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Identification of misdiagnosis 
by deep neural networks 
on a histopathologic review 
of breast cancer lymph node 
metastases
Cancan Chen1,9, Shan Zheng2,3,9, Lei Guo2, Xuebing Yang4, Yan Song2, Zhuo Li2, Yanwu Zhu1, 
Xiaoqi Liu2, Qingzhuang Li1, Huijuan Zhang2, Ning Feng1, Zuxuan Zhao2, Tinglin Qiu5, 
Jun Du6, Qiang Guo7, Wensheng Zhang4, Wenzhao Shi1, Jianhui Ma8* & Fenglong Sun1*

The frozen section (FS) diagnoses of pathology experts are used in China to determine whether 
sentinel lymph nodes of breast cancer have metastasis during operation. Direct implementation of 
a deep neural network (DNN) in clinical practice may be hindered by misdiagnosis of the algorithm, 
which affects a patient’s treatment decision. In this study, we first obtained the prediction result of 
the commonly used patch-DNN, then we present a relative risk classification and regression tree (RRC​
ART​) to identify the misdiagnosed whole-slide images (WSIs) and recommend them to be reviewed 
by pathologists. Applying this framework to 2362 WSIs of breast cancer lymph node metastasis, test 
on frozen section results in the mean area under the curve (AUC) reached 0.9851. However, the mean 
misdiagnosis rate (0.0248), was significantly higher than the pathologists’ misdiagnosis rate (p < 0.01). 
The RRC​ART​ distinguished more than 80% of the WSIs as a high-accuracy group with an average 
accuracy reached to 0.995, but the difference with the pathologists’ performance was not significant 
(p > 0.01). However, the other low-accuracy group included most of the misdiagnoses of DNN models. 
Our research shows that the misdiagnosis from deep learning model can be further enriched by our 
method, and that the low-accuracy WSIs must be selected for pathologists to review and the high-
accuracy ones may be ready for pathologists to give diagnostic reports.

Deep neural networks (DNNs) have shown a great progress and promise in image classification1. For example, 
the inception network2, ResNet3,4 and Xception5 perform similar to or better than humans in the ImageNet 
(http://​www.​image-​net.​org/) classification task. The Cancer Metastases in Lymph Nodes Challenge 2016 (CAME-
LYON16, https://​camel​yon16.​grand-​chall​enge.​org/) has greatly promoted the implementation of DNNs for whole 
slide images (WSIs) in cancer histopathology and the gradual development of the patch-DNN method6,7: at the 
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patch level, a trained DNN model is used to generate a heatmap, while at the WSI level, the results of diagnosis 
are directly given through max-pooling8, or features for heatmaps are extracted, and then the diagnosis results 
for the WSIs are generated by different machine-learning classifiers9,10. DNN training tricks8 and architecture 
updates11,12 are also dependent on the patch-DNN. The encouraging results have been obtained for the prostate 
(AUC, 0.986), skin cancer basal cell carcinoma (AUC, 0.986), and axillary lymph nodes (AUC, 0.965)10, another 
study of prostate cancer with overall accuracy of 0.97313, a bladder cancer dataset (AUC, 0.95)12, axillary lymph 
node data from CAMELYON16 (AUC > 0.99)6, gastric cancer (sensitivity, near 100%, specificity, 80.6%)14 and 
lung adenocarcinoma and squamous cell carcinoma (AUC 0.9594 and 0.9414)15 , cervical cancer (93.5% Speci-
ficity and 95.1% Sensitivity)16. The patch-DNN, acting as a diagnostic assistant tool, can significantly improve 
a pathologist’s work efficiency17. However, misdiagnosis is an inevitable limitation of the algorithm and hinder 
the broad application of this assistant tool in pathology.

There are two strategies to improve the model misdiagnosis issue: increasing accuracy and decreasing mis-
classification. To overcome this problem, most literatures6,8–13,15,16 were based on improving the classification 
accuracy performance of patch-DNNs, but the encouraging results achieved in recent years have reached or 
are close to its ceiling. To decrease misclassification, precious work applied screening method for enrichment 
of malignant WSIs and disregarding the benign ones by adjusting probability threshold, this method achieved 
the removal of more than 75% of the benign from the workload of a pathologist without reducing in sensitivity 
on prostate cancer10, similarly, Song et al. achieved a sensitivity near 100% and an average specificity of 80.6% 
on gastric cancer14. however, this method cannot obtain good generalizability to be widely used in different 
dataset. In this study, we used a new machine learning method based on the results of patch-DNN prediction 
to reduce the error rate. We presented a relative risk classification and regression tree (RRC​ART​) to identify the 
misdiagnosis made by the commonly used patch-DNN and evaluated the identification performance by a Pois-
son distribution estimated from pathologists’ misdiagnosis data. To develop the new method and avoid blind 
application without obtaining the slightest insight into the clinical problem, we chose the diagnosis of sentinel 
lymph node (SLN) metastasis of breast cancer based on frozen sections (FSs) as a practical clinical scenario. On 
one hand, the encouraging results of patch-DNNs have been obtained for the diagnosis of axillary lymph node 
metastasis in the breast. It is the simplest diagnosis since it yields the two results of positive and negative, which 
is suitable for computer implementations. On the other hand, the diagnosis of sentinel lymph node metastasis 
from breast cancer based on FSs has been widely used to aid in the selection of the operation mode in China18. 
Third, the distribution of health resources in China is unbalanced, which the eastern region is obviously more 
than that in the central and western regions, and there are more diagnosis and treatment patients19. Artificial 
intelligence is needed to assist the related diagnosis and treatment activities. Furthermore, diagnoses with FS 
may be the most difficult task for pathologists due to the different processes used to form them20–22. All of these 
issues may hinder promoting some operations.

We hypothesized that the identification of misdiagnosis from the patch-DNN would reveal the same accu-
racy in most sections as the pathologists. First, patch-DNN models were used to diagnose WSIs. Then, all the 
misdiagnoses from these WSIs were separated by RRC​ART​ (Fig. 1). The identification performance was finally 
evaluated by a Poisson distribution estimated from pathologists’ misdiagnosis data (Fig. 1). Through these pro-
cesses, the diagnosis report may be finished by the help of a machine-learning algorithm, either recommended 
for review by a pathologists or ready for pathologists to give diagnostic reports. This method identifies the range 
of application of the patch-DNN in the diagnosis of lymph node metastasis from breast cancer and therefore 
may maximally improve the repeatability and efficiency of diagnosis.

Results
Influence of the sampling ratio and DNN on the classification metrics.  Considering that the 
sampling ratio and different commonly used DNN architecture may impact the WSI classification metrics, we 
designed 18 patch-DNN models based on the sampling ratio and patch-DNN method (Fig. 1). We found that 
the average values of the sensitivity, precision and F1 score of the 18 different models were all above 0.92, while 
the average values of the specificity, accuracy and AUC were above 0.97. Two-way ANOVA showed that the 
sampling ratio, DNN architecture and their interaction had no significant effect on the classification metrics 
(Table S1).

Misdiagnoses made by patch‑DNN models.  To summarize the statistical characteristics of misdiag-
nosis among the 18 models, we found the total number of misdiagnosed WSIs was 104, including 60 false-
positive and 44 false-negative diagnoses, after the overlapped misdiagnosed samples in the different models 
were removed. To analyze the reasons for the inconsistency in the diagnoses between these 18 models and the 
pathological diagnosis of sentinel lymph nodes, the pathology review group reviewed the FSs that were misdiag-
nosed by the above models. In one FS, the cut edge of a mammary gland was mistaken for a sentinel lymph node, 
and another model erroneously classified a lymph node without metastasis as a lymph node with metastasis 
(Fig. 2A). These two WSIs were obtained by taking an incorrect FS during the process of section scanning. In 
addition, one WSI was difficult to diagnose based only on FSs. In this case, we observed a few suspicious carci-
noma cells in the capsule of the lymph node in the FS, while these cells disappeared in the deep section in the 
paraffin section. Therefore, we could not obtain a definitive diagnosis on this FS. After these three samples were 
removed, the model made prediction errors from the remaining 101 WSIs, including 41 false negatives (Fig. 2B) 
and 60 false positives (Fig. 2C).

Notably, 30 WSIs (28.85%) were predicted incorrectly by more than 10 of the 18 models, indicating that the 
patch-DNN method misclassified certain samples during pathological diagnosis. It will be clinically necessary 
to refine the patch-DNN to further improve its diagnosis performance.
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Evaluation of the misdiagnosis of the patch‑DNN by using a Poisson test.  To evaluate the per-
formance of the patch-DNN in a statistical manner, we first determined the erroneous diagnosis frequency by 
comparing the model performance with that of the experienced pathologists. We selected 160 sections from 
the test set, including 66 normal, 32 macrometastasis and 62 micrometastasis sets (Fig. 1), and then invited 15 
experienced pathologists (attending or above doctors with 6–33 years of working experience) from CICAMS 
to review the FSs manually to establish the Poisson distribution model according to the frequency of incorrect 
diagnosis (Fig. 3).

We compared the prediction results of the 18 patch-DNN models with the diagnoses of the 15 pathologists 
(Fig. 3). The results showed that the patch-DNN models produced significantly higher errors for normal and 
micrometastasis WSIs (p < 0.01, Table S2) than those in pathologists. In addition, the five classification evaluation 
metrics, namely, sensitivity, specificity, precision, accuracy, and F1 score, were significantly different from those 
of the pathology experts (p < 0.01, Table S3). All of the above results suggest that the diagnostic accuracy of the 
pathologist consensus was higher than the prediction performance of the DNN models.

High‑accuracy predicted WSIs can be separated from low‑accuracy WSIs by RRC​ART​.  To make 
patch-DNN models meet the diagnostic requirements for FSs, we divided the prediction results of the patch-
DNN models into two categories: high-accuracy WSIs and low-accuracy WSIs (Fig. 1, Supplementary materials).

Based on the above assumption, we labeled each WSI again according to the prediction results of each patch-
DNN model and the ground truth (Fig. 1). The number of incorrectly predicted WSIs was far smaller than the 
number of correctly predicted WSIs as a result of imbalanced data with a ratio of 1:41 on average (Table S4). We 
designed a classification algorithm combining the relative risk ratio and classification and regression tree (Fig. 1, 

Figure 1.   Overview of the Expert-DNN framework presented in this study. See Materials and Methods for 
complete details. There was two steps in this framework. In step 1, the patch-DNN workflow includes patch and 
WSI classification. Patches were extracted from tumor and normal regions of WSIs and as input data for DNN 
training. Patch coordination and probability generated by the model were then used for heatmap construction. 
A machine learning model (random forest) was trained based on the features extracted from the WSI heatmap 
and given a WSI-level prediction. The three sampling ratios (1:3, 1:5 and 1:7) correspond to three DNNs 
(InceptionV3, ResNet101 and Xception), respectively, and the experiment is repeated once. Therefore, we can 
obtain 18 patch-DNN models. In step 2, a Poisson distribution for the pathology experts and a RRC​ART​ were 
constructed. For the Poisson distribution, the values of λ for the normal, micrometastasis, and macrometastasis 
cases were estimated based on the incorrect diagnosis frequency of 15 pathology experts for the 160 lymph node 
FSs. The patch-DNN prediction result was compared with the ground truth to relabel the WSI as either easy 
(0) or hard (1), corresponding to the prediction result being the same as the ground truth or not. The easy and 
hard labeling information and the features extracted from the heatmaps were used as the input of the RRC​ART​
, and then the high-accuracy group, with an incorrect prediction rate identical to that of the pathology experts, 
may be ready for pathologists to give diagnostic reports, while the low-accuracy group, with a high frequency of 
incorrect predictions, must be selected for pathologists to review.
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Supplementary materials). Application of the RRC​ART​ algorithm on the test set divided all WSIs into a high-
accuracy subset and a low-accuracy subset. A significant difference in misdiagnosis was detected between the 
results of the original 18 models and the expectations of the pathology experts (p < 0.01, Table 1). However, after 
enrichment by the RRC​ART​ algorithm, no significant difference between the expectation of incorrect prediction 
by the patch-DNN models on the high-accuracy WSIs and that of the pathology experts (p > 0.01) was observed. 
However, for low-accuracy WSIs, a significant difference was found between the number of recognition errors 
by the 18 models and the expectation of the pathology experts (p < 0.01). Significantly, the average proportion 
of high-accuracy WSIs set to all sets from the 18 models was 83%, and the accuracy for the high-accuracy set 
reached to 0.995 (average of 4.11 misdiagnosis). Our RRC​ART​ method significantly reduced the misdiagnosis 
rate for 16 patch-DNN models (Table 1, p < 0.05, fisher exact test). The above results support that RRC​ART​ can 
help patch-DNN more accurately diagnose most lymph node metastasis from breast cancer.

Discussion
In this study, we focus on the misclassification in DNN algorithms. This is a not well-investigated research area. 
Here, we hypothesized that the patch-DNN may give the same accuracy in the histopathologic review of lymph 
node metastasis from breast cancer in most FSs as that of experienced pathologists. To test our hypothesis, we 
presented a modified classification and regression tree and the Poisson distribution for classifying the risks of 
misdiagnoses made by common patch-DNNs. We applied the method to 2362 sentinel lymph node FSs collected 
in CICAMS. Our experiments confirmed the hypothesis and showed the improvement of security issues caused 
by using DNN in pathologic diagnosis directly and the integration of DNN in a clinical workflow is feasible.

Figure 2.   Pathology experts’ analysis of the misclassification errors for the test sets. A–C, Randomly selected 
examples of incorrect classification results for the test set. Examples of true positive, false negative and false 
positive classifications are shown for every WSI, with the figures to the right representing the enlarged areas 
indicated by the red arrows. (A) The true positive area represents an incorrect taken FS during the process 
of section scanning. (B) The false-negative area is the result of cancer tissue growth intermingled with 
lymphocytes, showing a linear structure that does not gather together. (C) The false-positive case, in which the 
model identifies the section as the medullary cord.
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Figure 3.   Per-WSI diagnosis for 15 pathology experts (A) and 18 patch-DNN models ((B). The systematic 
prediction errors for normal WSIs (> 4) and micrometastasis WSIs (> 6) can clearly be observed in 
comparison to the experts’ diagnosis. The order of the 18 patch-DNN models is as follows: InceptionV3-1-1:3, 
InceptionV3-1-1:5, InceptionV3-1-1:7, ResNet101-1-1:3, ResNet101-1-1:5, ResNet101-1-1:7, Xception-1-1:3, 
Xception-1-1:5, Xception-1-1:7, InceptionV3-2–1:3, InceptionV3-2-1:5, InceptionV3-2-1:7, ResNet101-2-1:3, 
ResNet101-2-1:5, ResNet101-2-1:7, Xception-2-1:3, Xception-2-1:5, and Xception-2-1:7. The format of the 
models is the DNN-repeat-tumor normal patch ratio.

Table 1.   Distributions of WSIs incorrectly predicted by patch-DNN models after classification by RRC​ART​.

Test set High-accuracy set Low-accuracy set

DNN-repeat-tumor 
normal patch ratio Ratio (high/total)

Expected incorrectly 
predicted slides P value

Expected incorrectly 
predicted slides P value

Expected incorrectly 
predicted slides P value

Fisher exact test for 
systematic error 
between high-
accuracy and test set

InceptionV3-1-1:3 0.86 5.62 2.00E-06 4.17 7.86E-01 1.45 3.83E-13 0.003138

InceptionV3-1-1:5 0.81 5.83 9.27E-07 4.01 7.64E-01 1.81 1.28E-12 0.002974

InceptionV3-1-1:7 0.83 5.83 1.25E-04 4.25 9.25E-01 1.58 1.68E-10 0.003535

ReNet101-1-1:3 0.82 5.62 7.23E-06 4.26 7.98E-01 1.36 1.74E-12 0.006282

ReNet101-1-1:5 0.85 5.77 2.77E-09 4.68 6.87E-01 1.09 0.00E + 00 0.014472

ReNet101-1-1:7 0.83 5.73 5.24E-10 4.40 1.57E-01 1.33 0.00E + 00 0.095278

Xception-1-1:3 0.83 5.94 5.00E-05 4.38 4.45E-01 1.56 1.20E-08 0.007071

Xception-1-1:5 0.85 5.77 7.97E-07 4.25 4.19E-01 1.52 9.76E-12 0.009791

Xception-1-1:7 0.84 5.77 3.49E-05 4.43 2.85E-01 1.34 2.12E-08 0.037669

InceptionV3-2-1:3 0.84 5.83 3.45E-06 4.14 5.92E-01 1.70 4.66E-11 0.01299

InceptionV3-2-1:5 0.83 5.89 4.52E-05 4.32 4.34E-01 1.57 1.29E-08 0.036724

InceptionV3-2-1:7 0.83 5.83 1.06E-03 4.50 8.27E-01 1.33 1.81E-08 0.013734

ReNet101-2-1:3 0.81 5.81 3.83E-05 4.40 8.15E-01 1.41 3.69E-11 0.008692

ReNet101-2-1:5 0.83 5.65 2.14E-06 4.29 6.21E-01 1.35 1.72E-12 0.00309

ReNet101-2-1:7 0.81 5.93 3.29E-03 4.18 2.44E-01 1.75 4.63E-04 0.147115

Xception-2-1:3 0.82 5.89 1.37E-05 4.40 6.41E-01 1.49 7.46E-11 0.014449

Xception-2-1:5 0.84 5.81 8.92E-07 4.08 3.88E-01 1.73 5.96E-11 0.022463

Xception-2-1:7 0.81 5.63 2.53E-05 4.44 9.36E-01 1.19 2.54E-13 0.002071
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We established a Poisson distribution model according to the frequency of misdiagnosis by pathology experts 
on 160 FSs. The Poisson distribution can be used to compare the performance of machines and humans with 
a dataset of thousands of WSIs. Previous studies used the sensitivity, specificity, etc., to compare the best DNN 
model with the performances of a small number of pathologists6,12,23,24 but cannot assess the average performance 
of different models and cannot compare DNN models and pathologists on datasets that have not been examined 
by pathology experts. Our results showed that the accuracy of examining FSs by pathology experts was generally 
higher than that of the 18 models. This result is substantially different from the results in most articles12,23,24. 
The possible reasons for the high degree of homogeneity in the FS diagnosis of sentinel lymph nodes by our 
pathologists may be as follows: first, the diagnosis of lymph node metastasis is a basic and essential skill for cancer 
pathologists, as they have been heavily trained on this skill; second, the 5 senior pathologists in this group are 
all breast cancer specialists and have extensive experience; third, the differences in years of practice may have 
little effect on the consistency of lymph node diagnosis in the results of our review of 160 randomly chosen FSs.

We used the RRC​ART​ algorithm to classify WSIs into high-accuracy and low-accuracy subgroups. The prob-
ability of model recognition error of the former is similar to that of the expert review. The latter subgroup requires 
manual review to meet the diagnostic requirements for FSs. This candidate dual-diagnosis model combining a 
DNN and experts may reduce the number of required expert diagnosis. Furthermore, we set FSs without nega-
tive and macrometastasis prediction errors as filtering thresholds for the models in the high-accuracy subset 
and retained four qualified DNN models. This process can provide reliable evidence for the choice of operation 
mode in China. Hence, our approach may improve the diagnosis accuracy of the patch-DNN model.

There were some limitations in our study. First, we used a histopathologic review of lymph node metastasis 
from breast cancer in FS WSIs to evaluate the accuracy of the patch-DNN. A histopathologic review may not 
reflect real-world performance. However, this pilot research demonstrated the feasibility of the patch-DNN 
in histopathologic diagnosis with FSs. Second, we collected 2,362 FSs into this study without considering the 
clinical features of the patients. In some selected patients, the positive rate of FSs may be higher than in others25. 
However, FS diagnosis is widely used in most hospitals in China without any selection. Our research may reflect 
the current situation in China. Additionally, Dataset was split on at the WSI level. This means that WSIs from the 
same patient can be in both training and test set and may result in that classification metrics is overestimated. 
However, RRC​ART​ can make enrichment of the high-accuracy WSIs, reducing the effect on the following clinical 
workflow. Third, we found no isolated tumor cells in this dataset. However, isolated tumor cells are a rare condi-
tion in lymph node metastasis from breast cancer26. This may be why no cases are found in some small samples. 
Finally, we compared the accuracy of the patch-DNN with WSIs and pathologists with traditional glass slides. 
There are some differences in reading WSIs and glass slides. However, most pathologists are more accustomed 
to glass slides, and in our group, there were no pathologists who had been trained in reading WSIs. We intended 
to evaluate the degree of consistency among different pathologists; however, glass-slide reading is closer to the 
real-world situation for pathologists.

Conclusion
We employed RRC​ART​ and Poisson distribution, using quantitative WSI data to improve the prediction results 
of the patch-DNNs used for lymph node metastasis detection from breast cancer. Based on the prediction results 
of DNN and the features extracted at the stage of WSI classification, we can directly execute RRC​ART​ and dis-
tinguish high-accuracy WSIs from low-accuracy WSIs. In the histopathologic review of lymph node metastasis 
from breast cancer, our method can be served as an adaptor module to connect the patch-DNN pipeline and the 
clinical workflow, reducing the security risk of using patch-DNN directly by recommending the low-accuracy 
WSIs for pathologists to review and the high-accuracy ones for reports.

Materials and methods
Images from human subjects.  Our research was approved by the Ethics Committee of National Cancer 
Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (20/209-
2405). The detailed statement of the approval letter was provided in the Related files. Briefly, in July 6, 2020, 
the Ethics Committee received the application for approval of the clinical research plan—computer recognition 
strategy for lymph node metastasis of breast cancer and the application for exemption from informed consent. 
This met the requirements of rapid review according to the ethics committee SOP, the ethics committee held a 
serious discussion and voted in July 8, 2020. The number of voters was 2, and agreed: 2 votes, against: 0 votes. 
Approval result: agree, agree to carry out the study. In this part of the series, patient consent was not required, as 
no risk to the participants was anticipated. The authors confirm that all methods were carried out in accordance 
with relevant guidelines and regulations.

We collected FSs of sentinel lymph nodes from breast cancer patients from the Department of Pathology, 
Cancer Institute & Hospital, Chinese Academy of Medical Sciences (CICAMS), China, from January 2017 to 
November 2019. The 8–10 µm FSs were hematoxylin and eosin-stained. The final dataset consisted of 2362 
patient-exclusive WSIs (129 micrometastases, 353 macrometastases and 1879 normal). All the information on 
the 499 patients and WSIs was deidentified. We scanned the glass slides containing these sections with a Nano 
Zoomer S210 scanner at 40X equivalent magnification. All slides were scanned at a resolution of 0.243 μm per 
pixel.

Hardware and software.  All of our experiments were implemented on three servers, each containing two 
NVIDIA Tesla P40 Graphic Processing Unit (GPU) cards. We used OpenSlide27 Python (version 1.1.1) to read 
the WSI files and TensorFlow28 (version 1.8.0) to load patch data, train the models and infer the WSIs. Finally, we 
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obtained the receiver operating characteristic (ROC) curve using scikit-learn29 (version 0.23), statistical analysis 
results from SPSS (version 22.0), and plots from Seaborn (version 0.9.0) and matplotlib (version 3.2.0).

Reference standard.  We followed the method of Bejnordi et al.6 to perform annotation with some small 
modifications. In brief, all metastatic lesions from positive FS WSIs were first annotated manually by 2 residents 
with 2–3 years of work experience using the open-source tool ASAP 1.8 (https://​github.​com/​compu​tatio​nalpa​
tholo​gygro​up/​ASAP/​relea​ses), and then each annotated WSI was reviewed in detail by a breast subspecialist 
pathology review group composed of 3 pathology experts (attending doctor and above) with a mean working 
experience of 14.3 years (9–18 years). These reviewing reports of the FSs by the pathology expert group were 
used as the ground truth. The type of lymph node metastasis was divided into three groups: micrometastasis, 
macrometastasis and negative, according to the American Joint Committee on Cancer (AJCC 8th)30.

Dataset splitting.  The dataset was divided into training, validation and test subsets at the WSI level with 
repeated random separation until no significance (P > 0.10) was detected between any two subsets with respect 
to all features (Table S5).  The P value was calculated using a t-test for continuous features and Fisher’s exact test 
for the categorical features. All the features were extracted from the tissue contours of both positive and negative 
WSIs and metastatic lesion contours from only positive WSIs.

To explore the relationship between the number of annotated WSIs and the saturation of the classification 
metrics including the sensitivity, specificity, precision, accuracy, F1 score and AUC, 2362 FSs were randomly 
divided at the WSI level for training with size serials (100, 300, 600, 1000, 1500), with 202 FSs used for valida-
tion and 630 for testing (Table S6). In the training group, each previous training dataset became a subset of the 
following datasets. The whole process was randomly repeated 5 times. Our results showed that when the number 
of training WSIs reached 600, all six metrics began to saturate (Fig. S1A–F). Therefore, 600 WSIs for the training 
sets was the minimum number required to saturate the above classification evaluation metrics. Unless otherwise 
stated, 600 WSIs were used in the following model training (Table S6).

For the task of influence of the sampling ratio and DNN on the classification metrics, the FS WSIs were ran-
domly divided into the training, validation and test subset with their sizes fixed at 600, 202 and 1560, respectively 
(Table S6). For validation of the RRC​ART​ algorithm task, the 1560 test subset above was further split into training 
and test set with sizes fixed at 780 and 780, respectively.

Patch sampling.  Patches for DNN training were generated by sampling from the training WSIs. First, due 
to the large size of the WSIs, we used Otsu’s method31 to efficiently discard all background and fat patches in each 
WSI. Second, to avoid sampling biases, we designed a random-sampling strategy according to the following: (1) 
Each WSI with or without metastatic cancer was selected with equal probability. (2) For each region of inter-
est in one WSI, we collected enough patches from each region of interest with random coordinates generated 
from a uniform distribution to form a candidate patch set of the WSI. (3) Normal and tumor patches with fixed 
numbers were randomly selected from the patch-set for each WSI. The fixed number can be calculated easily 
according to the tumor-normal patch ratio. Previous work has reported that increasing the normal to tumor 
patch ratio could reduce the false positives32, in our work, we tentatively set the ratio of tumor to normal patches 
at 1:3, 1:5, and 1:7.

Patch‑DNN method for frozen‑section diagnosis.  Our patch-DNN method consists of a patch-level 
classification and a WSI-level classification. At the patch-level classification stage, a random-sampling method 
was used to extract 256 × 256 patches from the WSI training set. The patch-based classifier was trained to esti-
mate the class of each patch. Then, we partitioned each WSI into 256 × 256 patches without overlapping. The 
probability values of the patches, predicted by the classifier in the first stage, were embedded into a heatmap 
image.

At the WSI-level classification stage, the corresponding heatmaps were used as the basic data for the follow-
ing postprocessing method to discriminate the classes of WSIs. We extracted several features (Table S5) from 
heatmaps to train a WSI-based classification model, and a random forest was trained as the WSI-based classifier.

We used three sampling ratios (1:3, 1:5, and 1:7) corresponding to three commonly used DNNs (InceptionV3, 
ResNet101 and Xception) and repeated patch sampling and DNN training twice to construct a total of 18 patch-
DNN models to study the influence of the sampling ratio and DNN on the classification metrics. Considering 
the long-term cost (2 months for 18 models) and the small difference between the results of the two repeated 
experiments, we did not repeat the experiment more times.

DNN model training and validation.  The training workflow of the DNN model is as follows. We trained 
the DNNs with the stochastic gradient descent optimizer in TensorFlow (version 1.8.0)28. The initial learning 
state was 0.01, and the decay rate was 0.1. All models were initialized with the pre-trained weights on ImageNet 
(https://​github.​com/​tenso​rflow/), and cross entropy was used as the loss function to update the network param-
eters. To test the stability and generalization of the system framework, we separately selected InceptionV3, Xcep-
tion71, and ResNet101 as our backbone CNN model, all of which were trained on patches with 256 × 256 pixels 
(~ 0.22 μm/pixel) at 40X magnification from the training WSIs. Then, based on the validation set, we completed 
the training of the DNN model within 75 epochs (approximately 72 h) and without overfitting.

https://github.com/computationalpathologygroup/ASAP/releases
https://github.com/computationalpathologygroup/ASAP/releases
https://github.com/tensorflow/
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Classification metrics.  Six general statistical classification metrics, including sensitivity, specificity, preci-
sion, accuracy, F1 score (Eq. 1) and AUC value, were used to estimate the performances of the classifiers. The 
misdiagnosis rate is equal to (1-accuracy). The AUC value was obtained by using scikit-learn29 (version 0.23).

Incorrect diagnosis rate of FSs by pathology experts.  We hypothesized that no systematic errors 
(misdiagnosis made by most of the experts or the models) would be made by the expert group in the diagnosis 
of 160 FSs of sentinel lymph nodes (Fig. 1). We also hypothesize that pathology experts and model diagnosis 
(prediction) of a certain number of WSIs obey the Poisson distribution (Eq. (2)).

Incorrect diagnosis rates for pathology experts were scaled to per WSI per examination. The incorrect diag-
nosis rate (λ0) was calculated by adding up the number of incorrect diagnosis of the 15 pathology experts for 
all 160 WSIs randomly selected from the test set and then dividing by the total number of diagnosis (160 * 15).

The P value was calculated as:

where x is the observed number of incorrect diagnoses (predictions) for a certain number of WSIs (n) and λ is 
calculated as n*λ0. For example, 228 incorrect diagnoses were made by the 18 patch-DNN models and 25 incor-
rect diagnoses by the 15 experts for 62 micrometastasis WSIs. We calculated the probability of micrometastasis 
as [1-Poisson cumulative distribution function (228-1, 62 * 18 * λ0-micro)], where λ0-micro reflects the incorrect 
diagnosis rate for the 15 pathology experts examining the 62 micrometastasis WSIs and was calculated as [25/
(62 * 15)].

Relative risk classification and regression tree algorithm.  We hypothesized that the prediction 
results of the patch-DNN models could be divided into two categories: high-accuracy WSIs, with a frequency of 
model recognition errors similar to that of pathology experts, and low-accuracy WSIs, with a significantly higher 
frequency of model recognition errors than that of experts.

The probability p is defined as the ratio of the number of incorrectly predicted WSIs (abbreviation, Swr_low) to 
the total number of predicted WSIs (abbreviation, Slow) with low accuracy; variable q is defined as the ratio of the 
number of incorrectly predicted WSIs (abbreviation, Swr_high) to the total number of predicted WSIs (abbreviation, 
Shigh) with high accuracy. By this definition, we can easily deduced Swr_low + Swr_high is equal to the number of the 
hard WSIs, corresponding to the prediction result different from the ground truth. We add 1 to the numera-
tor of p and q to prevent the number of incorrectly diagnosed WSIs from equaling to zero, which increases the 
computational robustness of the WSI diagnosis results. Their calculation methods are given in Eqs. (4–6). As a 
matter of fact, the set Shigh is always larger than Shigh due to our proposed classification model, so we design the 
hyper parameter high_per given in Eq. (7).

We implemented the cost-sensitive learning process33 by combining a RR index and a classification and 
regression tree (CART)34. The RR index is the ratio of the incorrect diagnosis probability between the low- and 
high-accuracy WSI sets and is designed as the loss function for the training of the RRC​ART​, which mainly 
implies the risk of incorrect prediction for WSIs with low accuracy relative to that of WSIs with high accuracy. 
The algorithm below shows how to replace the Gini method with our relative risk method.

Algorithm 1 describes the stop conditions for the recursive method, which is also used in a CART classifica-
tion tree, and algorithm 2 shows how to replace the Gini method with our relative risk method (Supplementary 
materials).

(1)F1 score = (2× precision× sensitivity) /
(
precision+ sensitivity

)

(2)p (X = k|�) =
�
k

k!
e−�

(3)p value = 1−

x−1∑

k=0

e−�
�
k

k!

(4)p =
Swr_low + 1

Slow + 1

(5)q =
Swr_high + 1

Shigh + 1

(6)RR =
p

q

(7)high_per =
Shigh

Slow
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Statistical analysis.  The Poisson distribution, Fisher’s exact test and t-test analyses were performed using R 
statistical software version 3.6.135. Two-way repeated measures analysis of variance (ANOVA)36 was performed 
by SPSS 22.0 (International Business Machine (IBM), Armonk, USA).

Data availability
The data are not publicly available due to hospital regulations. But data requests with aims will be needed to 
assess the reasonability. After approval from the hospital and the corresponding authors, de-identified clinical 
data will be provided.

Code availability
The source code for this work can be downloaded from https://​gitee.​com/​chenc​ancan​1018/​
dch-​lymph-​node-​module.
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