* LCI (5th perc.) UCI (95th perc.)

Community ambient PM 2.5 

Overall 0.3 0.17 0.47

During Harmattan season 0.64 0.44 0.82

During non-Harmattan season 0.096 −0.012 0.27

Personal PM 2.5 

Overall 0.74 0.65 0.81

During Harmattan season 0.85 0.73 0.92

During non-Harmattan season 0.69 0.56 0.79

*
ICC: intraclass correlation coefficient
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Table 4.

Prediction models of community ambient PM2.5 (Step 1)

Model Regression equation R2
m R2

c Log-scale 
RMSE

Baseline community 
model

ln Y ik = β0 + β1 PM2.5 central + bi + εik 0.65 0.72 0.339

Baseline community 
model + seasonality + 
wind speed

ln Y ik = β0 + β1 PM2.5 central + β2 ℎarmattan + β3 ws + bi + εik 0.68 0.74 0.336

*
R2m represents the proportion of the variance explained by the fixed effects alone (marginal R2).

**
R2c represents the proportion of the variance explained by the fixed and random effects jointly (conditional R2).

***
Harmattan is a dry season characterized by dusty winds.
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Table 5.

Prediction models of personal exposure to PM2.5 (Step 2)

Model Regression equation R2
m

* R2
c
** Log-

scale 
RMSE

Mothers

Baseline 
model

ln Y jk = β0 + β1 PM2.5 community + bj + εjk 0.13 0.58 0.334

Baseline 
model + 
seasonality 
+ primary 
cooking 
fuel

ln Y jk = β0 + β1 PM2.5 community + β2 ℎarmattan + β3 fuel + bj + εjk 0.20 0.63 0.325

Children

Baseline 
model 
(with 
mother 
exposure 
as 
predictor)

ln Y jk = β0 + β1 PM2.5 motℎer + bj + εjk 0.16 0.80 0.402

Baseline 
model 
(with 
mother 
exposure 
as 
predictor) 
+ 
seasonality

ln Y jk = β0 + β1 PM2.5 motℎer + β2 ℎarmattan + bj + εjk 0.23 0.81 0.385

Baseline 
model 
(with 
community 
ambient as 
predictor) 
+ 
seasonality

ln Y jk = β0 + β1 PM2.5 community + β2 ℎarmattan + bj + εjk 0.41 0.92 0.165

*
R2m represents the proportion of the variance explained by the fixed effects alone (marginal R2).

**
R2c represents the proportion of the variance explained by the fixed and random effects jointly (conditional R2).

***
Harmattan is a dry season characterized by dusty winds.
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