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Mitoribosome insufficiency in B cells is associated with type 2

diabetes-like islet failure
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Genetic variations in mitoribosomal subunits and mitochondrial transcription factors are related to type 2 diabetes. However, the
role of islet mitoribosomes in the development of type 2 diabetes has not been determined. We investigated the effects of the
mitoribosomal gene on B-cell function and glucose homeostasis. Mitoribosomal gene expression was analyzed in datasets from the
NCBI GEO website (GSE25724, GSE76894, and GSE76895) and the European Nucleotide Archive (ERP017126), which contain the
transcriptomes of type 2 diabetic and nondiabetic organ donors. We found deregulation of most mitoribosomal genes in islets from
individuals with type 2 diabetes, including partial downregulation of CRIF1. The phenotypes of haploinsufficiency in a single
mitoribosomal gene were examined using B-cell-specific Crif1 (Mrpl59) heterozygous-deficient mice. Crif1°¢“+~ mice had normal
glucose tolerance, but their islets showed a loss of first-phase glucose-stimulated insulin secretion. They also showed increased
B-cell mass associated with higher expression of Reg family genes. However, Crif1°4*/~ mice showed earlier islet failure in
response to high-fat feeding, which was exacerbated by aging. Haploinsufficiency of a single mitoribosomal gene predisposes
rodents to glucose intolerance, which resembles the early stages of type 2 diabetes in humans.
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INTRODUCTION

Systemic glucose homeostasis requires adequate functional islet
mass to provide appropriate glucose-stimulated insulin secretion
(GSIS). Glucose-stimulated mitochondrial ATP production is
required for the regulated exocytosis of insulin from B cells'.
Mitochondrial ATP production is performed by the oxidative
phosphorylation (OXPHOS) multiprotein complex?. The expression
of mitochondrial DNA-encoded OXPHOS subunits is regulated
predominantly at the posttranscriptional level®, which is per-
formed by a specialized mitochondrial ribosome (mitoribosome)
and associated factors®.

The mitoribosome is essential for cell viability, growth,
differentiation, and function®®, and loss or mutation of any of
the mitoribosomal components can affect mitoribosomal RNA
processing and can lead to mitochondrial disorders in humans’. In
fact, the expression of the genes that encode mitoribosomal
proteins (MRPs), mitoribosomal assembly factors, and mitochon-
drial translation factors is modified in numerous diseases®®.
Mutations of a single MRP frequently do not fully inactivate the

mitoribosome but result in a lower capacity for oxidative
phosphorylation. Although defects in any of the MRP genes could
induce primary mitochondrial disease, only a small number of
MRP mutations (MRPL9, MRPL27, and MRPL45) have been shown
to be associated with diabetes’. This finding suggests that
mutations in MRP genes may also result in tissue-specific
phenotypes, giving rise to a spectrum of disorders, including
diabetes. However, the influence of a single MRP on islet structure
and systemic glucose tolerance has not previously been
investigated. To clarify the role of the mitoribosome in B cells, it
is necessary to determine how islets or 3 cells structurally and/or
functionally adapt to the expression of MRP components.
CRé6-interacting factor 1 (CRIF1), also known as MRPL59, is an
MRP that forms part of the central protuberance of the large
mitoribosomal subunit'®"". CRIF1 is essential for the synthesis and
insertion of the OXPHOS complex into mammalian mitochondrial
membranes''. Homozygous deficiency of the Crifl gene leads to
both aberrant synthesis and defective insertion of mtDNA-
encoded nascent OXPHOS polypeptides into the inner
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membrane'’, and homozygous deficiency of Crif in pancreatic 8 heterozygous Crif1 deficiency was associated with an impairment
cells causes early islet failure in mice'? In view of the important of first-phase insulin secretion and consequent compensatory
role of the mitoribosome in the biogenesis of OXPHOS complexes hyperplasia of islets. Furthermore, haploinsufficiency of Crif1 in
in metabolic homeostasis, we aimed to determine whether MRPs cells resulted in earlier islet failure in mice fed a high-fat diet. Thus,
in islets are associated with B-cell dysfunction and aberrant this study provides conclusive genetic and functional evidence
glucose homeostasis. To this end, we found that [-cell that a defect in an MRP is associated with glucose intolerance and
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Fig. 1 In silico analysis reveals an association between type 2 diabetes and the mitoribosomal protein CRIF1 in human pancreatic islets.
a-d Results of gene set enrichment analysis (GSEA) of GSE25724. a Visualization of the enrichment map. Red, gene set enriched in nondiabetic
(non-DM) individuals; blue, gene set enriched in type 2 diabetes mellitus (T2DM) subjects. The thickness of each line represents the strength
of the correlation between nodes, and the size of each circular node represents the size of the gene set (A: Gene ontology (GO) CELLULAR
RESPONSE TO INSULIN STIMULUS, B: GO RESPONSE TO INSULIN, C: GO MITOCHONDRIAL TRANSLATIONAL TERMINATION, D: GO
MITOCHONDRIAL TRANSLATION, E: REACTOME MITOCHONDRIAL TRANSLATION, F: GO MITOCHONDRIAL LARGE RIBOSOMAL SUBUNIT, G:
GO MITOCHONDRIAL SMALL RIBOSOMAL SUBUNIT, H: GO MITOCHONDRIAL GENE EXPRESSION, I: GO MITOCHONDRIAL MATRIX, J: MOOTHA
MITOCHONDRIA, K: MITOCHONDRION, L: MITOCHONDRIAL PART, M: GO ENDOPLASMIC RETICULUM UNFOLDED PROTEIN RESPONSE, N:
REACTOME UNFOLDED PROTEIN RESPONSE (UPR), O: HALLMARK UPR, P: GO MULTICELLULAR ORGANISMAL RESPONSE TO STRESS). b Bubble
plot showing the normalized enrichment score for each gene set related to mitochondrial and pancreatic f-cell functions. ¢ Enrichment plots
for selected gene sets. d Heatmap showing the mitoribosomal protein (MRP) gene expression patterns for the three GSEA sets. e UMAP plots
showing the origin (i.e.,, non-DM and T2DM, left) and displaying CRIF1 (center) and GPD2 (right) expression in each human pancreatic p cell.
f Boxplots showing the median (2nd and 3rd quartiles) expression of CRIF1 and GPD2. g Heatmap showing MRP gene expression in individual

human pancreatic p cells.

islet pathology that is reminiscent of the early stage of human
type 2 diabetes.

MATERIAL AND METHODS

Analysis of differential gene expression using the GEO
database

Bioinformatic analyses were performed using gene set enrichment analysis
(GSEA) (http://www.broadinstitute.org/gsea) and R packages as described
previously'®. The publicly available transcriptomic datasets for human
pancreatic islets were obtained from the NCBI Gene Expression Omnibus
(GEO) site under accession numbers GSE25724, GSE76895, GSE76894, and
GSE159984. The publicly available transcriptomic datasets for human
pancreatic B cells were obtained from the European Nucleotide Archive
under the accession number ERP017126™ (described in the Supplemen-
tary Information).

Animals

Floxed Crif1 (Crif1”f) mice were mated with Ins2-Cre transgenic mice to
generate pancreatic B-cell-specific Crif1 heterozygous mice (Crif1%¢9+/7),
Crif1” mice were generated as described previously'”. Ins2-Cre transgenic
mice (C57BL/6-Tg(Ins2-cre)25Mgn/J) were purchased from the Jackson
Laboratory (RRID:IMSR_JAX:003573). Ins2-Cre Tg mice express tryptophan
hydroxylase and serotonin'®. In all experiments, Cre-positive mice were
used as a control. All mice were maintained in a controlled environment
(12-h light/dark cycle; humidity, 50-60%; ambient temperature, 22 + 2 °C)
and fed a normal chow diet (NCD) or high-fat diet (HFD) (60% of calories
from fat; Research Diets, D12492, New Brunswick, NJ, USA). All animal
experiments were approved by the Committee on the Ethics of Animal
Experiments of Chungnam National University Graduate School of
Medicine (CNUH-017-A0048, Daejeon, Korea) and were performed accord-
ing to the institutional guidelines for the care and use of laboratory
animals.

Islet isolation

The isolation of pancreatic islets was performed as previously described,
with slight modifications'”. Islets were isolated from mice by collagenase P
(Roche Diagnostics, Mannheim, Germany) digestion and Ficoll (Biocoll
separating solution, Biochrom, Berlin, Germany) gradient centrifugation
(described in detail in the Supplementary Information).

RNA isolation and quantitative real-time PCR (qPCR)

Total RNA was extracted from isolated islets, and qPCR was performed as
described in the Supplementary Material. The PCR primers used are shown
in Supplementary Table 1.

Western blot analysis

Protein was extracted from isolated islets, and western blotting was
performed as described in the Supplementary Material. The antibodies
used are shown in Supplementary Table 2.

Assessment of mitochondrial oxygen consumption
The oxygen consumption rate (OCR) of the islets was measured using a
Seahorse XF-24 according to the manufacturer’s instructions (Seahorse
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Bioscience, North Billerica, MA, USA)'®. The OCR was normalized to the
mean baseline measurement in 2.8 mmol/l glucose and is expressed as a
percentage change from baseline.

Physiological and metabolic analyses
Perifusion analysis was performed in isolated islets. Islets from age-
matched mice were isolated and perfused in sequence with Krebs-Ringer
buffer (KRB) containing 2.8 mmol/l glucose for 10 min, followed by KRB
containing 11.1 mmol/l glucose for 30 min, and finally KRB containing
40 mmol/l KCI for 5min. The flow-through was collected every minute
during the two perifusion steps of the assay, and the insulin concentrations
of these solutions were measured.

The intraperitoneal glucose tolerance test (IPGTT) and the intraperito-
neal insulin tolerance test (IPITT) were performed as described in the
Supplementary Information.

Transmission electron microscopy (TEM)
TEM was performed using Crif1°® '~ and Crif1°¢%+'~ islets (described in
detail in the Supplementary Information).

Histological analysis

Formalin-fixed paraffin-embedded pancreatic slides were prepared,
stained and analyzed (described in detail in the Supplementary
Information).

RNA-sequencing, data processing, and analysis

RNA sequencing was performed using Crif1°¢@*~ and Crif1°¢%+'~ islets
(described in detail in the Supplementary Information). The raw data for
the RNA sequencing reported in this paper have been deposited to the
NCBI GEO repository (GSE151708).

Statistical analysis

Statistical analyses were performed using SPSS Version 21 (IBM, Inc,
Armonk, NY, USA). We used an unpaired, two-tailed Student’s t test for
comparisons between two groups and one-way ANOVA followed by
Tukey’s HSD test for multiple comparisons between three or more groups.
Data are expressed as the means+SEMs. p<0.05 was considered
statistically significant.

RESULTS

MRPs in human pancreatic islets are associated with the
development of type 2 diabetes

To investigate the association between type 2 diabetes and MRPs,
including CRIF1, in human pancreatic islets, we analyzed the
dataset on the NCBI GEO website (GSE25724), which contains the
transcriptomes of type 2 diabetic and nondiabetic organ donors'®.
An unbiased GSEA revealed that all the identified mitochondrial
gene sets were enriched in human nondiabetic islets, as were the
gene sets related to pancreatic B-cell function (Fig. 1a, b and
Supplementary Fig. 1a). For instance, the GO MITOCHONDRIAL
TRANSLATION gene set and the GO MITOCHONDRIAL MATRIX
gene set were enriched in nondiabetic human islets, as were gene

Experimental & Molecular Medicine (2022) 54:932 - 945
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sets related to pancreatic 3-cell function (Fig. 1¢). In addition, the
majority of MRPs, which are included in the GO_MITOCHON-
DRIAL_LARGE_RIBOSOMAL_SUBUNIT and GO_MITOCHON-

GSE25724.
Next, to avoid

= cr,-f1bela+/+
B crif1beta*”
o

genes in type 2 diabetic human islets was significantly different in

possible misinterpretation because of confound-

DRIAL_SMALL_RIBOSOMAL_SUBUNIT gene sets, were enriched in
nondiabetic islets (Fig. 1c). We found that the expression of MRP
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ing factors in the single dataset analysis, we collected transcrip-
tomic datasets that included gene expression in human pancreatic
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Fig. 2 Crif1 haploinsufficiency in B cells is associated with impaired glucose-stimulated respiration. a—c CRIF1 expression in islets from 14-
week-old mice. a Relative mRNA expression of Crif1, measured using qRT-PCR (n = 3—9) and normalized to Actb expression. b Representative
western blot of CRIF1. ¢ ImageJ quantification of CRIF1 protein expression in Crif1°¢ @/, Crif1°¢+/~ and Crif1°*~~ mice (n =2-3). d and
e Oxidative phosphorylation (OXPHOS) complex expression in islets from 14-week-old Crif1°¢“*~ isolated islets. d Relative mRNA expression
of OXPHOS genes in islets from Crif1°¢*/* and Crif1°¢***/~ mice (n = 3), normalized to Actb (Nd1, Ndufa9: complex 1, Sdha: complex 2, Ugcrc2:
complex 3, Cox4: complex 4, and Atp5A: complex 5). e Protein expression of OXPHOS components in islets from Crif1°@*/* and Crif1°¢a+/~
mice normalized to ACTB. f Representative transmission electron micrographs (TEMs) of p-cell mitochondria from 14-week-old Crif1°¢*’* and
Crif1°€+/~ mice. Scale bars: 500 nm. g Glucose-induced oxygen consumption rate (OCR) in islet mitochondria from 14-week-old Crif1°€@+/+
and Crif1°€+/~ mice (n = 4—6). The treatment was 20 mmol/l/glucose (G). h Area under the curve (AUC) for each phase of the glucose-induced
OCR. i OCR in islet mitochondria from 14-week-old Crif1°¢®+* and Crif1°¢“*~ mice (n = 6—10). The treatments were 20 mmol/l glucose (G),
2 pmol/I oligomycin (O) (an inhibitor of ATP synthase), 5 pmol/l carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (C) (an uncoupler), and
2 mmol/l rotenone (R) (an inhibitor of complex I). j AUC for each phase of the OCR. Data are the mean = SEM. *p <0.05, **p < 0.005,

**%p < 0,005, and ****p < 0.0001 vs. Crif1**/~,
<

B cells from 184 individuals (GSE25724'°, GSE76894, and
GSE76895%%) and conducted a meta-analysis of the transcriptomic
data. All the collected data were uniformly preprocessed and
converted to Z scores to avoid batch effects?'?2. The resulting
heatmap (Fig. 1d) indicated that the expression of these MRPs
clearly differentiates islets from type 2 diabetic and nondiabetic
patients. In particular, the Crif1 gene showed a clear reduction in
the T2DM patients and is visualized in the boxplot (Supplementary
Fig. 1b). To avoid any potential confounding factor from
microarray-based transcriptome analysis, we collected and ana-
lyzed the high-throughput transcriptome-sequencing dataset of
islets donated from type 2 diabetic and nondiabetic donors
generated by Marselli et al, which is available at NCBI GEO
(GSE159984)* (Supplementary Fig. 2a). The raw read count data
were normalized to transcripts per million (TPM), followed by
logarithmic transformation, as summarized in Supplementary Fig.
2a. Then, we conducted enrichment and pathway analysis to
identify gene sets enriched in type 2 diabetic and nondiabetic
donors by GSEA. The results of the analyses, including the
enrichment of mitochondria and their related components, were
highly consistent with the GSEA results discussed above
(Supplementary Fig. 2b-d). In addition, global MRP expression
was different in type 2 diabetic and nondiabetic donors
(Supplementary Fig. 2e).

The results discussed above consistently suggest that the
dysregulation of MRPs in the pancreas is associated with type 2
diabetes. To overcome the limitation of the global transcriptomic
analysis, which could be a confounding factor in understanding
the role of MRPs in pancreatic B cells rather than pancreatic islets,
we further analyzed the publicly available scRNA-seq data'
(Accession Number: ERP017126). The UMAP algorithm clustered
pancreatic B cells into two subpopulations that matched the
disease status (Fig. 1e, left). The expression of CRIF1 was relatively
higher in the non-DM group (Fig. le, center), whereas the
expression of the glycerol-3-phosphate dehydrogenase 2 (GPD2)
gene was elevated in the T2DM group (Fig. 1e, right), as indicated
in the original publication of the scRNA-seq study (see the
supplementary data of ref. '%). The gene expression levels of both
CRIF1 and GPD2 were visualized in boxplots and showed a clear
reduction and induction in T2DM, respectively (Fig. 1f). Further-
more, not only CRIF1 but also most MRP expression was altered in
human diabetic pancreatic 3 cells (Fig. 1g).

Crif1 haploinsufficiency in B cells is associated with lower
glucose-stimulated respiratory efficiency

To investigate the associations of MRP expression with B-cell
function and glucose tolerance, we generated a pancreatic -cell-
specific Crifl knockout mouse by crossing floxed Crif7 mice with
mice carrying Ins2-cre recombinase. qPCR analysis of isolated islets
showed that Crifl mRNA expression in Ins2-Crif1 heterozygous
(Crif1°¢"a*+/~) mice was half that of Ins2-cre control (Crif1%¢%+/*)
mice at 14 weeks old (Fig. 2a). Additionally, the expression of
CRIF1 protein in islets of Crif1®***/~ mice was ~30% lower than
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that of Crif1®" '+ mice as assessed by western blotting at
14 weeks old (Fig. 2b, c). However, the expression of selected
OXPHOS polypeptides that are encoded by both mitochondrial
and genomic genes was similar in the two genotypes at 14 weeks
old (Fig. 2d, e). Moreover, electron microscopy demonstrated that
the number, size, and structure of the B-cell mitochondria were
similar in Crif1°¢9*+ and Crif1°¢*+/~ mice at 14 weeks old (Fig. 2f,
Supplementary Fig. 3a, b).

To evaluate the effect of Crifl haploinsufficiency on cellular
respiration, we measured the OCR of islets isolated from both
Crif1°¢9+/~ and Crif1°€** mice at 14 weeks old. We assessed
glucose-stimulated mitochondrial function by treating islets with
20 mmol/I glucose and performing serial measurements of the
OCR for the following 3 h. Islets from both Crif1°¢“+/* and Crif1%
*~ mice showed similar OCRs in the presence of 3 mmol/l (basal)
glucose. However, islets isolated from Crif1¢“*/~ mice did not
show a high glucose-induced peak (represented as phase A) in
glucose-stimulated (20 mmol/l) oxygen consumption, unlike those
from control Crif1°€"*/* mice (Fig. 2g, h). This result indicates that
islets of Crif1%¢*~ mice have a lower glycolytic or oxidative
capacity and a lower ability to respond appropriately to a high
glucose concentration. To determine whether islets from Crif1°¢@+/~
mice have lower oxidative capacity, we measured the OCR in the
presence of oligomycin (an ATP synthase inhibitor), carbonyl
cyanide m-chlorophenyl hydrazone (CCCP; a mitochondrial
respiration uncoupler), or rotenone (an OXPHOS complex |
inhibitor) in buffer containing basal or high glucose concentra-
tions (3 and 20 mmol/l glucose, respectively). Crif1®™ "/~ islets
showed normal basal oxygen consumption but did not show a
high glucose-induced peak in oxygen consumption in the
presence of a high glucose concentration, unlike Crif1%¢@+/+
islets. The inhibition of ATP synthase by oligomycin prevented the
stimulation of oxygen consumption by 20mmol/l glucose.
Interestingly, the oxygen consumption responses to CCCP
(5 pmol/l) and rotenone (2 mmol/l) did not differ between control
and Crif1%¢+/~ islets (Fig. 2i). Taken together, although B cells in
islets from Crif1°¢“+/~ mice showed no apparent mitochondrial
structural abnormalities, they demonstrated an impairment in
glucose-stimulated mitochondrial ATP production (Fig. 2i, j).

Crif1°¢"**/~ mice show an age-dependent decline in glucose
tolerance

To determine whether Crif1 haploinsufficiency is associated with
-cell dysfunction and aberrant glucose homeostasis during aging,
we performed glucose tolerance tests in Crif1®*™*’~ and control
mice at 14, 22, and 54 weeks of age. Crif1°¢*/~ and Crif1°¢+/+
mice showed normal glucose tolerance (Fig. 3a, ¢) and similar
serum insulin concentrations upon fasting or 15 min after glucose
administration (Fig. 3b, d) at both 14 and 22 weeks. Furthermore,
the mean body mass of the two groups of mice was similar
between 14 and 22 weeks of age (Supplementary Fig. 4a); the
insulin sensitivity of Crif1°¢“*~ mice was normal at 22 weeks of
age (Supplementary Fig. 4b). However, 54-week-old Crif1®€+/~
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Fig. 3 Crif1%®*® ™/~ mice show an age-related loss of glucose tolerance. a, ¢, and e Blood glucose concentrations during intraperitoneal
glucose tolerance testing (IPGTT) (6-h fast; 1 g/kg glucose dose) performed in Crif1®®*/* and Crif1°¢“+/~ mice (n = 3—7). The areas under the
curves (AUGCs) during the IPGTT are shown for a 14-week-old, ¢ 22-week-old, and e 54-week-old mice. b, d, f Glucose-stimulated insulin
secretion (GSIS) was assessed during the IPGTT in Crif1°¢@*+ and Crif1°¢*/~ mice (n =3—7) at b 14 weeks of age, d 22 weeks of age, and

f 54 weeks of age. Data are the mean + SEM. *p < 0.05 vs. Crif

mice were glucose intolerant (Fig. 3e), showed a poor insulin
secretory response to glucose (Fig. 3f), and had a significantly
higher body mass than control mice (SupEIementary Fig. 4a). The
appearance of glucose intolerance in Crif1°¢“*~ mice at 54 weeks
of age suggests that haploinsufficiency of a mitoribosomal subunit
gene in islets promotes aging-associated islet dysfunction.

Islets from Crif1°¢"**/~ mice show a loss of first-phase insulin
secretion before the onset of glucose intolerance

An insulin perifusion assay was performed to characterize insulin
release by islets isolated from 14- and 22-week-old mice that were
not glucose intolerant. This assay showed that first-phase insulin

Experimental & Molecular Medicine (2022) 54:932 - 945

1beta+/+

secretion (within 10 min) was >20% lower in islets from Crif1%¢%+/~
mice than in control islets. However, the insulin secretion by the
islets did not differ after 10 min of the perifusion assay, and there
was no difference in the maximal insulin release by the islets after
KCl-induced depolarization between the genotypes. In addition,
the area under the curves (AUCs) of insulin release during the
perifusion assay confirmed that it differed significantly between
the groups from 3 to 15 min following glucose stimulation but
not after 15 min (Fig. 4a, b). Moreover, the islet insulin content did
not differ between Crif1°®*~ and Crif1°*/* islets (Supple-
mentary Fig. 5a, b). Measurement of [Ca®']; by fluorescence
imaging of Fura-2-loaded islets revealed that the [Ca®'];
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Fig. 4 Islets from Crif1°°*®*/~ mice do not show first-phase insulin secretion. a and b Isolated islets from Crif1°¢*+ and Crif1°"**/~ were
perifused with 2.8 or 11.1 mmol/l glucose, with or without 40 mmol/l KCI. Areas under the curves (AUCs) for A = 3-15 min, B = 14-28 min, and
C=28-40min (n=3) in a 14-week-old and b 22-week-old mice, ¢ Representative transmission electron micrographs (TEMs) of insulin
granules in f cells from 14- and 22-week-old Crif1°¢"*/* and Crif1°¢"**'~ mice. Docked granules highlighted using arrows; scale bar: 1 um.
d Number of docked insulin granules, quantified as the number of granules found within 100 nm of the plasma membrane (per 10 pm? area)
in 14- and 22-week-old Crif1®"*/* and Crif1°*'%*/~ p cells. e Relative mRNA expression of docking-related genes in isolated islets from 14-
week-old Crif1°¢9** and Crif1°¢“*~ mice normalized to Actb expression. Data are the mean + SEM. *p < 0.05, **p < 0.005, and ***p < 0.005 vs.

Crif1 beta+/+

responses to glucose and KCl stimulation did not differ between
Crif1%¢ @/~ and Crif1®®** islets (Supplementary Fig. 5¢). We
next examined the insulin granules of isolated islets using TEM
and found that there were fewer readily releasable pools (RRPs) of
granules near the membrane in Crif1°€9+/~ islets (approximately
three per 10 um of plasma membrane) than in Crif1%¢@+/* islets
(approximately five per 10 um of plasma membrane) from 14-
and 22-week-old mice (Fig. 4c, d). The mRNA expression of
Vamp2, Stx1, and Snap25, which are genes that encode proteins
involved in the docking of granules, was lower in Crif1%¢@+/~
islets from 14-week-old mice (Fig. 4e). These results suggest that
Crif1 haploinsufficiency interferes with the docking and exocy-
tosis of granules, resulting in a defect in first-phase insulin
secretion that worsens with age.

SPRINGER NATURE

Crif1°¢*"*/~ mice develop age-dependent islet hyperplasia in
the period of normal glucose tolerance
To characterize any histological changes, pancreatic sections were
prepared at 11, 14, 22, and 54 weeks of age and stained using H&E
(Fig. 5a). The islet mass of Crif1°®~ mice increased until
22 weeks of age, and while the area did not differ significantly
from the control group up to 14 weeks of age, it was 4-fold larger
at 18 and 22 weeks of age (Fig. 5b). The B-cell mass (mg) and p-cell
area (%) of Crif1°¢+/~ mice did not differ significantly from those
of the control group at 14 weeks of age but were 2-fold greater at
22 weeks of age (Fig. 5¢c-e).

Interestingly, at 54 weeks of age, the islet mass of Crif1°€+/~
mice decreased to levels similar to those of Crif1%¢** mice
(Fig. 5b), and B-cell mass was lower than that of Crif1°“** mice

Experimental & Molecular Medicine (2022) 54:932 - 945
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(Fig. 5d). The number of islets and the weight of the pancreas
were similar in the two groups at 11, 14, 22, and 54 weeks of age
(Supplementary Fig. 6a, b). Analysis of the islet size distribution
showed that the proportion of large islets in Crif1°¢“+* mice
increased until 22 weeks of age (Supplementary Fig. 6c), but this
difference was not present at 54 weeks (Supplementary Fig. 6d-f).
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These findings indicate that Crif1 haploinsufficiency increases the
number of larger islets, islet mass, and B-cell mass, but this
hyperplasic response is not maintained in aged mice.

To assess the islet cell proliferation rate, dual immunofluores-
cence (IF) staining for insulin and the proliferation marker Ki-67
was performed in pancreatic sections from 11-, 14-, 18-, 22-, and
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Fig.5 Crif1°°*“*/~ mice show abnormal islet morphology. a and b Islet area in pancreatic sections from 11-, 14-, 22-, and 54-week-old Crif

1 beta-+/+

and Crif1°“*~ mice. a Representative images of hematoxylin and eosin (H&E)-stained islets from 11-, 14-, 22-, and 54-week-old Crif1®¢@/*
and Crif1°“*’~ mice. b Islet mass quantification (n =4—6). c—e p-Cell mass of pancreatic sections from 14-, 22-, and 54-week-old Crif1°“** and
Crif1%¢%*/~ mice. ¢ Representative immunohistochemistry images showing pB-cell mass. d and e B-Cell mass quantification (n=3). f and g -Cell
proliferation rate on pancreatic sections from 11-, 14, 22-, and 54-week-old Crif1®“/* and Crif1®*“/~ mice. f Representative immunofluorescent
images showing p-cell proliferation (proliferation marker Ki67: red, insulin (Ins): green, and DAPI: blue). White arrows indicate Ki67-positive cells.
g p-Cell proliferation rate, expressed as a percentage of the B cells that were proliferating (Ki-67-positive nuclei/p-cell count x 100%, analyzed per
mouse). h and i o/p-Cell numerical ratio in pancreatic sections from 11-, 14-, 22-, and 54-week-old Crif1®®*** and Crif1°**/~ mice. h Representative
immunofluorescent islet images (B-cell marker Ins: red, a-cell marker glucagon (Gcg): green, and DAPI: blue). i a-Cell ratio (a-cell number/whole islet
cell number*100%). j Representative immunofluorescent images of pancreatic sections showing p cells in islets from Crif1%€@++ and Crif 1%~ mice
at 22 weeks of age. Upper: mature f-cell marker glucose transporter 2 (Glut2): red, -cell marker Ins: green, and DAPI: blue. Lower: Glut2: red, Ins: blue,

Gcg: green, and DAPI: white. Data are the mean + SEM. *p < 0.05, **p < 0.005, and ***p < 0.0005. Scale bar: 50 pm.
<

54-week-old mice (Fig. 5f). The rate of -cell proliferation gradually
decreased with age in both Crif1®®“+* and Crif1°*"~ mice
(Fig. 5g). The rate of B-cell proliferation in the Crif1°¢*/~ mice was
higher than that in the Crifi®®“** mice at 11, 14, 18, and
22 weeks of age but similar at 54 weeks of age (Fig. 59). Taken
together, these data show that Crif1 haploinsufficiency causes islet
hyperplasia, but this does not persist into advanced age.

Islets of Crif1°¢*®*/~ mice have a high a-cell numerical ratio
We next assessed islet composition by staining pancreatic sections
from 11-, 14-, 22-, and 54-week-old mice for insulin and glucagon
(Fig. 5h). The islets of 11-week-old Crif1°¢“*/~ mice had a normal
distribution of glucagon-positive a cells and insulin-positive 3 cells
in the periphery and core of the pancreas, respectively, with no
difference in the numerical ratio of a cells between the groups
(Fig. 5h, i). Interestingly, the islets of Crif1°*+/~ mice had a higher
a-cell ratio and a higher central distribution of a cells at 14 and
22 weeks of age than control mice (Fig. 5h, i). However, the basal
and glucose-stimulated plasma glucagon concentrations in
Crif1°¢ @~ mice were similar to those in Crif1®® '+ mice
(Supplementary Fig. 7). Additionally, the expression of two
maturation markers of 3 cells, namely, V-maf musculoaponeurotic
fibrosarcoma oncogene homolog A (MAFA) and glucose trans-
porter 2 (GLUT2), was similar in both Crif1°¢®*/~ and Crif1®€@+/+
mice (Fig. 5j). Taken together, Crif1 haploinsufficiency in 3 cells
results in an increase in the relative number of a cells but does not
affect glucose tolerance or glucagon secretion in unchallenged
animals.

Islets of Crif1°¢**/~ mice show high expression of Reg family
genes

To investigate the molecular mechanism of the high islet mass in
Crif1-haploinsufficient mice, we compared the global gene
expression patterns of Crif1®®*/~ and Crif1°*“** mouse islets
at 14 weeks of age. Seventy-two out of 7966 genes were
differentially expressed (fold difference > 1.5) in Crif1°¢+/~ islets.
The expression of 56 genes was 1.5-fold higher in Crif1o€@+/~
islets, while 16 genes were 1.5-fold lower. Of these, only 11 genes
were significantly differentially expressed (fold change > 1.5, raw
data; p < 0.05) (Fig. 6a). The Reg gene family (Reg2, Reg3a, Reg3b,
Reg3d, and Reg3g) exhibited robust differences in expression and
is shown in the volcano plot (Fig. 6b). Reg2, Reg3b, Reg3d, and
Reg3g mRNA expression was approximately 2-4-fold higher in
islets from Crif1°¢*~ mice than in Crif1°¢** mice (Fig. 6c). The
Reg family is known to be involved in islet regeneration. To
confirm an increase in islet proliferation, we performed gqPCR
analysis of the mRNA expression of proliferation markers (Pcna, Ki-
67, Top2a, and Ccnd2) and found that the mRNA expression of Ki-
67 and Top2a was higher in Crif1°¢+/~ islets (Fig. 6d). Thus, genes
related to cell proliferation (Reg family, Ki-67, and Pcna) were
expressed at significantly higher levels, which may explain the
greater islet mass in Crif1°¢%~ mice.

SPRINGER NATURE

Crif1°¢"**'~ mice show earlier B-cell failure when fed a high-fat
diet

To examine the compensation for metabolic stress, we next
analyzed mitochondrial respiration and the metabolic phenotype
of 18-week-old Crif1°¢*/~ and Crif1°#"“*/* mice that had been fed
a HFD for the preceding 12 weeks. Islets from Crif1°¢%+/~ mice fed
a HFD showed lower glucose-induced OCR and responses to
oligomycin and CCCP than those of the control group (Fig. 7a). In
addition, ATP production (approximately 90%) and maximal
respiratory capacity (approximately 30%) were significantly lower
in Crif1®® @~ islets (Fig. 7b). These data imply that Crifl
haploinsufficiency in B cells impairs local mitochondrial respiration
in mice fed a HFD.

To investigate the metabolic response of Crif1°¢*~ mice to
HFD feeding, their body mass gain, glucose tolerance, and
pancreatic histology were evaluated. The body mass gains of
Crif1°€@+/= and Crif1°¢“** mice on a HFD for 10 weeks were
similar (Supplementary Fig. 8a). However, Crif1®“*~ mice
weighed significantly more than Crif1°¢9++ mice after 12 weeks
of HFD consumption (Fig. 7c and Supplementary Fig. 8a). The
IPGTT after 12 weeks of HFD feeding revealed a significant
impairment in glucose disposal in Crif1°#9+/~ mice relative to
Crif1%€@+/* mice (Fig. 7d, e). Furthermore, the plasma insulin
concentration of the former was higher after 6 h of fasting (time 0)
but failed to show a further increase at 15 min after the glucose
load in Crif1°¢“+~ mice (Fig. 7f). The random blood glucose
concentrations of the two groups were comparable (Supplemen-
tary Fig. 8b), but Crif1°¢+/~ mice were less insulin-sensitive than
Crif1%¢@+/* mice because they had higher blood glucose
concentrations at 30 and 60 min after insulin injection at the
end of the 12-week period of HFD consumption (Supplementary
Fig. 8c).

The effects of HFD feeding on pancreatic histology were assessed
using H&E-stained sections (Fig. 7g). HFD-fed Crif1°“** mice had a
more than 2-fold larger pancreatic islet mass than normal chow diet
(NCD)-fed Crif1°¢™+/* mice to compensate for metabolic stress, but
there was no difference in the pancreatic islet mass between HFD-
fed and NCD-fed Crif1°¢“+~ mice (Fig. 7g, h). In addition, B-cell
mass was significantly lower in HFD-fed Crif1®* mice than in
HFD-fed Crif1°®**/* mice (Fig. 7i). These results indicate that
Crif1°€%+/~ mice fail to compensate for metabolic stress by means
of islet hyperplasia. Analysis of the islet size distribution showed
that the proportion of large islets was higher in NCD-fed Crif1°¢%a+/~
mice but lower in HFD-fed Crif1®#®*/~ mice (Supplementary Fig.
8d). Normal islets were circular and were found throughout the
pancreatic sections, but HFD-fed Crif1°¢*/~ mice were less circular
and showed an increased presence of disorganized islets (Fig. 7g, j).
Furthermore, Crif1®“+~ mice showed higher centralized a cells
and a higher o-cell ratio than HFD-fed control mice (Fig. 7j, k). In
summary, Crif1 haploinsufficiency in 3 cells renders mice vulnerable
to metabolic stress and is associated with poor islet architecture
and glucose intolerance.
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Fig. 6

The expression of Reg family genes is high in islets from Crif

1°¢*/~ mice. a and b RNA-sequencing data for isolated islets from

Crif1%€a+/+ and Crif1°®%*’~ mice (n = 3). a List of differentially expressed transcripts (raw data, >1.5-fold difference; p < 0.05). b Volcano plot
showing the significantly upregulated (red) and downregulated (blue) genes. ¢ Relative mRNA expression of Reg family genes in isolated islets
from 14-week-old Crif1%¢"*"* and Crif1°*®*/~ mice normalized to Actb expression. d Relative mRNA expression of the proliferation markers
Pcna, Ki67, Top2a, and Ccnd2 in isolated islets from 14-week-old Crif1%¢*"* and Crif1°¢*“*'~ mice normalized to Actb expression. Data are the

mean + SEM. *p < 0.05.

DISCUSSION

We have shown that deficiency of a single MRP in pancreatic islets
causes age- and HFD-associated islet failure, which is reminiscent
of the islet phenotype of patients in the early stages of type 2
diabetes. Mice with haploinsufficiency of the Crif1 gene display
normal glucose tolerance in early life, with a marked compensa-
tory increase in islet mass. Furthermore, there were marked
differences in MRP gene expression in human islets and 8 cells
from nondiabetic and diabetic individuals. Therefore, mitochon-
drial matrix proteostasis, which is mediated via the mitoribosome,
may significantly influence the risk of developing type 2 diabetes.
CRIF1 is a novel mitochondrial component that is located in the
central protuberance region of the large subunit of the mitoribo-
some. We analyzed a single-cell RNA-seq dataset and found that
the expression of CRIF1 was reduced in human B cells, which is
evidence that CRIFT could play an important pathophysiologic role
in human diabetes. Furthermore, we provide evidence that
deficiency of the Crif1 gene is associated with islet failure, causing
systemic glucose intolerance, in mice.

The present mouse model displays different features from those
previously reported for mitochondrial diabetes, which is char-
acterized by p-cell-specific mitochondrial dysfunction. Mice
carrying such B-cell-specific genetic defects showed early-onset,
severe diabetic phenotypes, such as poor GSIS, glucose intoler-
ance, and low (-cell mass, followed by a marked reduction in
mitochondrial function®~2. In particular, the Crif1®¢®~’~ model,

Experimental & Molecular Medicine (2022) 54:932 - 945

which we reported previously, exhibited impaired glucose
tolerance with defective insulin secretion as early as 4 weeks of
age and decreased mitochondrial function, islet area, and insulin
contents at 11 weeks of age'’. These results suggest that
homozygotic Crif1®*~~ mice have the typical features of mice
with mitochondrial diabetes. In contrast, the heterozygotic
Crif1€%+/~ mice showed lower glucose-stimulated mitochondrial
ATP production but normal overall GSIS. Furthermore, they had a
1.5-fold higher f-cell proliferation rate and an >2-fold larger islet
mass at 22 weeks of age. Islet failure occurred in Crif1°¢*'~ mice
when they became older and were subjected to the metabolic
insult of HFD feeding®~2°. Thus, the islets of Crif1°¢“*~ mice
demonstrate features that are typical of the early stages of type 2
diabetes, including loss of first-phase insulin secretion, islet
hyperplasia, and altered cellular composition®%3'. Additionally, in
a previous study, genetic changes in the early stage of diabetes
and the progression of diabetes were studied using partial
pancreatectomy in rats*?, and transcriptomic changes in these
results were consistent with our study in terms of reduced
expression of Reg family and SNARE genes. Thus, Crif1°¢“*'~ mice
can be considered an early diabetes model.

This ability of B cells to control and modulate their mitochon-
drial bioenergetics according to nutrient supply is essential to
maintain their functionality (nutrient-stimulated insulin secretion)
and viability®®. Crif1°“*~ mice have partial mitochondrial
dysfunction in B cells (Fig. 2i, j). Therefore, we speculate that
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Crif1°""*’~ mice may have partial bioenergetic insufficiency due
to B-cell mitochondrial dysfunction, which may lead to reduced
energy expenditure and weight gain®*3¢,

In the present study, it was notable that B-cell-specific Crif1
haploinsufficiency resulted in the loss of first-phase insulin
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secretion, with a reduction in the number of docked granules.
Many studies have shown that first-phase insulin secretion
depends on the availability of membrane docking granules®”°,
This is important because defects in first-phase insulin secretion
have a substantial influence on glucose tolerance*'. A soluble N-
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Fig. 7 Crif1 haploinsufficient mice are susceptible to metabolic stress. a The oxygen consumption rate (OCR), measured in isolated islets
from high-fat diet (HFD)-fed Crif1°®*/* and Crif1°**’~ mice (n = 5—10). The treatments were 20 mmol/l glucose (G), 2 pmol/l oligomycin (O)
(an inhibitor of ATP synthase), 5 pmol/I carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (C) (an uncoupler), and 2 mmol/I rotenone (R) (an
inhibitor of complex I). b The area under the curve (AUC) for each phase of the oxygen consumption measurement. ¢ Twelve weeks of HFD
consumption from 6 weeks of age increased the body mass of Crif1°?*/+ and Crif1°?“*/~ mice (n =4—7). d Blood glucose concentrations
during intraperitoneal glucose tolerance testing (IPGTT) (6-h fast; 1 g/kg glucose dose) in 1-year-old Crif1°¢“++ and Crif1°¢“+/~ mice. e AUCs
for the IPGTT. f Glucose-stimulated insulin secretion (GSIS) during the IPGTT. g Islet area, shown in representative images of hematoxylin and
eosin-stained pancreatic sections. h Islet area quantification (n = 4—6). i -cell mass quantification (n = 3). j Representative sections showing
the islets of Crif1°¢*/* and Crif1°"®*’~ mice at 18 weeks of age that had been fed a HFD for 12 weeks. Inmunofluorescent staining: Ins, red;
Gcg, green; and DAPI, blue. k a-Cell ratio (a-cell number/whole islet cell number*100), calculated for islets from Crif1%¢' 9+ and Crif1%€te+/~
mice. Data are the mean = SEM. *p < 0.05 and *p < 0.005 vs. Crif1°¢@*/*, Scale bar: 50 pm.

ethylmaleimide-sensitive fusion protein attachment protein recep-
tor (SNARE) protein is responsible for the exocytosis of the
granules, and interestingly, B-cell-specific Crif1 haploinsufficiency
was associated with lower expression of the SNARE genes Stx17,
Vamp2, and Snap25 in islets. Furthermore, consistent with this, it
has been reported that low expression of the SNARE proteins
STX1, SNAP25, and VAMP2 is associated with insulin secretory
defects in rodents and humans with obesity and type 2
diabetes®>*2~*, First-phase insulin secretion also requires a rapid
and marked increase in Ca®" influx, which occurs via the opening
of L-type voltage-dependent calcium channels (VDCCs)**°,
However, Crifl haploinsufficiency was not associated with an
impairment in the glucose-stimulated increase in [Ca®']; (Supple-
mentary Fig. 3a), which suggests that the loss of first-phase insulin
release in these mice was not the result of impairments in calcium
channel opening or calcium influx. Instead, we have shown that
Crif1 haploinsufficiency is associated with a defect in exocytosis
that is likely the result of the abnormal expression of SNARE
proteins, which causes a defect in first-phase insulin secretion.

The normal glucose tolerance of 22-week-old Crif1°¢"*/~ mice,
despite the blunting of first-phase insulin secretion, can be
explained by the higher B-cell proliferation, islet mass and (3-cell
mass, which compensate for the B-cell mitochondrial dysfunction.
We also found higher expression of Reg family genes in Crif1beta+/=
mice. The proteins produced by these genes are known to
promote proliferation and differentiation and to prevent the
apoptosis of cells in various organs*’. Reg proteins induce cell
(trans)differentiation, especially to islet cells, and cell proliferation
and Reg expression are age dependent, increase during injury or
inflammation and have been reported to be linked to pancreatitis,
pancreatic cancer, and diabetes**™'. Although Reg2 knockout is
not associated with defects in glucose homeostasis or islet mass in
young mice, both aging and HFD-induced obesity are associated
with lower islet mass, lower plasma insulin, and glucose
intolerance®®. In addition, Reg3 is secreted during pancreatic
inflammation to protect cells from stress*’. Thus, the higher
expression of Reg family genes in Crif1°“*~ mice may be an
adaptation aimed at countering the stress induced by the MRP
defect in B cells and may explain the higher B-cell proliferation,
islet mass, and B-cell mass.

The cellular composition of and cell-cell interactions within
islets are crucial for the normal function of adult islets®*>3, A
relative increase in the number of a cells in the central core of the
islet has been shown in many animal models of -cell defects, as
well as in patients with type 2 diabetes®*>>. Crif1%¢"+/~ islets
displayed a more centralized distribution of a cells, but we did not
determine whether this altered distribution of a cells is caused by
an alteration in B-cell polarity in the presence of an MRP
deficiency. Indeed, the increase in the number of central a cells
in Crif1°¢%*/~ islets may be a secondary effect of unknown defects
in B-cell interactions. Furthermore, an increased number of a cells
was not associated with a change in the plasma glucagon
concentration. Additional studies are needed to investigate the
cell-cell interactions.

Taken together, this study demonstrates that mitoribosome
competence in B cells is closely related to the functional
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maintenance of B cells. In addition, heterozygotic Crif1®€a+/~

mice have a phenotype that resembles the features of human
islets in prediabetes and may represent a new tool for
investigating the role of islet pathophysiology in human diabetes
patients.

There were some limitations to the present study. First, in the
three gene sets that we used in the transcriptomic analysis of
human islets, there was heterogeneity in the gene expression
because of differences in the participants and assay methods
used. Second, analysis of the islets obtained from Crif1°¢“*/~ mice
did not permit the ready identification of B-cell-specific functional
effects. Third, the differences in mRNA abundances that were
identified using transcriptomic data may not have been accom-
panied by parallel differences in protein expression. Future studies
should aim to define the biological effects of MRP defects in islets
using methods, such as single-cell sequencing, proteomics, and
tracer studies in reporter mice. Finally, further studies are needed
to identify the MRPs that affect the risk of type 2 diabetes in
humans.
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