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OBJECTIVE: Early identification of diabetic retinopathy (DR) is key to prioritizing therapy and preventing permanent blindness. This
study aims to propose a machine learning model for DR early diagnosis using metabolomics and clinical indicators.
METHODS: From 2017 to 2018, 950 participants were enrolled from two affiliated hospitals of Wenzhou Medical University and
Anhui Medical University. A total of 69 matched blocks including healthy volunteers, type 2 diabetes, and DR patients were
obtained from a propensity score matching-based metabolomics study. UPLC-ESI-MS/MS system was utilized for serum metabolic
fingerprint data. CART decision trees (DT) were used to identify the potential biomarkers. Finally, the nomogram model was
developed using the multivariable conditional logistic regression models. The calibration curve, Hosmer–Lemeshow test, receiver
operating characteristic curve, and decision curve analysis were applied to evaluate the performance of this predictive model.
RESULTS: The mean age of enrolled subjects was 56.7 years with a standard deviation of 9.2, and 61.4% were males. Based on the
DT model, 2-pyrrolidone completely separated healthy controls from diabetic patients, and thiamine triphosphate (ThTP) might be
a principal metabolite for DR detection. The developed nomogram model (including diabetes duration, systolic blood pressure and
ThTP) shows an excellent quality of classification, with AUCs (95% CI) of 0.99 (0.97–1.00) and 0.99 (0.95–1.00) in training and testing
sets, respectively. Furthermore, the predictive model also has a reasonable degree of calibration.
CONCLUSIONS: The nomogram presents an accurate and favorable prediction for DR detection. Further research with larger study
populations is needed to confirm our findings.
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INTRODUCTION
Diabetic retinopathy (DR) is the most common microvascular
complication of diabetes mellitus (DM) and a leading cause of
visual impairment in working-age adults worldwide [1, 2]. It was
estimated that 191 million people would be diagnosed with DR by
2030 [3]. The economic impact of DR is huge, tripling the medical
costs of DR patients compared with ordinary diabetics, and visual
impairment and blindness can also have a devastating impact on
personal quality of life and the socio-economic conditions in
which they live [4–7]. In the United States alone, DR-related
blindness may generally cost up to $500 million per year [8].
DR can be classified into two stages, non-proliferative DR

(NPDR) and proliferative DR (PDR). In clinical practice, the standard
treatments, including laser photocoagulation, intravitreal injec-
tions of corticosteroids or anti-VEGF agents, and vitreoretinal
surgery, mainly target the late stage of DR [9]. Treatments
mentioned above are quite expensive, all require a vitreoretinal

specialist and induce several side effects [9]. In this condition, the
vision of many DR patients would be severely affected, in which
some irreversible damages have occurred [9]. Therefore, timely
recognition of DR at its early stage is essential for those who need
comprehensive ophthalmological examination and treatment to
avoid permanent vision loss [10].
For most complex diseases, there exists a long-term duration

from the exposure to clinical manifestations, which generally
includes 3 stages: normal state, pre-disease state, and disease
state [11]. It is reported that from the pre-disease to early-disease
states, levels of many internal bio-signals, including endogenous
small metabolites, vary dramatically and remain stable to the
clinical stage. These apparent alterations can be instinctively
observed by some sensitive assessments. Routine screening
methods for DR that include fundus photography can detect
retinal hemorrhage, exudates, neovascularization, and angioma
formation. Nowadays, it has become an accurate, cost-effective,

Received: 14 September 2021 Revised: 10 July 2022 Accepted: 18 July 2022

1Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang,
China. 2Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
3Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China. 4Center on Clinical Research, School of
Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China. 5The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China. 6Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China. 7These authors contributed equally: Jushuang Li,
Chengnan Guo. ✉email: huhonglin@ahmu.edu.cn; mgy@wmu.edu.cn

www.nature.com/nutdNutrition & Diabetes

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41387-022-00216-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41387-022-00216-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41387-022-00216-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41387-022-00216-0&domain=pdf
http://orcid.org/0000-0002-5906-0265
http://orcid.org/0000-0002-5906-0265
http://orcid.org/0000-0002-5906-0265
http://orcid.org/0000-0002-5906-0265
http://orcid.org/0000-0002-5906-0265
http://orcid.org/0000-0003-4334-1270
http://orcid.org/0000-0003-4334-1270
http://orcid.org/0000-0003-4334-1270
http://orcid.org/0000-0003-4334-1270
http://orcid.org/0000-0003-4334-1270
http://orcid.org/0000-0002-4548-7524
http://orcid.org/0000-0002-4548-7524
http://orcid.org/0000-0002-4548-7524
http://orcid.org/0000-0002-4548-7524
http://orcid.org/0000-0002-4548-7524
https://doi.org/10.1038/s41387-022-00216-0
mailto:huhonglin@ahmu.edu.cn
mailto:mgy@wmu.edu.cn
www.nature.com/nutd


and reproducible method for DR diagnosis. However, this is only
possible when DR has progressed into the clinical stage and has
some clinical evident symptoms and signs, which is too late for
DR’s effective prevention and control.
In the past several decades, a variety of new technologies have

been proposed constantly, which have highly changed traditional
screening strategies. Among them, metabonomic studies and
machine learning (ML) algorithms are commonly utilized for
finding potential biomarkers and automatic detection or classifi-
cation of DR. In fact, metabonomics can comprehensively capture
and systematically analyze the spectrum of various metabolites in
the process of disease development and has great advantages in
elucidating abnormal sites, disease occurrence, the development
mechanism, and early recognition. However, the metabonomic
data are abundant and complex with high dimensions, which
bring challenges to the traditional data preprocessing methods
and statistical analysis [12]. It is widely accepted that ML
algorithms can effectively use various, huge or complicated data
to train models and make decisions for certain performance
indicators. Due to the ability to find complex patterns in high-
dimensional and heterogeneous data, ML has become an
important tool for understanding genomic as well as metabolome
data [13].
Based on the propensity score matching approach (PSM), the

current study aimed to screen signature biomarkers associated
with DR occurrence utilizing metabolomics techniques as well as
machine learning algorithms and to develop an ideal nomogram
model for predicting the personalized likelihood of DR in type 2
diabetic patients.

METHODS
Subjects
This is a propensity score matching (PSM) based case-control study. Of the
950 participants enrolled from the second affiliated hospital of Wenzhou
Medical University (WMU) and the first affiliated hospital of Anhui Medical
University (AMU), 755 were healthy volunteers, 112 were determined as
type 2 diabetes mellitus (T2DM) without DR, and 83 were diagnosed as DR
during August 2017 to June 2018 (Fig. S1). All recruited participants had
received careful ophthalmic examination and taken retinal photographs by
two independent trained ophthalmologists. Fundus color photographs
were taken using a Non-Mydriatic Retinal Camera from TOPCON TL-230D,
Japan. If the two ophthalmologists had different diagnostic opinions, they
were handed over to the third chief physician for the final diagnosis.
The inclusion criteria were as follows: (1) T2DM; (2) ≥35 years old; (3)

voluntary participation and signed informed consent form. Participants
with the following situations would be excluded: (1) any other eye diseases
or history of eye surgery; (2) cancer, infectious disease, mental disorder,
heart failure, severe hypertension (systolic blood pressure ≥180mm Hg or
diastolic blood pressure ≥110mm Hg) and any other severe chronic
systemic disease; (3) poor quality of fundus photographs, which were not
clear for DR diagnosis. Only those following each of the inclusion criteria
and none of the exclusion criteria were potential participants.
To avoid various types of bias due to confounding factors or uneven

data distribution, PSM was used to match the DR and DM groups
according to a 1:1 ratio for age, sex, body mass index (BMI) and glycated
hemoglobin (HbA1c), and to match the DM and healthy control groups
were matched for age, sex and BMI, and 69 blocks were obtained for
inclusion in the analysis. The sample size was sufficient to meet statistical
requirements and guarantee the reliability of our findings, and the sample
size and power estimations were specifically described in our previous
studies [14, 15].
The 69 blocks were randomly divided into a training set and a test set

according to the principle of independent homogeneous distribution in
the ratio of 7:3, and the former was used for the construction of the early
identification model, and the latter was used for the evaluation of the
model identification effect. Before the beginning of this study, the protocol
had been approved by the Ethics Committee of the Eye Hospital of WMU
[Number: KYK (2017) 46] and confirmed by the two associated hospitals. All
participants in the current study were voluntary and had provided written
informed consent.

Serum collection and preparation
A detailed description of this part could be found in our previous work [16].
In brief, participants were fasted for at least 8 (8–10) hours before
obtaining blood samples, which were collected between 8:00 and 10:00 in
the morning from study participants. The samples were thawed on ice and
three volumes of ice-cold methanol were added to one volume of serum.
The mixture was whirled for 3 min and centrifuged with 12,000 r/min at
4 °C for 10min. The supernatant was collected and centrifuged at 12,000 r/
min at 4 °C for 5 min. Finally, the supernatant was collected again for the
following determination of metabolites via ultra-high performance liquid
chromatography-electrospray ionization tandem mass spectrometry
(UPLC-ESI-MS/MS) system.

UPLC-ESI-MS/MS metabolomics profiling
The endogenous small molecule metabolites in the collected supernatant
were carefully assessed by trained professional technicians in the central
laboratory using the UPLC-ESI-MS/MS system (UPLC, Shim-pack UFLC
SHIMADZU CBM A system, https://www.shimadzu.com/; MS, QTRAP®
6500+ System, https://sciex.com/). The analytical conditions were as
follows: UPLC: column, Waters ACQUITY UPLC HSS T3 C18 (1.8 µm,
2.1 mm× 100mm); column temperature, 40 °C; flow rate, 0.4 mL/min;
injection volume, 2 μL; solvent system, water (0.04% acetic acid):
acetonitrile (0.04% acetic acid); gradient program, 95:5 V/V at 0 min,
5:95 V/V at 11min, 5:95 V/V at 12min, 95:5 V/V at 12.1 min, 95:5 V/V at
14min. Linear ion trap (LIT) and triple quadrupole (QQQ) scans were
acquired on a triple quadrupole-linear ion trap mass spectrometer
(QTRAP), QTRAP® 6500+ LC-MS/MS System, equipped with electrospray
ionization (ESI) Turbo Ion-Spray interface, operating in positive and
negative ion mode and controlled by Analyst 1.6.3 software (Sciex). The
ESI source operation parameters were as follows: source temperature
500 °C; ion-spray voltage (IS) 5500 V (positive), −4500 V (negative); ion
source gas I (GSI), gas II (GSII), curtain gas (CUR) were set at 55, 60, and
25.0 psi, respectively; the collision gas (CAD) was high. Instrument tuning
and mass calibration were performed with 10 and 100 μmol/L
polypropylene glycol solutions in QQQ and LIT modes. A specific set of
multiple reaction monitoring transitions was monitored for each period
according to the metabolites eluted within this period.

Data preprocessing
The characteristic departure of each substance was screened by the triple
quadrupole, and the signal strength of the characteristic departure was
obtained. For the extraction of all metabolites, the off-peak peaks were
integrated into the sub-peak integral respectively, and the “spectral peak
advance” integral of the same metabolites in different samples was
corrected [17].
To assess the reliability of the determination, quality control (QC)

samples were prepared by mixing the samples to be tested in advance.
One QC sample was inserted into the determination sequence at every
20 samples to be tested. Metabolites associated with the coefficient of
variation (CV) >30% in the QC samples were excluded in the following data
analysis [18]. Features with missing values of <20% were filled with half of
the lowest detected values [18]. Otherwise, they would be discarded [19].
Furthermore, the approach of variance filtering was performed and
features with variances equal to 0 were also deleted. In addition, we used a
mutual information method to capture correlated features (either linear or
nonlinear relationships) (Fig. 1A).

Statistical analysis
Clinical examination data. Continuous variables with normal distribution
or approximately normally distributed were described as mean ± standard
deviation (SD), and analysis of variance for a randomized block design or
the paired t test was applied to compare the differences among the cases
and controls. Continuous variables not normally distributed were
described as median (1st quartile, 3rd quartile), and Friedman M or
Wilcoxon signed-rank tests were used to comparing across groups.
Categorical data were presented as the number of cases (%) and the
McNemar-Bowker test was utilized to assess the comparability of the
groups.

Metabolomics-based indicator detection. To identify the prognostic
biomarkers and develop a predictive model, we performed eight different
ML algorithms including K-Nearest Neighbors (KNN), Gaussian Naive Bayes
(GNB), Logistics Regression (LR), Decision Tree (DT), Random Forest (RF),
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XGboost (XGB), Neural Networks (NNs) and Support Vector Machine (SVM).
The 10-fold cross-validation was used as a model evaluation strategy to
avoid over-fit. The parameters of each model were optimized by the
related learning curve and grid search approach. A Nonparametric
Friedman test was used to compare the performance of the eight machine
learning models mentioned above. When the test was statistically
significant (p < 0.05), an additional Nemenyi test was used to conduct
further post hoc analysis. The best model was screened by the
comprehensive comparisons of each model’s performance, simplicity,
and interpretability. In the end, metabolic biomarkers were determined
based on the final predictive model.

Interpretable machine learning-derived nomogram model construction. To
effectively distinguish DR cases from T2DM patients, a combined predictive
model including detected differential metabolites and some clinical
indicators was established based on multiple conditional logistic regres-
sion and presented with a nomogram. Moreover, we used the area under
the curve (AUC) of the receiver operating characteristic (ROC) analysis to
evaluate its discrimination of the nomogram, and the calibration curve and
Hosmer–Lemeshow test to evaluate the calibration. In addition, the
nomogram’s clinical utilities were also carefully investigated using decision
curve analysis to make up for the ROC curves’ limitations, which could not
achieve the best sensitivity and specificity at the same time. Furthermore,
potential overfitting was also well considered in the current study. Finally,
the likelihood of DR for each participant was estimated by the nomogram
based on the training set, and extensively validated in a separate testing
set, respectively.
According to the principles of data mining and predictive model

construction, the dataset was randomly split into a training set and another
independent testing set, at a ratio of 7:3, using the train_test_split
approach in scikit-learn package of Python 3.8.7 (Copyright © 2001–2020
Python Software Foundation). All data management and statistical
analyses were carried out using Stata/MP 15.1 for windows (Copyright
1985–2017 StataCorp LLC, College Station, Texas 77845 USA). Figures were
drawn with Python 3.8.7 and R-Studio for windows (Version 1.4.1103 ©
2009–2021 Rstudio, PBC). All tests were two-sided and p value < 0.05 was
set as the significant level.

RESULTS
Study participants determination and their characteristics
Depending on the PSM approach, a total of 69 blocks,
comparable in clinical characteristics except for systolic blood
pressure (SBP) and duration of diabetes, were obtained. The mean
age of the matched participants was 56.7 years with a standard
deviation of 9.2, and 61.4% were males. Among those 69 DR
patients, 9 (13.0%), 31 (44.9%), 20 (29.0%), and 9 (13.0%) were
classified into mild, moderate, severe NPDR and PDR, respectively.
The demographic and clinical characteristics of the participants
are given in Table 1.

Data preprocessing and feature screening
The flowchart of data preprocessing and feature screening from
the metabolomics data could be found in Fig. 1A. Among a total of
532 metabolites detected by UPLC-MS/MS system, 483 features
had CV under 30% in the QC samples, and 449 with missing values
less than 20%. In the end, 380 features were included in the final
data analyzes after the screening via the variance filtering and
mutual information methods.

Construction and evaluation of machine learning model
Table S1 shows the classification results of the parameter
optimization model based on the Sklearn package in Python. It
can be seen that RF and XGBoost, which are typical algorithms
under the framework of Bagging and Boosting in the integrated
algorithm, had excellent classification capabilities. Accuracy,
precision, recall, and F1-score were all above 95%. NNs also had
excellent classification performance. As typical representatives of
interpretable machine learning, the model performance of DT and
LR was close to RF, XGBoost, and NNs, with each evaluation index
higher than 90%. KNN, GNB, and SVM were slightly inferior.
The accuracy of the 10-fold cross-validation of eight machine

learning models was tested by Friedman. As shown in Fig. 1B, the

Fig. 1 Data preprocessing and selection of machine learning models. Metabolomic data preprocessing work flow (A), accuracy heat map of
machine learning model (B), decision tree (D), and its hyper-parameter learning curve (C). Notes: C Maximum depth parameter (max_depth)
selection in the decision tree model used hold-out and 10-fold cross-validation based on the hyper-parameter learning curve; D A decision
tree model based on the training set to distinguish the healthy control group, DM group, and DR group. Abbreviations: QC quality control, CV
Coefficient of variation, KNN K-Nearest Neighbors, GNB Gaussian Naive Bayes, LR Logistics Regression, DT Decision Tree, RF Random Forest,
XGB XGBoost, DNN Neural Networks, SVM Support Vector Machine, MEDP545 2-pyrrolidinone, MEDN430 thiamine triphosphate, Control
healthy control group, DR diabetic retinopathy group, DM diabetes mellitus without DR group.
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accuracy of the models was not the same (P < 0.05). The Nemenyi
test was further used for the pair-wise comparison of the accuracy
of the eight models. From the heat map of the model comparison,
it could be seen that the model performance of KNN and GNB was
inferior to RF, XGBoost, and NNs (P < 0.05). There was no
significant difference among the other models (P > 0.05).
Considering the interpretability of the model, DT and LR have

inherent advantages, and in this study, the performance of these
two models was not inferior to other models. Compared with LR,
DT model was more concise. Therefore, DT was selected for
further analysis considering the performance, interpretability, and
simplicity of the model.

Constructing a decision tree and verification of prediction
accuracy
As we all know, the parameter adjustment strategy has a huge
influence on the DT, and the correct strategy is the core of
optimizing the decision tree algorithm. First of all, we used the

hyper-parameter learning curve to determine the maximum depth
of the tree. As shown in Fig. 1(C), when the parameter
max_depth= 2, the model had the highest accuracy. Furtherly,
we used grid search technology to determine the optimal
parameters of the tree model (criterion= ‘gini’, min_samples_leaf=
1, min_samples_split= 2).
It could be seen from Fig. 1(D) that the root node of DT was

2-pyrrolidinone. Participants with 2-pyrrolidinone peak areas over
9,910,000.0 were divided into the healthy control group. The
second node for the branch of 2-pyrrolidinone under 9,910,000.0
was thiamine triphosphate (ThTP). All participants with ThTP peak
area under 24350.0 were classified as DR patients, otherwise, they
were classified as DM patients.
Application of the CART DT yielded good discrimination of DR in

the training set (accuracy, 94.6%). To evaluate the generalization
ability of this DT, we used the hold-out and 10-fold cross-
validation to assess it at the same time (Table S2). We found that
the accuracy of DT evaluated by the hold-out and cross-validation

Table 1. Clinical and demographic characteristics of the study population.

Training set Testing set

Variables Control DM DR Control DM DR

Age, years 56.0 (54.0,62.0) 53.0 (48.0,59.0) 57.0 (54.0,65.0) 58.3 ± 7.0 56.0 ± 12.0 57.0 ± 10.0

Male, # (%) 36 (73.5) 29 (59.2) 26 (53.1) 17 (85.0) 9 (45.0) 10 (50.0)

BMI, kg/m2 24.5 (23.4,26.7) 23.9 (22.1,27.4) 24.1 (22.4,27.0) 24.7 (23.2,26.9) 24.8 (23.1,26.1) 25.2 (22.4,26.2)

Fpg, mmol/L 5.4 (5.0,5.7) 8.3 (6.9,12.0) 8.9 (6.7,10.9) 5.3 (5.1,6.4) 8.6 (6.8,11.6) 7.3 (5.7,9.1)

HbA1c, % 5.7 (5.4,6.0) 9.9 (8.2,12.0) 9.7 (8.7,10.9) 5.9 ± 0.8 9.9 ± 2.0 10.3 ± 1.9

LDL, mmol/L 2.9 ± 0.8 2.7 ± 0.9 2.6 ± 1.1 2.7 ± 0.7 2.4 ± 1.2 2.5 ± 1.0

HDL, mmol/L 1.1 (1.0,1.3) 1.1 (0.8,1.4) 1.1 (0.9,1.4) 1.1 (1.0,1.2) 0.9 (0.8,1.2) 1.0 (0.8,1.2)

TG, mmol/L 2.0 (1.5,3.0) 1.6 (1.0,2.1) 1.4 (1.0,1.7) 1.9 (1.4,2.7) 1.8 (1.5,2.4) 1.5 (1.1,2.3)

TC, mmol/L 5.0 ± 0.9 4.8 ± 1.1 4.6 ± 1.5 4.9 ± 0.9 4.5 ± 1.3 4.3 ± 1.3

hypertension, # (%) 17 (34.7) 12 (24.5) 21 (42.9) 2 (10.0) 10 (50.0) 10 (50.0)

Systolic BP, mm Hg 124.8 ± 14.4 136.8 ± 19.7 134.5 ± 17.6 140.1 ± 24.8

Diastolic BP, mm Hg 78.0 (73.0,86.0) 76.0 (70.0,80.0) 82.6 ± 10.3 80.6 ± 11.5

Duration of diabetes, years 8.1 ± 6.2 12.2 ± 6.1 9.9 ± 6.6 12.1 ± 7.8

Education, # (%)

Junior high school or below 25 (53.2) 23 (51.1) 10 (52.6) 13 (65.0)

High school or above 22 (46.8) 22 (48.9) 9 (47.4) 7 (35.0)

Occupation, # (%)

Manual workers 23 (48.9) 22 (50.0) 8 (44.4) 12 (60.0)

Mental worker 10 (21.3) 8 (18.2) 5 (27.8) 3 (15.0)

Both 14 (29.8) 14 (31.8) 5 (27.8) 5 (25.0)

History of diabetes, # (%) 17 (34.7) 25 (51.0) 10 (50.0) 8 (40.0)

Smoking habits, # (%)

Non-smokers 29 (61.7) 23 (51.1) 12 (63.2) 13 (65.0)

Current smokers 13 (27.7) 16 (35.6) 6 (31.6) 5 (25.0)

Ex-smokers 5 (10.6) 6 (13.3) 1 (5.3) 2 (10.0)

Alcohol consumption, # (%)

Non-drinkers 22(46.8) 20(44.4) 11(57.9) 9(45.0)

Current drinkers 23(48.9) 19(42.2) 7(36.8) 8(40.0)

Ex-drinkers 2(4.3) 6(13.3) 1(5.3) 3(15.0)

BMI body mass index, FPG fasting plasma glucose, HbA1c glycated hemoglobin, HDL high-density lipoprotein, LDL low-density lipoprotein, TG triglyceride, TC
total cholesterol, Systolic BP systolic blood pressure, Diastolic BP diastolic blood pressure, Control healthy control group, DM T2DM without DR participants, DR
T2DM patients with DR.
Continuous data obeying normal or similar normal distribution were described as mean ± standard deviation (SD) and variance analysis of randomized block
design or the paired t-test was applied to compare the differences between the three/two groups. Otherwise, median (1st quartile, 3rd quartile) and Friedman
M or Wilcoxon signed-rank tests were used. Categorical data were presented as a number of cases (%) and the McNemar-Bowker test was utilized to compare
the differences between the groups.
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were 93.3% and 94.3%, respectively. Precision, recall, and f1-score
were also higher than 90%.

Combination of clinical and metabolic biomarkers for DR
recognition
Identifying DR cases from T2DM patients efficiently was the major
objective of this study. As shown in Fig. 1D, ThTP could achieve
this goal well, and the correlation analysis once again verified this
result (Table S3). After adjusting for SBP and the duration of
diabetes, the association between ThTP and DR was significant.
With each increase in standard deviation (SD), the probability of
DR occurrence was reduced by 100% [OR:0.00, 95%CI (0.00, 0.03);
P < 0.001]. According to the cutoff points found by the DT model,
the probability of developing DR in people with ThTP level less
than 24350 was 311.32 times that in those whose serum ThTP
were above or equal to 24350 [OR: 311.32, 95%CI (32.75, 2959.78);
P < 0.001]. In the multivariable analysis, the probability of
occurrence of DR increased by 23% for every year extension of
the disease duration [OR: 1.23, 95%CI (1.03, 1.48); P= 0.023]; and
for every additional SD, increased by 228% [OR: 3.28, 95% CI (1.05,
10.27); P= 0.042]. According to the cutoff point found by the
cubic spline curve (Fig. S2), the probability of DR in people with a
disease course longer than 10 years is 22.95 times that of a
population shorter than 10 years [OR: 22.95, 95% CI (1.73,304.65);
P= 0.018].
Although the SBP did not reach statistical significance in the

multivariable analysis, considering its clinical importance, we still
included it in the model analysis. Then, we combined the above 3
biomarkers to develop a screening model and displayed it as a
nomogram diagram (Fig. 2A) in the training set. The calibration
curve of the nomogram to predict the DR risk in T2DM patients
showed nice agreement with a non-significant Hosmer–Lemeshow
Chi-square of 2.68 (P= 0.953) and 3.99 (P= 0.858) in the training
and testing set (Fig. S3), respectively. These results all show that
the model had good consistency.
Several models for early identification or diagnosis of DR have

been reported [20–23]. The ability of each model was assessed by
AUC (Table 2, Fig. 2). Among them, the AUCs for the nomogram in
either the training set (AUC, 0.989; 95% CI, 0.974–1.000) or the
testing set (AUC, 0.985; 95% CI, 0.954–1.000) were all significantly
higher than those of previous models (P < 0.05). In addition, the
cutoff value of the total points of the model in the training set was
79.11. According to the cutoff value, DM patients could be divided
into high-risk and low-risk groups. And the sensitivity was 97.96%,
the specificity was 93.88%, the accuracy was 95.92%, the positive
predictive value was 94.12%, the negative predictive value was
97.87%, and the Youden index was 0.92 (Table 2). The model still
had excellent classification ability in the testing set. The sensitivity,
specificity, accuracy, positive predictive value, negative predictive
value, and Youden index were 95.00%, 100.00%, 97.50%, 100.00%,
95.24%, and 0.95, respectively (Table 2). As shown in Fig. 2,
whether in the training set or testing set, the nomogram model
performed outstandingly in various predictors regardless of the
threshold, which ensured maximum clinical benefit.
In particular, we selected DR patients with different degrees

from the DR group for sensitivity analysis. The above-established
nomogram model still had an excellent ability in distinguishing
diabetic without DR participants and patients with mild DR, and
AUCs were 0.997 (95% CI, 0.987–1.000) and 1.000 (95% CI,
1.000–1.000) in the training set and testing set (Fig. S4). Similarly,
the AUCs for moderate DR were 1.000 (95% CI, 1.000–1.000) and
0.964 (95%CI, 0.889–1.000), and the severe is 0.968 (95%CI,
0.925–1.000) and 1.000 (95% CI, 1.000–1.000).

DISCUSSION
From the serum metabolomic analysis of non-diabetic controls
and diabetic patients with and without DR, a lot of metabolites

were selected as candidate biomarkers through standardized
data preprocessing, and a DT model (including 2-pyrrolidinone
and ThTP) was constructed based on the CART algorithm (Fig.
1D). These two metabolites belong to the glutamate metabo-
lism pathway, and glutamate metabolism is known to be closely
related to insulin resistance and secretion [20, 24]. Furthermore,
by integrating clinical and metabolomics indicators, including
diabetes duration, SBP, and ThTP, the constructed nomogram
model could well select DR patients from T2DM patients and
had a proper calibration.

Comparison with other studies on DR
The occurrence and development of disease is a nonlinear
dynamic process through health status, pre-disease, and disease
stage [11, 25]. Although no typical clinical symptoms and signs
occurred in the early stage of the disease, significant changes still
occurred in the pathophysiology [26]. There is a period of time
between the development of diabetes and the first clinical signs
of DR. Therefore, early detection of subclinical DR can provide
timely identification and treatment for patients at higher risk of DR
progression. Several models to early detect the risk of DR have
been developed, such as the model of Rhee et al. [20], Aspelund
et al. [23], Hippisley-Cox and Coupland [22], and Dagliati et al. [21].
In particular, Rhee and his colleagues used the ratio of glutamine
and glutamic acid as a predictor of DR risk. Similarly, our model
mainly used substances related to glutamate metabolism for early
identification, but our model had a higher degree of discrimina-
tion and calibration (Fig. 2). A common feature of the other three
models is that they only contain demography and clinical
characteristics. This might be the main reason for their unsatisfac-
tory prediction results.

Biological plausibility and implications
We could see from our DT model that 2-pyrrolidone was a perfect
biomarker to distinguish diabetic patients from healthy people,
and at the same time, ThTP could screen DR patients from diabetic
patients.
2-pyrrolidone is the lactam cyclization product of γ-aminobu-

tyric acid (GABA) [27], which can be produced in the human body
through various routes. It is recognized that the main route of
GABA formation is through the decarboxylation of glutamic acid,
which then spontaneously generates 2-pyrrolidone [28]. Studies
have shown that 2-pyrrolidone had free radical scavenging activity
[29]. ThTP, a triphosphorylated derivative of vitamin B1, is a non-
coenzyme form of thiamine [30]. However, the widespread
existence of ThTP from prokaryotes to mammals suggests that it
may play a fundamental role in cell metabolism or cell signal
transduction [31]. Besides, ThTP acted as a glutamate dehydro-
genase (GLDH) activator at micromolar concentrations [32] and
was considered to be an allosteric activator of GLDH [33], and this
effect has been supported in cell experiments [34]. In addition,
some people thought that ThTP had a specific neurophysiological
effect [35], and more and more evidence showed that retinal
neurodegeneration was an early event in the pathogenesis of DR
and might be involved in the development of microvascular
abnormalities [36].
As shown in Fig. S5, 2-pyrrolidone and ThTP were related to

glutamate metabolism. Glutamate metabolism is connected to
various cell functions, such as protein synthesis, pancreatic β-cell
insulin secretion, liver, and kidney gluconeogenesis, and neuro-
transmitter synthesis [37]. In particular, glutamate concentration is
also one of the most critical indicators of the diabetic retina [20].
Some studies have shown that the accumulation of glutamate in
diabetes can lead to the development of DR [38–40]. Furthermore,
from the healthy control, DM to DR groups, ThTP and the
substances in the tricarboxylic acid cycle (succinic acid, fumaric
acid, and citramalic acid) all showed a “∪“ or “∩“ shape. We
speculate that at high glucose levels, a decrease in ThTP predicted
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Fig. 2 Development and validation of the nomogram model. Developed nomogram for diabetic retinopathy (A), and the ROC curve and
decision curves analysis curve of the Nomogram model, Rhee et al. model, Aspelund et al. model, Hippisley-Cox and Coupland model, and Dagliati
et al. model in the training set (B, C) and testing set (D, E). Notes: nomogram model, thiamine triphosphate, systolic blood pressure, duration of
diabetes; Rhee et al. model, glutamine/glutamate ratio; Aspelund et al. model, gender, systolic blood pressure, duration of diabetes and glycated
hemoglobin; Hippisley-Cox and Coupland model, age, BMI, systolic blood pressure, cholesterol/high-density lipoprotein ratio, glycated hemoglobin;
Dagliati et al. model, age, gender, duration of diabetes, BMI, glycated hemoglobin, hypertension, smoke; none, net benefit when all patients are
considered as not having the outcome (diabetic retinopathy); all, net benefits when all patients are considered as having the outcome. The
preferred model is the model with the highest net benefit at any given threshold. Abbreviations: MEDN430 thiamine triphosphate, sBp systolic
blood pressure, DM_duration duration of diabetes.
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changes in early symptoms of the retina. Although the direct
relationship between 2-pyrrolidone and ThTP and DR has not
been well studied, we could be cautious that the level of these
two substances may be closely related to the occurrence and
development of DR, and used as a valid biomarker for early
screening of DR.

Strengths and limitations
Our results have some notable differences from previous studies.
With the unprecedented accumulation of information, the
relevance of machine learning is increasing, and new algorithms
and tools are constantly emerging. According to the no free lunch
theorem [41], a universal optimal performance optimization
algorithm is rare. So, we developed a predictive model mainly
based on the data attributes and experimental objectives in the
present study. Furthermore, as many machine learning model was
unexplainable, we applied CART DT, an interpretable model, for
feature selection and model construction, which not only gave full
play to the advantages of machine learning in dealing with high-
dimensional data but also made our model easy to be understood
and accepted. It also decreased the problems of traditional
statistical methods for data distribution with the analysis of
metabolomics data and avoided the inflation of the type I error
with the multiple comparisons. At the same time, standardized
data preprocessing procedures and parameter adjustment meth-
ods could solve the major shortcoming of the overfitting in the
CART DT model. In practice, the performance of the decision tree
model in our study had been improved. In addition, a PSM
approach was also applied to adjust for influences induced by
some demographic and clinical features as much as possible. In
statistics, PSM was believed to be able to highly decrease the
impacts due to some potential confounding factors in the
findings. Finally, the performance of the constructed model was
comprehensively assessed by sufficient evaluations of the
discrimination, calibration, and clinical values. We believed that
the proposed nomogram model (including diabetes duration,
systolic blood pressure, and ThTP) could distinguish DR cases from
T2DM patients precisely and efficiently, and was convenient for
clinical application.
Limitations also existed in this study. As could be found in the

manuscript, few PDR patients were also included in the DR cases,
which might partly increase the uncertainty of several biomarkers
unsuitable for DR early identification to some extent. However, in
the sensitivity analysis only including NPDR and T2DM patients
without DR, the nomogram model we proposed still showed
outstanding capabilities in both the training and testing sets. In
addition, our results were based on the cross-sectional analysis,
which made it difficult to explain the potential causal relation-
ships. Nevertheless, it should be noted that the objective of this
study was to propose an ideal metabolomics-based predictive
model for detecting DR cases among T2DM patients effectively
rather than proving the causal links between the initiation of DR
and metabolites. It would be brilliant if further studies could not
only confirm our findings but also clarify the metabolic mechan-
ism of DR initiation and development.

CONCLUSION
In summary, with an extensively targeted serum metabolomics
analysis and interpretable machine learning model, this study
suggests that 2-pyrrolidone and ThTP are the major characteristics
of serum metabolites of T2DM and can not only precisely
distinguish T2DM patients from non-diabetic participants but also
effectively detect DR cases from T2DM patients without DR. ThTP
can be served as an acceptable specific sensitive biomarker of DR
occurrence. Furthermore, a machine learning-derived nomogram
model, integrated with systolic blood pressure, duration of
diabetes, and ThTP, has an excellent ability to distinguish DRTa
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from T2DM patients precisely and efficiently. Our findings provide
new insight into the clinical and public health policy relevance of
precise administration and control of DR.

DATA AND MATERIALS AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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