
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Medical Engineering and Physics 110 (2022) 103870

Available online 6 August 2022
1350-4533/© 2022 IPEM. Published by Elsevier Ltd. All rights reserved.

DKPNet41: Directed knight pattern network-based cough sound 
classification model for automatic disease diagnosis 

Mutlu Kuluozturk a, Mehmet Ali Kobat b, Prabal Datta Barua c,d, Sengul Dogan e,*, 
Turker Tuncer e, Ru-San Tan f,g, Edward J. Ciaccio h, U Rajendra Acharya i,j,k 

a Department of Pulmonology, Firat University Hospital, Elazig, Turkey 
b Department of Cardiology, Firat University Hospital, Elazig, Turkey 
c School of Management & Enterprise, University of Southern Queensland, Australia 
d Faculty of Engineering and Information Technology, University of Technology Sydney, Australia 
e Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey 
f Department of Cardiology, National Heart Centre Singapore, Singapore 
g Duke-NUS Medical School, Singapore 
h Department of Medicine, Columbia University Irving Medical Center, USA 
i Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore 
j Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 
k Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan   

A R T I C L E  I N F O   

Keywords: 
Directed knight pattern 
cough sound 
multiple pooling 
DKPNet41 
acute asthma 
Covid-19 
heart failure 

A B S T R A C T   

Problem: Cough-based disease detection is a hot research topic for machine learning, and much research has been 
published on the automatic detection of Covid-19. However, these studies are useful for the diagnosis of different 
diseases. 
Aim: In this work, we collected a new and large (n=642 subjects) cough sound dataset comprising four diagnostic 
categories: ‘Covid-19’, ‘heart failure’, ‘acute asthma’, and ‘healthy’, and used it to train, validate, and test a novel 
model designed for automatic detection. 
Method: The model consists of four main components: novel feature generation based on a specifically directed 
knight pattern (DKP), signal decomposition using four pooling methods, feature selection using iterative 
neighborhood analysis (INCA), and classification using the k-nearest neighbor (kNN) classifier with ten-fold 
cross-validation. Multilevel multiple pooling decomposition combined with DKP yielded 41 feature vectors 
(40 extracted plus one original cough sound). From these, the ten best feature vectors were selected. Based on 
each vector’s misclassification rate, redundant feature vectors were eliminated and then merged. The merged 
vector’s most informative features automatically selected using INCA were input to a standard kNN classifier. 
Results: The model, called DKPNet41, attained a high accuracy of 99.39% for cough sound-based multiclass 
classification of the four categories. 
Conclusions: The results obtained in the study showed that the DKPNet41 model automatically and efficiently 
classifies cough sounds for disease diagnosis.   

1. Introduction 

The Covid-19 pandemic has affected people’s lives worldwide. 
Despite the availability of vaccination, many countries still experience a 
resurgence in Covid-19 infection rates, especially with variant viral 
strains [1, 2]. While the definitive diagnosis of Covid-19 infection re-
quires confirmatory viral assays, upstream clinical triage can identify 

patients at risk, so that isolation can be used to avert further spread. As 
respiratory symptoms and signs in Covid-19 may resemble that of other 
conditions such as heart failure, methods that can discern the Covid-19 
presentation from other ailments would be clinically useful. Artificial 
intelligence methods have found burgeoning applications in medicine 
[3], especially for the computer-aided diagnosis of diverse diseases 
[4–6]. Unsurprisingly, research interest in unmanned or automatic 
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computer-aided diagnosis of Covid-19 has grown apace in the last year. 
Biomedical signal readouts of X-ray computed tomography and cough 
sound types can be fed into various machine learning or deep learning 
models to automatically detect Covid-19 [7]. Once validated, intelligent 
medical assistant systems can be prioritized for deployment in medical 
centers and hospitals to facilitate disease screening [8]. 

In this work, we focused on disease detection using cough sound 
signals, which are widely available and inexpensive to acquire. We 
collected a large dataset of cough sounds from healthy subjects as well as 
patients with Covid-19 infection, heart failure, and acute asthma. Acute 
asthma is a common disease that may present with altered cough sounds 
from vocal cord dysfunction [9]. Left heart failure may cause fluid to 
accumulate in the lungs, leading to respiratory symptoms. Nocturnal 
cough is a clinical sign of heart failure [10]. 

Artificial intelligence-based disorder detection/diagnosis has 
become a very popular area of research, with increasing numbers of 
articles on automatic disease diagnosis being published [11, 12]. Un-
supervised deep learning models are often used to train, validate, and 
test biomedical data. Their high levels of attained classification accuracy 
render them suitable for many biomedical applications [13, 14]. How-
ever, automated disease diagnostic systems incorporating machine 
learning based on handcrafted features can also be effective [15–17]. 
While deep networks can achieve high accuracy with large data sets 
[18], handcrafted models exact lower computational costs [16]. As such, 
either method can be deployed in intelligent medical systems to opti-
mize accuracy or computational efficiency [19–21]. 

Various automated computer-aided diagnostic methods for the 
detection of asthma, Covid-19, and heart failure have been published 
using diverse medical imaging and biomedical signals as input [22, 23]. 
Using the RapidMiner application [24], Yunus et al. [25] designed a 
heart failure classification system based on 11 data attributes (age, sex, 
smoking, anemia, platelets, diabetes, ejection fraction, high blood 
pressure, serum sodium, serum creatine, time). They tested the model on 
299 samples from the UCI machine learning repository [26] and ach-
ieved classification accuracy rates of 86.95% and 94.31% with the 
k-nearest neighbor (kNN) and random forest implementations, respec-
tively. Al-khassaweneh and Abdelrahman [27] used a method based on 
the Wigner distribution and wavelet transform to diagnose asthma, and 
attained a 100% accuracy rate, albeit with small study subject numbers 
(12 asthmatics and 12 healthy subjects). From cough sounds acquired 
with a system comprising a thermos camera, airflow sensor, and 
microphone and then uploaded to the Internet, Belkacem et al. [28] 
were able to diagnose Covid-19 remotely via a mobile connection. The 
technique incorporated a computationally demanding model based on 
convolution, recurrent neural networks, and mel-frequency cepstral 
coefficients. Brown et al. [29] reported a precision rate and area under 
the curve of 80% and 82%, respectively, using a support vector machine 
classifier. Islam et al. [30] studied an artificial neural network model for 
asthma diagnosis based on multichannel analyses of lung sounds 
collected from 30 asthmatics and 30 healthy subjects. Among the four 
channels analyzed, Channel 2 yielded the highest accuracy of 82.3% 
with an artificial neural network classifier, while the accuracy rates for 
Channels 1, 3, and 4 were less salutary (66.70%, 70.0%, and 63.3%, 
respectively, with support vector machine classifiers). With a larger 
dataset comprising 728 asthmatics and 522 healthy medical personnel, 
Badnjević et al. [31] reported a high accuracy rate of 98.85% for the 
detection of asthmatic and healthy subjects using a model that was also 
based on an artificial neural network. In the study, the training was 
implemented as 80% and the validation was set at 20%. Hassan et al. 
[32] applied a model based on a recurrent neural network and long 
short-term memory to analyze breath, cough, and voice signals from 20 
Covid-19 and 60 healthy subjects. Implementing a 70:30 split ratio, they 
attained a high accuracy rate of 97% for Covid-19 detection using cough 
sounds. 

Studies in the literature generally focus on diagnosing a single dis-
ease [25]. Therefore, no automatic machine learning approach can 

diagnose more than one disease [31]. A major research gap in the 
literature is that cough-based disease diagnosis models demonstrate a 
low level of accuracy [29, 30]. The few studies reaching high accuracy 
values use small-sized datasets [27]. Another research gap in the liter-
ature is that the proposed methods have a high computational 
complexity [28, 32]. To fill these gaps, a new and unique dataset with a 
higher subject count was collected in this study. The collected dataset 
includes four diagnostic types. These types are: ‘Covid-19’, ‘heart fail-
ure’, ‘acute asthma’, and ‘healthy’ categories. The categories can be 
detected based on cough sounds. In addition, a new paradigm with low 
computational complexity is proposed. In this context, we developed a 
machine learning model based on a specifically directed graph called the 
directed knight pattern (DKP) that outputs 41 feature vectors 
(DKPNet41) for downstream feature vector and feature selection as well 
as classification. A machine learning method should not only generate 
features but must also be able to select the salient feature vectors and 
features. We employed a histogram-based function using DKP as the 
main feature generator, in which two kernels and chess moves were used 
to generate 1,536 features per run. As the pattern itself cannot discern 
high-level features, an appropriate pooling method for decomposition is 
needed for multilevel feature generation. However, pooling methods are 
not satisfactory for routing according to the capsule network [33] as 
only peak values are routed with maximum pooling. To ameliorate, we 
deployed four pooling methods: average, minimum, maximum, and 
conditional pooling, to generate forty sub-bands. Together with the 
original cough sound signal, 41 feature vectors were obtained from 
which the DKPNet41 selected the ten best feature vectors to create the 
final vector of length 1536 × 10 = 15360. We next used the iterative 
neighborhood component (INCA) feature selector [34] to sieve out the 
most informative 726 features from the extracted 15,360 features in the 
final vector, which were then input to the kNN classifier [35]. 

This new model was devised with high accuracy and low computa-
tional complexity in mind. The model was trained and validated on a 
new large multiclass cough sound dataset that was prospectively ac-
quired. The research gaps evident in the literature, such as a small 
number of subjects, low accuracy, high computational complexity, and 
lack of satisfactory diagnosis when there are multiple disease categories, 
were rectified with this study. In this context, the main contributions of 
this research are:  

- Artificial intelligence-enabled cough sound classification an urgently 
needed area of research. The new multiclass cough sound dataset 
was prospectively acquired and made publicly accessible with hy-
perlink http://web.firat.edu.tr/turkertuncer/acute_asthma_cough. 
rar.  

- A novel DKP-based model was presented that combined chess moves 
and two binary feature extraction kernels to generate features. 

- The handcrafted DKPNet41 is a computationally lightweight cogni-
tive learning model comprising multiple pooling decomposition, 
multilevel feature extraction, iterative feature selector, and classifi-
cation steps. Multilevel multiple pooling decomposition combined 
with directed knight pattern yielded 41 feature vectors (40 extracted 
plus one original cough sound). From these, the best ten feature 
vectors were selected. Based on each vector’s misclassification rate, 
redundant feature vectors were eliminated, and then merged. The 
merged vector’s most informative features automatically selected 
using INCA were input to a standard kNN classifier. 

2. Dataset 

From December 2020 to April 2021, 842 subjects who were diag-
nosed with Covid-19, heart failure, or acute asthma, or who were 
assessed as healthy (see Table 1), were recruited from the pulmonology 
and cardiology clinics of Firat University Hospital, Elazığ, Turkey. 
Smartphone microphones were used to collect cough sounds, which 
were saved in ogg, mpeg, mp4, or m4a formats at sampling rates of 44.1 
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or 48 kHz, depending on the type of mobile phone. We recorded 120, 2, 
1, and 719 participants’ cough sounds in ogg, mp4, mpeg, and m4a 
format, respectively, to show the robust classification ability of the 
proposed model. Furthermore, we have not used any preprocessing al-
gorithm, only cough sounds have been segmented. In addition, few 
speech signals were deleted manually. These cough sounds were 
collected from definitively diagnosed patients. For diagnosis, doctors 
checked PCR test results of the Covid19 patients, and thereafter we 
collected cough sounds from these patients. Each cough sound signal 
was subdivided into smaller segments (the length of each segment is one 

second) for a total of 2944 samples and 842 subjects used in the analysis 
(see Figure 1 for examples). The collected dataset is publicly accessible 
and downloadable at the hyperlink http://web.firat.edu.tr/turkertuncer 
/acute_asthma_cough.rar. 

To denote the distinctive of these cough sounds per the classes, we 
extracted spectrogram images of cough sound samples, and the obtained 
images are shown in Figure 1. 

As can be seen from spectrogram images (see Figure 1), these cough 
has variable attributes and Figure 1 clearly demonstrated seperable at-
tributes of the collected cough sounds per the category. 

3. Method 

Feature engineering using unsupervised deep learning is computa-
tionally demanding. In this study, we designed a novel computationally 
lightweight machine learning model that employed a specific DKP-based 
pattern -where the direction of each edge defined the generated bits- as 
the primary local feature generation function to develop handcrafted 
binary features from two directed kernels, i.e., signum and ternary. The 

Table 1 
Details of cough sound dataset.  

No Class Number of subjects Number of samples 

1 Acute asthma 110 787 
2 Healthy 247 696 
3 Covid-19 241 907 
4 Heart failure 244 554 
Total 842 2,944  

Fig. 1. Spectrogram images of the four cough sample of our collected dataset per the class.  
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DKP is a local textural feature generator that generates 1,536 features 
per run, but it cannot perform high-level feature extraction, for which a 
decomposer is generally utilized. Although pooling decomposers have 
been employed to create layers with deep learning models such as 
convolutional neural networks [36] and multi-layer perceptron mixers 
[37], pooling decomposers are not necessarily the optimal routers for 
handcraft modeling. Instead, we deployed four pooling methods in a 
ten-level architecture to generate 4 × 10 sub-bands. Together with the 
original cough sound signal, 41 feature vectors were obtained per cough 
sound signal segment. From these 41 feature vectors, the best ten feature 
vectors were selected based on the individual vectors’ accuracy rates to 
eliminate redundancy. Then and then merged to form a final vector of 
size 10 × 1,536 = 15,360. From the merged vector, INCA automatically 
selected the most informative 726 features, which were then input to a 
standard kNN classifier (see Figure 2). The detailed steps of the 
DKPNet41 model are explained in the following sections. 

As given in Figure 2, the model acquires cough sound as input. In the 
study, segmented cough sounds are used. The developed model pro-
duces features from the main cough and decomposition sounds. In this 
phase, DKP is employed as a unique feature extraction approach. In the 
decomposition process, sub-bands are obtained using the average 
pooling method, and features are produced from each sub-band using 
the DKP method. The decomposition process is repeated ten times. Each 

iteration produces four feature vectors via the pooling process. In the 
next phase, the model selects and combines the best feature vectors 
(projection from 41 feature vectors to 10 feature vectors). Finally, the 
most significant features are selected from the feature vector, and these 
features are classified as categories ‘acute asthma’, ‘Covid-19’, ‘heart 
failure’, and ‘healthy’. The details of the proposed method are given in 
the subsections. 

3.1. Feature extraction 

Step 0: Read cough sound. 
Step 1: Create sub-bands using average, maximum, minimum, and 
conditional pooling functions. These functions use two-sized non- 
overlapping windows to decompose cough sounds. 

In algorithm 1, the maximum, minimum and average pooling 
methods were used with maximum, minimum, and average statistical 
moments, respectively. Conditional pooling used the three statistical 
moments according to the condition defined in Equation 1. 

conp(x)= {

max(xi, xi+1), xi > 0 and xi+1 > 0
min(xi, xi+1), xi〈0 and xi+1〉0

ave(xi, xi+1),Otherwise
, i ∈ {1, 3,…, L − 1} (1) 

Fig. 2. Schematic of the directed knight pattern-based model.  
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Where the conp(.) function represents conditional pooling; x, the 
input vector;L, the length of x vector; and max(.), min(.), ave(.), the 
maximum, minimum, and average statistical moments, respectively. 

Next, DKP is deployed for local feature extraction using the 40 sub- 
bands generated in Algorithm 1, plus the original cough sound. 

Step 2: Extract 1,536 features from each sub-band and cough sound 
using DKP. 

f 1 = DKP(cs) (2)  

f t+1 = DKP(sbt), t ∈ {1, 2,…, 40} (3)   

where ft is the tth generated feature vector; and DKP(.), the proposed 
DKP feature generator function. The latter is explained in detail below. 

Step 2.1: Deploy overlapping window division. Here, the one- 
dimensional signal input is divided into nine overlapping blocks. 

b(j) = x(i+ j − 1), i ∈ {1, 2,…, L − 8}, j ∈ {1, 2,…, 9} (4)   

where b and x are nine-sized overlapping blocks and a one-dimensional 
signal, respectively. 

Step 2.2: Generate a 3 × 3 sized matrix by deploying vector-to-matrix 
transformation. 

m(g, h) = b(j), g ∈ {1, 2, 3}, h ∈ {1, 2, 3} (5)   

In Equation 5, m defines a 3 × 3 sized matrix, which is used to apply 
the DKP. 

Step 2.3: Apply the DKP using the created 3 × 3 sized matrix (see 
Figure 3). 

In Figure 3, the DKP consists of two directed graph patterns denoted 
as black and red arrows, with edges (enumerated) that can be used to 
generate the binary features. The black arrows trace the starting and 
destination points of sequential knight moves on a 3 × 3 matrix 
computerized “chessboard", while the red arrows point to the destina-
tion points after each corresponding knight move, with reference to the 
center of the “chessboard”. Directed upper and lower ternary functions 
and directed signum functions are employed to generate bits. Using the 
directions in the analytical plane (see Figure 3), bits are calculated as 
follows. 

Step 2.4. Generate bits using both DKP patterns and directed kernels. 

Algorithm 1 
Pseudocode for sub-band creation using multilevel multiple pooling.  

Input: Cough sound (cs) 
Output: 40 sub-band (sb) 

00: Read cs from the collected dataset. 
01: cnt = 1; 
02: for k=1 to 10 do 
03: sbcnt = minp(cs); // Minimum pooling applying. 
04: sbcnt + 1 = maxp(cs); // Maximum pooling applying. 
05: sbcnt + 2 = avep(cs); // Average pooling applying. 
06: sbcnt + 3 = conp(cs); // Conditional pooling applying. 
07: cs = sbcnt + 2; // Decompose cough sound using average pooling and update 
08: cnt = cnt + 4; 
09: end for k  

Fig. 3. Graphical depiction of directed chess moves (knight patterns) and directions used to generate bits.  
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(7)  

where bfz
l lth bit of zth bit group using zth directed kernel (∂z). Here, 

Equation 6 and Equation 7 define feature bit generation using the first 
and second graphs depicted using black and red arrows, respectively, in 
Figure 3. In both graph patterns, six-bit groups, each with a length of 
eight, are generated. Here, the main feature generators are directed 
kernels defined in equations (8) to (11). 

∂1
(a, b)= {

0, (a − b < 0 and dir = 1) or (a − b ≥ 0 and dir = − 1)
1, (a − b ≥ 0 and dir = 1) or (a − b ≥ 0 and dir = − 1) (8)  

∂2
(a, b)= {

0, (a − b ≤ d and dir = 1) or (a − b > d and dir = − 1)
1, (a − b > d and dir = 1) or (a − b ≤ d and dir = − 1) (9)  

∂3
(a, b)= {

0, (a − b ≥ − d and dir = 1) or (a − b < − d and dir = − 1)
1, (a − b < − d and dir = 1) or (a − b ≥ − d and dir = − 1)

(10)  

d = std(s) ×
1
2

(11)  

where ∂1(.,.), ∂2(.,.), and ∂3(.,.) define the directed signum, directed 
upper ternary and directed lower ternary binary feature generators, 
respectively. a, b are input values; dir., the direction, which is calculated 
using the edge (see Figure 3); and d, threshold value, which is calculated 
using the standard deviation (std(.)) of the one-dimensional input signal 
(s). 

Step 2.5: Calculate map signals by deploying binary-to-decimal 
conversion. 

mph(i) =
∑8

j=1
bf h

j × 2j− 1, h ∈ {1, 2,…, 6}, i ∈ {1, 2,…, L − 8} (12)   

From Equation 12, the DKP generates six maps (mp) signals for 
feature extraction. 

Step 2.6: Extract histograms of the generated six map signals. 

hsth(v) = 0, v ∈
{

0, 1,…, 28 − 1
}

(13)  

hsth( mph(i)
)
= hsth( mph(i)

)
+ 1 (14)   

In Equation 13, the initial histogram values are assigned null values. 
Equation (14) defines the histogram extraction mathematically. 

Step 2.7: Merge the extracted six histograms to obtain a feature 
vector of 256 × 6 = 1, 536. 

mf (256 ×(h − 1)+ v) = hsth(v) (15)   

Here, mf represents the merged features. 

Step 3: Calculate the accuracy rates of each of the extracted 41 
feature vectors in Step 2, and deploy the kNN classifier with five-fold 
cross-validation (see Figure 4). 
Step 4: Select top feature vectors based on individually calculated 
accuracy rates in Step 3. The proposed DKPNet41 is a parametric 
method. This work selects the top ten feature vectors to obtain op-
timum performance. 
Step 5: Concatenate the top ten feature vectors to obtain the final 
feature vector (X) of length 15,360. 

3.2. Feature selection using INCA 

Step 6: Select top informative features by deploying INCA [34]. INCA 
is an iterative and improved version of neighborhood components 
analysis. The latter is a weight-based selector without the ability to 
automatically select the most suitable number of features, unlike 
INCA, which is a parametric selector. These parameters are the 
misclassification rate generator, the initial value of iteration, and the 
end value of iteration. The parameters used in this work are listed in 
Table 2. 

By using these parameters, the INCA selector evaluates 1000 − 40 +
1 = 961 feature vectors to select the most appropriate features, i.e., 726 
features from the 15,360 features in the final merged vector from Step 5. 
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3.2. Classification 

Step 7: Classify the chosen 726 features by deploying standard kNN 
(parameters are defined similar to Table 2) with ten-fold cross- 
validation. 

4. Performance analysis 

To evaluate the performance of the DKPNet41 model, we evaluated 
standard performance evaluation metrics based on the mathematical 
formulae given below. 

Acc =
tp + tn

tp + tn + fn + fp
(16)  

Pre =
tp

tp + fp
(17)  

Rec =
tp

tp + fn
(18)  

F1 = 2 ×
Pre × Rec
Pre + Rec

(19)  

where tp denotes true positives; tn, true negatives; fp, false positives; fn, 
false negatives; Acc, accuracy; Pre, precision; Rec, recall; and F1, F1- 
score (harmonic average of precision and recall). Individual perfor-
mance metrics for all and individual diagnostic categories, respectively, 
were calculated and then listed in Table 3. 

As provided in Table 3, the developed model reached an average 
accuracy of 99.39% with the ten-fold-cross-validation strategy. In 
addition, the model achieved a 100% classification success for acute 
asthma, healthy, and heart failure categories. The confusion matrix of 
these results is shown in Figure 5. 

In summary, the DKPNet41 model attained excellent overall multi-
class classification accuracy, unweighted average recall, and an F1-score 
of 99.39%, 99.51%, and 99.45%, respectively, with ten-fold cross-vali-
dation. Moreover, fold-wise accuracies were calculated, and the fold- 
wise results were consistently excellent (see Figure 6). Fold-wise re-
sults were calculated to demonstrate the consistency of the proposed 
method. As can be seen from Figure 6, the proposed method indicates a 
very high classification success for all folds. 

As an alternative to cross-validation, we performed hold-out 

validation at a range of split ratios: 90:10, 80:20, 70:30, 60:40, and 
50:50. Similar high accuracy rates, unweighted average recall, and F1- 
scores at varying split ratios (Table 4) were obtained, which 
confirmed the robustness of the DKPNet14 model. 

The results given in Table 4 show that the proposed method out-
performs the hold-out validation strategy. In addition, the high success 
rate applies to all split ratios. The results are given in Figure 6, and 
Table 4 thus show the superiority of the proposed method. Finally, we 
performed a complexity to assess the model’s time burden using big O 
notation (Table 5). This analysis is provided in Table 5. 

The most complex step of the DKPNet41 model is feature selection 
with INCA, which possesses a relatively low computational complexity. 
However, when the total complexity is examined, it is apparent that the 
proposed method has low computational complexity. Furthermore, the 
obtained accuracy values (fold-wise and split ratio(s) results) and 
computational complexity demonstrate that the proposed method is of 
practical use. 

5. Discussion 

We have developed a novel computationally efficient handcrafted 
DKPNet41 model for the automated diagnosis of cough sounds and 
confirmed its accurate performance by training and validating the model 
on a new large multiclass cough sound dataset that was prospectively 
acquired from healthy subjects and patients with Covid-19, heart failure 
and acute asthma. As far as we know, the method proposed in this study 
is the first of its kind and produces results that can be used in the pre-
liminary diagnosis of more than one disease. The proposed method can 
automatically classify cough sounds collected through a simple micro-
phone with a high accuracy rate. In addition, this method has low 

Fig. 4. Accuracy rate calculation of the generated 41 feature vector.  

Table 2 
Parameters of the INCA selector in the model.  

Parameter Value 

Misclassification rate 
generator 

kNN (k is 1; distance, Manhattan; voting, none; and 
standardize, true) 

Initial value 40 
End value 1000  

Table 3 
Calculated overall and individual performance metrics of the DKPNet41 model 
using ten-fold cross-validation.  

Performance metric Category Results (%) 

Accuracy Overall 99.39 
Recall Acute asthma 100 

Healthy 100 
Covid-19 98.02 
Heart failure 100 
Overall unweighted average recall 99.51 

Precision Acute asthma 99.24 
Healthy 98.31 
Covid-19 100 
Heart failure 100 
Overall 99.39 

F1-score Acute asthma 99.62 
Healthy 99.15 
Covid-19 99 
Heart failure 100 
Overall 99.45  
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computational complexity. For performance, multilevel pooling-based 
decompositions and DPK feature generation function were applied to 
cough sounds to generate 40 sub-bands with 1,536 features each. Forty- 
one feature vectors (40 sub-bands plus original cough sound) were ob-
tained. The model automatically selected the top ten feature vectors 
with the highest accuracy rates (i.e., least miscalculation) using kNN 
with 5-fold cross-validation (Figure 7), which were then merged to form 

a final feature vector of size 15,360. INCA was deployed to select from 
the final merged feature vector the most informative 726 features, which 
were then fed into the final kNN classifier. kNN was deployed at three 
steps in the DKPNet41 model: selection of ten feature vectors selection, 
selection of the most informative features from the merged final feature 
vector using INCA, and final classification. Regarding the latter, we 
tested and compared the results of various classifiers on our model. 

Fig. 5. Confusion matrix of the DKPNet41 model using ten-fold cross-validation.  

Fig. 6. Fold-wise classification accuracies.  
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These classifiers can be broadly separated into five categories: decision 
tree (DT), discriminant (D), naïve Bayes (NB), support vector machine 
(SVM), and kNN. In this work, we have used Fine DT, Medium DT, 
Coarse DT, Linear D, Gaussian NB, Kernel NB, Linear SVM, Quadratic 
SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse 
Gaussian SVM, Fine kNN, Medium kNN, Coarse kNN, Cosine kNN, Cubic 
kNN and Weighted kNN classifiers enumerated from 1 to 18, respec-
tively. These 18 classifiers were implemented using the MATLAB clas-
sification learner tool with default settings. Figure 8 shows the 
calculated accuracy rates after testing. The classifier with the best results 
was Fine kNN (13th classifier), which attained a 98.23% accuracy using 

default settings. 
To refine the Fine kNN, Bayesian optimization [38] was imple-

mented with 30 iterations to tune its parameters. At initialization, k was 
set equal to 1; the distance metric was Manhattan, and the voting value 
was null. By doing so, the accuracy rate climbed from 98.23% to 
98.51%. 

The top ten feature vectors were concatenated to improve accuracy, 
and INCA was applied to the merged feature vector. INCA evaluated 961 
feature vectors. The misclassification rates of these feature vectors (see 
Figure 9) was lowest at a feature vector length of 726, and the classifi-
cation accuracy peaked at 99.39% at this reduced feature vector length. 

The 726 features were selected from the ten best feature vectors. The 
top ten feature vectors are: 1st (raw signal), 3rd, 7th, 6th, 9th, 4th, 8th, 13th, 
12th, and 5th feature vectors, and these feature vectors contain 1536 
features. Moreover, the classification rates of these features range from 
97.89% to 98.51%. The selected number of the features per used feature 
vector is depicted in Figure 10. 

As can be seen from Figure 10, we incorporated the chosen ten 
feature vectors to create a final feature vector. 

The performance of the DKPNet41 model compares favorably with 
other state-of-the-art cough sound classification methods, attaining su-
perior accuracy rates for multiclass classification. Our study results as 
compared with other results in the literature, are summarized in Table 6. 

To date, there is no automated cough sound classification study in 
the literature in which ‘acute asthma’, ‘Covid-19’, ‘heart failure’ and 
‘healthy’ classes are used together. Therefore, we present a novel 
automated cough sound classification model using a four-class system. 
Many studies use Covid-19 versus Control classes or Asthma versus 
healthy classes in the literature. These works solve a binary classification 
problem by analyzing a cough sound dataset from a two-class perspec-
tive. Others, such as Pal and Sankarasubbu [7] used a dataset with four 
classes (Table 6). The classes are ‘Covid-19’, ‘bronchitis’, ‘healthy’ and 
‘asthma’. They used a deep neural network to classify the sounds. Pal 
and Sankarasubbu’s [7] method attained a 90.80% accuracy rate for 

Table 4 
Performance metrics at varying split ratios using hold-out validation.  

Split ratio Accuracy (%) Unweighted average recall (%) F1 score (%) 

90:10 100 100 100 
80:20 99.83 99.86 99.85 
70:30 98.53 98.69 98.63 
60:40 98.05 97.96 98.09 
50:50 97.08 97.02 97.08  

Table 5 
Complexity analysis of the DKPNet41 model.  

Step Complexity 

Multilevel multiple pooling decomposition O(klogn) 
DKP-based feature generation O(nlogn) 
Top ten feature vector selection O(knd) 
Feature vector merging O(d) 
INCA O(d2 + hnd) 
Classification with kNN O(nd) 
Total O(klogn + nlogn + d(d + hn + n)) 
n is the length of the vector; k, the number of feature vectors; d, the dimension; and h, 

the number of iterations  

Fig. 7. Individual accuracy rates of all 41 generated feature vectors. The best and worst calculated classification accuracy rates were with the first or original cough 
sound signal (98.51%) and the 40th feature vector (93.65%), respectively. 
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these four classes. By comparison, our DKPNet41 attained a 99.39% 
accuracy for four-class classification. Additionally, Pal and Sankar-
asubbu’s [6] method’s computational complexity is higher than ours. 
Another multiclass classification method was proposed by Knocikova 

et al. [43]. ‘Asthma’, ‘chronic obstructive pulmonary disease’ and 
‘healthy’ classes were categorized in this study. Knocikova et al. [43] 
achieved a 90% classification accuracy in the study. 

In this context, the highlights of our DKPNet41 model are listed 

Fig. 8. Accuracy rates of the 18 tested classifiers  

Fig. 9. Misclassification rates of the 961 feature vectors during INCA feature selection.  
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below. 
The benefits of this are:  

- Cough sounds can be easily collected at a low cost using a simple 
smartphone microphone. We prospectively collected and made 
available a large multiclass cough sound dataset that can be down-
loaded as well by other investigators for new model development.  

- It can be noted from Table 6 that this is the first paper to classify 
normal, asthma, Covid-19, and heart failure using cough sounds (4- 
class system).  

- DKPNet41 achieved the highest classification performance using six 
different validation techniques. Hence, the proposed DKPNet41 
model is robust and accurate.  

- We studied cough sounds from patients with Covid-19, heart failure, 
and acute asthma patients. The latter is a common disorder that may 
not manifest abnormality on lung imaging, which precludes the 
automated diagnosis of asthma using an image-based classification 
model. 

- The DKPNet41 model uses a novel graph pattern to extract hand-
crafted local features and is then able to cognitively select the best 
feature vectors and features automatically.  

- The model possesses an excellent multiclass classification accuracy 
of 99.39% for cough sound-based diagnosis.  

- The model is computationally lightweight with low complexity and 
time burden (Table 5). 

The Limitations of this method are as follows:  

- A larger dataset can be collected from more patients to test the 
DKPNet41 model.  

- More disorders can be detected using cough sounds. 

6. Conclusions 

We have developed a novel handcrafted DKPNet41 learning model 
and trained and validated it on a new cough sound dataset. The model 
extracted features using a new local feature generator based on DKP, 
combined with two directed kernels to generate comprehensive fea-
tures. Forty sub-bands were generated using four pooling decomposers. 
Together with the original cough sound signal, 41 feature vectors un-
derwent further automatic feature vector and feature selections. From 
accuracy measures employed to analyze the 41 feature vectors, the top 
ten feature vectors were selected, and then the most informative features 
from these ten feature vectors were chosen using the INCA selector. 
INCA selected 726 features per run fed to a standard kNN classifier. The 
model attained a 99.39% accuracy with ten-fold cross-validation. Hold- 
out validation analyses at 90:10, 80:20, 70:30, 60:40 and 50:50 split 
ratios demonstrated consistently high corresponding accuracy rates of 
100%, 99.83%, 98.53%, 98.05% and 97.08%, respectively, which sup-
port the robustness of the model. The limitation of this work is that we 
have used a relatively small dataset to develop our proposed DKPNet41 
system. In the future, we will validate our automated system with larger 
cough datasets. 

New intelligent chip diagnostic models and applications can be 
developed for artificial intelligence-enabled cough sound diagnosis. Our 
work demonstrates that cough sound-based intelligent disease di-
agnostics is feasible and can be implemented in pulmonology and car-
diology clinics. Newer handcrafted learning models/networks similar to 
DKPNet41 can be developed that will be more computationally efficient 
than the available deep networks. In the near future, a new generation 
handcrafted feature-based deep networks/models can be devised. It is 
among our future plans to test and revise the developed model using 
more data and disease types. In addition, it is aimed to ensure its 

Fig. 10. The distribution of the selected features per generated feature vector.  
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practical usability by integrating it into an embedded card. 
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Table 6 
Comparison of DKPNet41 model with published cough sound classification methods.  

Study Method Classifier Subject/ Samples Split ratio Results (%) 

Amrulloh et al. [39] Neural network Artificial neural network 9 asthma 
9 pneumonia 

Leave one out 
validation 

Sen: 89.00 
Spe: 100.0 
Kappa: 89.00 

Hee et al. [40] Mel-frequency cepstral coeffi 
cients, constant 
Q cepstral coeffi 
cients 

Gaussian mixture model–universal 
background model 

89 asthma 
89 healthy 

70:30 Sen: 82.81 
Spe: 84.76 

Yadav et al. [41] Mel-frequency cepstral 
coefficients 

Support vector machine 47 asthma 
48 healthy 

5-fold cross 
validation 

Acc: 77.80 

Mouawad et al. 
[42] 

Recurrence quantification analysis, Mel 
frequency cepstral coefficients 

XGBoost 20 Covid-19 
1468 healthy 

20-fold cross 
validation 

Acc: 97.00 
AUC: 84.00 

Knocikova et al. 
[43] 

Wavelet transform Linear discriminant analysis 26 healthy 
17 asthma 
22 chronic 
obstructive pulmonary 
disease 

Leave one subject 
out validation 

Acc: 90.00 

Loey and Mirjalili 
[44] 

Convolutional neural networks Convolutional neural networks 114 Covid-19 
102 healthy 

70:15:15 Acc: 94.90 
Sen: 94.44 
Spe: 95.37 

Islam et al. [45] Mel frequency cepstral coefficients Deep neural network 50 Covid-19 
50 healthy 

5-fold cross 
validation 

Acc: 97.50 

Chowdhury et al. 
[46] 

Multi-criteria decision making, Mel 
frequency cepstral coefficients 

Extra-Trees 622 Covid-19 
1610 healthy 

10-fold cross 
validation 

AUC: 78.00 
Pre: 61.00 
Rec: 67.00 

Bagad et al. [47] Convolutional neural networks SoftMax 376 Covid-19 
663 healthy 

5-fold cross 
validation 

AUC: 68.00 

Pahar et al. [48] Convolutional neural network, long short 
term memory 

Convolutional neural network 1. 92 Covid-19 
1079 healthy 
2. 8 Covid-19 
13 healthy 

Leave-p-out cross 
validation 

1. Acc: 95.30 
Sen: 93.00 
Spe: 98.00 
AUC: 97.59 
2. Acc: 92.91 
Sen: 91.00 
Spe: 96.00 
AUC: 93.75 

Pal and 
Sankarasubbu [7] 

Deep neural networks, Mel frequency 
cepstral coefficients 

Deep neural network 150 Covid-19, bronchitis, 
healthy, asthma 

NA F1: 90.60 
Pre: 90.40 
Sen: 90.10 
Spe: 90.30 
Acc: 90.80 for 
cough data 

Our study Directed knight pattern kNN 110 acute asthma 
247 healthy 
241 Covid-19 
244 heart failure 

1. 90:10 
2. 80:20 
3. 70:30 
4. 60:40 
5. 50:50 
6. 10-fold cross- 
validation 

Acc: 
1. 100.0 
2. 99.83 
3. 98.53 
4. 98.05 
5. 97.08 
6. 99.39   
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[18] Yıldırım Ö, Pławiak P, Tan R-S, Acharya UR. Arrhythmia detection using deep 
convolutional neural network with long duration ECG signals. Computers in 
biology and medicine 2018;102:411–20. 

[19] Zhou J, Zhang Q, Zhang B. An automatic multi-view disease detection system via 
Collective Deep Region-based Feature Representation. Future Generation 
Computer Systems 2021;115:59–75. 

[20] Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (covid-19) 
using x-ray images and deep convolutional neural networks. Pattern Analysis and 
Applications 2021:1–14. 

[21] Dogan S, Akbal E, Tuncer T, Acharya UR. Application of substitution box of present 
cipher for automated detection of snoring sounds. Artificial Intelligence in 
Medicine 2021:102085. 

[22] Rahman AU, Saeed M, Mohammed MA, Krishnamoorthy S, Kadry S, Eid F. An 
Integrated Algorithmic MADM Approach for Heart Diseases’ Diagnosis Based on 
Neutrosophic Hypersoft Set with Possibility Degree-Based Setting. Life 2022;12: 
729. 

[23] Wah TY, Mohammed MA, Iqbal U, Kadry S, Majumdar A, Thinnukool O. Novel 
DERMA Fusion Technique for ECG Heartbeat Classification. Life 2022;12:842. 

[24] Ristoski P, Bizer C, Paulheim H. Mining the web of linked data with rapidminer. 
Journal of Web Semantics 2015;35:142–51. 

[25] Yunus R, Ulfa U, Safitri MD. Application of the K-Nearest Neighbors (K-NN) 
Algorithm for Classification of Heart Failure. Journal of Applied Intelligent System 
2021;6:1–9. 

[26] Asuncion A, Newman D. UCI machine learning repository. Irvine, CA, USA. 2007. 
[27] Al-Khassaweneh M, Re Bani Abdelrahman. A signal processing approach for the 

diagnosis of asthma from cough sounds. Journal of medical engineering & 
technology 2013;37:165–71. 

[28] Belkacem AN, Ouhbi S, Lakas A, Benkhelifa E, Chen C. End-to-End AI-Based Point- 
of-Care Diagnosis System for Classifying Respiratory Illnesses and Early Detection 
of COVID-19: A Theoretical Framework. Frontiers in Medicine 2021;8. 

[29] Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D, et al. 
Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound 
data. In: Proceedings of the 26th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining; 2020. p. 3474–84. 

[30] Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Multichannel lung sound 
analysis for asthma detection. Computer methods and programs in biomedicine 
2018;159:111–23. 
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