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A B S T R A C T   

Air pollution is one of the vital problems for the sustainability of cities and public health. The lockdown caused 
by the COVID-19 outbreak has become a natural laboratory, enabling to investigate the impact of human/in
dustrial activities on the air pollution. In this study, we investigated the spatio-temporal density of TROPOMI- 
based nitrogen dioxide (NO2) and sulfur dioxide (SO2) products, and MODIS-derived Aerosol Optical Depth 
(AOD) from January 2019 to September 2020 (also covering the first wave of the COVID-19) over Turkey using 
Google Earth Engine (GEE). The results showed a significant decrease in NO2 and AOD, while SO2 unchanged and 
had slightly higher concentrations in some regions during the lockdown compared to 2019. The relationship 
between air pollutants and meteorological parameters during the lockdown showed that air temperature and 
pressure were highly correlated with air pollutants, unlike precipitation and wind speed. Moreover, Purchasing 
Managers’ Index (PMI) data, indicator of economic/industrial activities, also provided poor correlation with air 
pollutants. TROPOMI-based NO2 and SO2 were compared with station-based pollutants for three sites (suburban, 
urban, and urban-traffic classes) in Istanbul, revealing 0.83, 0.70 and 0.65 correlation coefficients for NO2, 
respectively, while SO2 showed no significant correlation. Besides, AOD data were validated using two AERONET 
sites providing 0.86 and 0.82 correlation coefficients. Overall, the satellite-based data provided significant 
outcomes for the spatio-temporal evaluation of air quality, especially during the first wave of the COVID-19 
lockdown.   

1. Introduction 

Air pollution is one of the most important and vital challenges in 
developing countries, which occurs as a result of rapid urban develop
ment, the expansion of the manufacturing industry and the use of fossil 
fuels in factory, and residential activities (He et al., 2017; Xu and Lin, 
2017; Perera, 2017). In recent decades, the issue of pollution and 
environmental degradation have been among the main concerns at the 
domestic, regional and international levels (Eckhoff, 2009). Air pollu
tion occurs when large volumes of harmful particles or substances such 
as gases, particulate matters, and biological molecules enter the Earth’s 
atmosphere. It can also increase the effect of global warming or disease 
in humans such as Asthma, Bronchitis, shortness of breath, heart attacks 
and various respiratory allergies (Arya, 1999; Eckhoff, 2009). Among 
the air pollutant gases, the most critical pollutants in the world’s 

metropolitan areas are carbon monoxide (CO), ozone (O3), sulfur diox
ide (SO2), nitrogen dioxide (NO2), Particulate Matters (PM2.5 and PM10) 
(Zhang et al., 2020a). These pollutants are generally emitted from both 
stationary and mobile resources. Stationary resources involve domestic, 
residential and industrial activities, while transportation and vehicles 
that pollute the air by generating pollutants from exhaust fumes and 
particulate matter are among the mobile sources of the air pollution. In 
fact, except for SO2, which is mainly emitted from residential and in
dustrial sources, the other pollutants are generally emitted much more 
by the vehicles. 

Satellite-based remote sensing technology offers an effective solution 
for long-term spatio-temporal monitoring of air quality under various 
scales. The use of satellite imagery to monitor air pollution dates back to 
the 1970s with the utilization of the Advanced Very High Resolution 
Radiometer (AVHRR), Landsat, and the Geostationary Operational 
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Environmental Satellite (GOES). In addition, Nimbus-7, European 
Remote-sensing Satellite-2(ERS-2), Terra, ENVironmental SATellite 
(ENVISAT), Aqua, Aura, Meteorological OPerational satellite (MetOP), 
and Sentinel-5 precursor (Sentinel-5P) are among the other satellites 
that have been frequently used for air quality monitoring since 1978. 
Concerning the literature, many researchers have studied monitoring, 
analyzing and retrieval of air pollutants such as Aerosols, NO2, SO2, 
PMX, CH4, CO, and O3 using these remote sensing satellites (Aldabash 
et al., 2020; Kaplan and Yigit Avdan, 2020; Laat et al., 2020; Lin et al., 
2019; Ruoying et al., 2019; Salmabadi and Saeedi, 2019; Wang et al., 
2019; Feng et al., 2019; Hajiloo et al., 2019; Wu et al., 2019; Borsdorff 
et al., 2019; O’Brien et al., 2016; Tzortziou et al., 2018; Xu et al., 2018). 
The TROPOspheric Monitoring Instrument (TROPOMI) onboard 
Sentinel-5P, launched on October 13, 2017, is the first Copernicus 
mission and the latest satellite-based sensor for air quality monitoring 
(Butz et al., 2012). It has been providing high spatio-temporal resolution 
data for monitoring the air quality parameters, namely, Absorbing 
Aerosol Index (AAI or UVAI), O3, CO, NO2, SO2, CH4, cloud character
istics and formaldehyde (HCHO) (El Khoury et al., 2019). 

In addition to the aforementioned satellite-based air pollution 
studies, in late 2019, monitoring and investigating the effect of coro
navirus (COVID-19) lockdown on air pollution has attracted the atten
tion of the scientists as a milestone for air quality management all 
around the world. Ogen (2020) investigated the relationship between 
the COVID-19 mortality and long-term exposure to NO2 pollution via 
Sentinel-5P in Italy, Spain, France and Germany. The results indicated 
that the long-term exposure to NO2 may be one of the most important 
contributors to fatality caused by the COVID-19 in these regions (Ogen, 
2020). Another study was about monitoring the effect of NO2 concen
tration on the atmosphere during the lockdown in Spain (Mesas-Car
rascosa et al., 2020). They concluded that there was a significant 
correlation between the level of the population’s activity and the 
reduction in NO2 values. Metya et al. (2020) used ARIS-derived CO, and 
NO2, and OMI-derived SO2 in India and China during January–April 
2020. Their results indicated that the tropospheric NO2 levels reduced 
on an average by 17% over India and 25% over China. Besides, 
approximately 17% reduction was observed in the boundary layer SO2 
especially over the Eastern sector of India, and the 6.5% reduction of CO 
was determined over north-central China. Nichol et al. (2020) investi
gated regional air quality indicators over the Beijing–Tianjin–Hebei 
(BTH) region and other parts of China during the winter of 2019–2020, 
when the COVID-19 outbreak in China caused reduction in transport and 
economic activity from November 2019 to February 2020. They stated 
that, in March and April 2020, Ozone Monitoring Instrument (OMI) 
satellite-derived NO2 significantly decreased across China. They also 
highlighted that the increase in PM2.5 unlike the decrease in NO2 in 

BTH and across China is likely due to enhanced production of secondary 
particulates. Ghahremanloo et al. (2020) utilized SO2, CO, NO2 and 
HCHO from Sentinel-5P, and daily AOD from the Himawari-8 satellite 
over BTH, Wuhan, Seoul, and Tokyo during February 2019 and 2020. 
The comparison analysis between 2019 and 2020 indicated the vast 
pollution reduction in Wuhan with a decline of about 83%, 11%, 71%, 
4% and 62% in NO2, HCHO, SO2, CO, and AOD, respectively. The 
finding of Kanniah et al. (2020) determined a notable decrease in 
tropospheric NO2 during the lockdown period over the Southeast Asia 
region. Furthermore, some studies also stated that TROPOMI-based NO2 
observations were decreased during the lockdown period in some of the 
big European cities, highly populated Chinese cities and North of Italy, 
respectively (Cersosimo et al., 2020; Fan et al., 2020; Ghasempour et al., 
2021; Vîrghileanu et al., 2020). Apart from the satellite-based air 
pollutant analyses, some researchers also proved the reduction in 
station-based air pollutants due to the COVID-19 pandemic control 
strategies (Chen et al., 2021; Nakada and Urban, 2020; Othman and 
Latif, 2021). 

The main objective of this study is to monitor and investigate the 
spatio-temporal patterns of Sentinel-5P derived air pollutants, namely, 
NO2 and SO2, and MODIS-derived AOD before and during the first wave 
of the COVID-19 covering the period from January 2019 to September 
2020 over Turkey. The COVID-19 lockdown period in Turkey mainly 
covers the period from March 10 to May 31, 2020 for the first wave, and 
partly June since the restrictions were gradually loosened in June. Thus, 
we assumed the lockdown period as of March, April and May in 2020. 
Although there was a partial lockdown instead of a full lockdown in 
Turkey for the first wave, it was observed that human activities greatly 
reduced in this period due to the warnings to control the spread of the 
virus. As it is clear from the given literature, many studies have been 
published about the effect of the COVID-19 outbreak on air quality. 
These studies can be categorized into four distinctive groups including 
(i) station-based studies, (ii) remote sensing based studies, (iii) combi
nation of the station-based and the remote sensing based studies, and 
(iv) remote sensing based studies with meteorological/climatological 
parameters (Karuppasamy et al., 2020; Broomandi et al., 2020; Elshor
bany et al., 2021; Mesas-Carrascosa et al., 2020; Metya et al., 2020; 
Ghahremanloo et al., 2020; Nakada and Urban, 2020; Rojas et al., 2021; 
Vîrghileanu et al., 2020; Zhang et al., 2020c). Concerning the originality 
of this research, this study includes a combined analysis of all four ap
proaches mentioned above with also an addition of Purchasing Man
agers’ Index (PMI), which is an indicator of economic/industrial 
activities. Furthermore, satellite-based pollutants and meteorological 
parameters were visualized, analyzed and extracted using Google Earth 
Engine (GEE) open-source geospatial analysis platform, which enables 
working on JavaScript programming language. 

Fig. 1. Illustration of the study area, Turkey, and ground stations via SRTM-DEM.  
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2. Study area 

Turkey, with 81 provinces and a population of 83.15 million (http 
s://www.nufusu.com/), is a unique country that is lying partly in Asia 
and partly in Europe at geographical coordinates of 36◦–42◦ N and 26◦- 
45◦E. The territory of Turkey has a length of 1660 km from east to west 
and an area of 780043.00 square kilometers. The average altitude of the 
country is about 1132 m from mean sea level and there are four different 
types of climate containing Mediterranean climate, Black Sea Climate, 
Marmara climate and Continental climate. Ankara, the capital of 
Turkey, and Istanbul, the country’s economic, cultural and historical 
center are the most populous cities in Turkey. Fig. 1 represents the study 
area and the ground stations via Digital Elevation Model (DEM) ob
tained from Shuttle Radar Topography Mission (SRTM). 

3. Materials and methodology 

3.1. Data collection and preprocessing 

In addition to several studies about air pollution monitoring during 
the COVID-19 pandemic lockdowns (Ghahremanloo et al., 2020; Kan
niah et al., 2020; Mesas-Carrascosa et al., 2020; Metya et al., 2020; 
Nichol et al., 2020; Ogen, 2020; Tobías et al., 2020), we have investi
gated the impact of the COVID-19 lockdown on the air quality at a na
tional level (over the whole Turkey) for the period from January 2019 to 
September 2020. As shown in Table 1, we utilized six types of data sets 
in this study: (a) Hourly NO2 and SO2 concentrations from the Turkey 
Air Quality Monitoring Center (TAQMC), (b) Daily satellite image data 
of Sentinel-5P NO2 and SO2 products from the GEE, (c) Daily satellite 
image data of MODIS AOD product from the GEE platform, (d) ERA5 
Reanalysis climatic and meteorological data, (e) AErosol RObotic 
NETwork (AERONET) data, and (f) Purchasing Managers’ Index (PMI). 
The connections between the data sets and their usages are presented in 
the following sections. 

3.1.1. Satellite remote sensing data 
In this study, we have employed satellite image collections to analyze 

the spatio-temporal distribution of air pollutants, namely, NO2, SO2, and 
AOD before and during the COVID-19 pandemic lockdown. The daily 
TROPOMI and MODIS data were used to produce the maps of monthly 
spatial patterns of the air pollutants. We acquired the tropospheric 
vertical column density of offline level 3 NO2 (COPERNICUS/S5P/ 
OFFL/L3_NO2) and the vertical column density at the ground level of 
offline level 3 SO2 (COPERNICUS/S5P/OFFL/L3_SO2) from the TRO
POMI instrument on board the Sentinel-5P satellite. The TROPOMI is an 
advanced multispectral imaging spectrometer with nadir-viewing and 

wavelengths of Ultraviolet–Visible (UV-VIS, 270 nm–495 nm), Near 
Infrared (NIR, 675 nm–775 nm), and Shortwave Infrared (SWIR, 2305 
nm–2385nm). Besides, it is tracking the unique effects of atmospheric 
gases in different parts of the electromagnetic spectrum. It uses passive 
remote sensing techniques to reach the target above the atmosphere by 
measuring the solar radiation reflected by the Earth. The sensor works in 
a cross direction, with ~2600 km swath width on the ground surface. 
The nadir view for all spectral bands is 7 × 3.5 km2, except SWIR bands 
with 7 × 7 km2 and UV band with 7 × 28 km2 (Veefkind et al., 2012). 
However, in this study, all these Sentinel-5P derived products are 
delivered in 0.01 arc degree (~1.11 km) spatial resolution from the GEE. 
In addition to Sentinel-5P data, we collected the daily AOD images of the 
MODIS (MODIS/006/MCD19A2_GRANULES) onboard the Terra and 
Aqua satellites with 1 km spatial resolution. Google Earth Engine, with a 
powerful open-source processing system in JavaScript programming 
language, enables users to perform calculations, analyze and visualize 
large volumes of data without the need for powerful systems. The system 
supports a variety of widely used satellite data such as Landsat, Sentinel 
and MODIS that are available free of charge. 

3.1.2. Turkey Air Quality Monitoring Center (TAQMC) data 
Hourly pollutants’ concentration data can be gathered from the 

Turkish air quality real-time release platform (https://www.havaizlem 
e.gov.tr/) administered by the Turkey Air Quality Monitoring Center 
(TAQMC), one of the major institutions under the Environment and 
Urban Ministry. The extensive monitoring stations provide continuous 
hourly pollutant measurements. In this study, we used the ground-based 
measurements of NO2 and SO2 concentrations that were obtained from 
three hotspots monitoring stations as urban traffic (Beşiktaş), urban 
background (Başakşehir), and suburban (Şile) stations over the most 
populous cities in İstanbul. Ground-based NO2 and SO2 values were 
analyzed together with Sentinel-5P derived NO2 and SO2 data over the 
related test sites. A time interval of ±0.5 h was used to match the 
datasets of TAQMC observations with the satellite pass time. Thus, the 
hourly pollutant concentrations from the TAQMC were used for the 
comparison of the data of the ground stations and the satellite 
acquisitions. 

3.1.3. Aerosol robotic network (AERONET) data 
The Aerosol Robotic NETwork (AERONET) is a globally ground- 

based remote sensing aerosol network established and distributed by 
NASA and PHOTONS. For more than 25 years, the AERONET has been 
using Cimel Electronique Sun/Sky radiometers to prepare extremely 
accurate ground truth measurements. In this study, we have used the 
version 3 level 2 AOD data that have high-quality ground-based assur
ance for the validation of MODIS AOD products. The AERONET dataset 

Table 1 
List of all datasets used in this study.  

Category Variables Units Temporal 
Resolution 

Data Source 

Satellite image data of Sentinel-5P tropospheric_NO2_column_number_density molec/ 
cm2 

daily https://developers.google.com/earth-engine/dat 
asets/ 

SO2_column_number_density molec/ 
cm2 

Satellite image data of MODIS Optical_Depth_047 * daily https://developers.google.com/earth-engine/dat 
asets/ 

Pollutant Concentration (Turkey Air 
Quality Monitoring Center) 

NO2, SO2 μgr/cm3 hourly https://www.havaizleme.gov.tr/ 

ERA5 v_component_of_wind_10m m/s monthly https://developers.google.com/earth-engine/dat 
asets/ u_component_of_wind_10m m/s 

mean_2m_air_temperature k 
total_precipitation m 
surface_pressure pa 

AERONET AOD_500 nm 
AOD_440 nm 

* hourly https://aeronet.gsfc.nasa.gov/ 

PMI PMI data * monthly https://www.investing.com/economic-calendar/t 
urkish-manufacturing-pmi-1305  
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is divided into 3 quality levels including raw data from level 1, cloud- 
screened data from level 1.5, and quality assurance data from level 2 
(Smirnov et al., 2000). The AERONET version 3 level 2 data may be 
downloaded from the AERONET website (https://aeronet.gsfc.nasa. 
gov/The AOD in the AERONET version 2 was semi-automatically 
controlled in near real-time quality using a cloud-screening method, 
while the AERONET Version 3 algorithm provides fully automated cloud 
screening and quality control (Giles et al., 2019). 

3.1.4. ERA5 reanalysis data 
In addition to the previous data sets, we employed daily meteoro

logical/climatological data from the latest ERA5 reanalysis produced by 
the European Center for Medium-range Weather Forecasts (ECMWF) 
under the Copernicus Climate Change Service. Although the main 
reason for air pollution is the increase of pollutant concentration in the 
atmosphere, the local and regional meteorological/climatological con
ditions have also affected the air quality (Ghahremanloo et al., 2020; 
Kanniah et al., 2020; Nichol et al., 2020). Thus, in this study, we also 
investigated the relationship between satellite-derived air pollutants 
and ERA5’s meteorological/climatological parameters, namely, the 
eastward-northward components of wind speed (WS), air temperature 
(Temp.), surface pressure (Pres.) and total precipitation (Prec.) with a 
spatial resolution of 0.25◦ × 0.25◦. 

3.1.5. Purchasing manager index data 
The Purchasing Managers’ Index (PMI) is one of the most important 

indicators of the economic activity that examines companies ‘purchasing 
managers’ tendency to purchase goods and services. It is one of the 
indices that can explain the growth forecasts of countries in the best way 
(Eren, 2014) (http://www.bireyselyatirimci.com/pmi-endeksi-nedir/). 
On the other hand, faster expansion in industrial activities or any 
reduction in PMI may cause to increase or decrease in air pollutants. 
Thus, we examined whether there was any correlation between PMI and 
satellite-derived pollutants. Besides, this analysis may explain if indus
trial activities have a high impact on air pollutants by expecting the 
pollutants should reduce in COVID-19 lockdown days. 

3.2. Methodology 

In this study, we focused on the following analyses: 1) monthly NO2, 
SO2 and AOD images and their statistics were extracted for 2019 and 
2020.2) Hourly TROPOMI-based NO2 values were compared with three 
station-based NO2 in Istanbul. 3) The performance of MODIS AOD was 
validated using AOD from two ground-based stations. 4) The relation
ship between monthly average meteorological/climatological parame
ters and monthly average satellite-based pollutants was investigated. 
Finally, 5) The relationship between monthly average satellite-based 
pollutants and (PMI) was examined. Fig. 2 represents the workflow 
used to analyze pollutant concentration and related variables, which 
involve five source data sets, namely, (i) Sentinel-5P TROPOMI-based 
NO2 and SO2 products, and MODIS-based AOD product; (ii) meteoro
logical parameters (e.g. Temp., Pres., Prec., WS) from ERA5, and (iii) 
AERONET AOD data, (iv) NO2 and SO2 ground measurements from 
TAQMS stations, and (v) PMI dataset. In this study, we used free image 
collection of TROPOMI and MODIS instruments in GEE datasets. GEE is 
an open-source geospatial analysis platform that enables users to glob
ally or locally visualize and analyze changes, map trends, and quantify 
differences on the Earth’s surface. Many studies related to land cover 
changes (Huang et al., 2017), crop mapping (Clemente et al., 2020), 
disaster management (DeVries et al., 2020), surface water change (Xia 
et al., 2019), and natural resource management (Aksoy et al., 2019; 
Leinonen et al., 2018) were carried out successfully and efficiently on 
the GEE platform. Concerning the analyses, a JavaScript program was 
developed in GEE to acquire, correct and visualize the data from image 
collections. The codes used in this paper can be found in the supple
mentary material. In this stage, the selected images are processed using 
the following steps:  

(a) filtered the imaging time over the clipped region of interest 
(whole Turkey),  

(b) removed cloudy pixels using a conditional (cloud_fraction >0.5) 
on TROPOMI-based products (Fioletov et al., 2020; Ialongo et al., 
2020; Lorente et al., 2017, 2019; Van Geffen et al., 2018) and 
using best quality condition (for QA band AOD = 0) on 
MODIS-derived AOD data, 

Fig. 2. The workflow illustrating the operations and relations between the methods for the evaluation of air pollutants and related variables.  
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(c) extracted daily images by mosaicking the overlapping scenes over 
the whole study zone,  

(d) extracted hourly AOD pixel value, NO2 and SO2 column density 
pixel values from images covering the ground stations (TAQMS 
stations and AERONET sites) for the validation processes,  

(e) calculated the monthly images by averaging the daily images for 
preparing monthly spatio-temporal maps and also for calculating 
the relationship between meteorological parameters in the lock
down months. Furthermore, for investigating the relationship 
between PMI and air pollutants. 

Hourly data were only used for the validation step. TROPOMI-based 
NO2 and SO2 data were compared with TAQMS ground-measurements 
for three test sites (urban, urban-traffic and suburban) in the city of 
Istanbul. To evaluate MODIS AOD 470 nm data, we applied AERONET 
data (AOD440 and AOD500) with a time tolerance of ±0.5 h. Since 
AERONET does not provide AOD 470 nm, the mean value of AERONET 
AOD 440 nm and 500 nm values were calculated for AOD 470 nm 
retrieval relevant to MODIS AOD 470 nm (Equation (1)). 

AOD (470nm)=
AOD(500nm) + AOD(440nm)

2
(1) 

Fig. 3. The monthly images of tropospheric NO2 column density over Turkey.  
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We utilized four statistical metrics below, namely, correlation coef
ficient (R), Root Mean Square Error (RMSE), Standard Deviation of Error 
(STD Error), and Bias to examine the relationship between MODIS AOD 
and AERONET AOD. 

R=

∑
(

yi − yi

)(

xi − xi

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(

yi − yi

)2 ∑
(

xi − xi

)2
√ (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − yi)
2

n

√

(3)  

SDT of Error =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(yError − yError )
2

n

√

(4)  

Bias=
∑

(xi − yi)

n
(5)  

Where yi, xi, yi, and xi are the MODIS-derived AOD, AERONET-based 
AOD, their mean values, respectively. Thus, yError refers to the differ

ence between MODIS-derived AOD and AERONET-based AOD, and yError 
refers to the mean of differences. 

In the last stage, to investigate if the meteorological/climatological 
parameters play an important role in the results of pollutants in the 
lockdown period, the monthly meteorological data of ERA5 with the 
selected information layer were used to extract the correlation co
efficients. Furthermore, the relationship between monthly pollutants 
and PMI was also investigated to find out the effect of PMI on pollutants. 

To summary the innovation in the methodology; i) a JavaScript 
program in the GEE was developed to automate the image analysis, ii) 
satellite-based pollutants were compared and analyzed with ground 
based observations from different land cover types, iii) the relationship 
between meteorological parameters/PMI and satellite-based pollutants 
was analyzed. 

4. Results and discussion 

4.1. Spatio-temporal distribution of tropospheric NO2 column density over 
Turkey 

The lockdown in Turkey due to the outbreak of COVID-19, mainly 
from March 10, 2020 to May 31, 2020, decreased transportation 

Fig. 3. (continued). 
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activities that lead to lower energy consumptions and less oil request. 
Moreover, it provided a good opportunity to study its impacts on air 
quality by comparing some pollutant concentrations. Although there are 
many key parameters that may change the air pollution concentration, 
this study is conducted based on the assumption of the used parameters 
and corresponding analyses. One of the important trace gases in the 
atmosphere is NO2. While some nitrogen oxides naturally occur, some of 
them are due to human activities. The major part of NO2 produced by 
human activities is related to the burning of fuel in stationary sources 
and resulting from combustion in vehicles and industrial enterprises 
(Ghahremanloo et al., 2020; Kanniah et al., 2020). 

Fig. 3 shows the monthly comparisons of spatial tropospheric NO2 
images over Turkey from January 2019 to September 2020. There are 
no-data pixels in the east-direction of images such as January and 
February that result from cloudy pixel conditions and quality assurance 
(QA) limitation of the algorithms (Ialongo et al., 2020; Lorente et al., 
2017; Nichol et al., 2020; Omrani et al., 2020; Zheng et al., 2019). As 
seen in Fig. 3, these images display a general reduction in NO2 distri
bution when comparing January–Jun 2019 with January–June 2020. In 
particular, the spatial distribution of NO2 decreased significantly during 
the lockdown period (March–May 2020) compared to the same period of 
2019. In order to support these visual interpretations, the area 

information in Table 2, where NO2 > 4*1015 molec/cm2, was extracted. 
The area information from January to June 2019 varied from 23800.3 
km2 to 3476.6 km2, respectively, whereas it ranged from 23509.2 km2 to 
356.1 km2 for the same period of 2020. However, after the lockdown 
restrictions are relaxed in July, the NO2 concentration started to in
crease in July, August and September 2020 compared to the same 
months of 2019. The area information in Table 2 also reveals this in
crease. This observable increase was probably due to the rising vehicle 
emissions and industrial activities after the lockdown period. The 
tropospheric NO2 reduction obtained during the lockdown period in 
Turkey coincides with similar studies conducted over different countries 
(Fan et al., 2020; Mesas-Carrascosa et al., 2020; Metya et al., 2020; 
Nichol et al., 2020; Tobías et al., 2020; Vîrghileanu et al., 2020). 

Concerning the general evaluation of the spatial variability of NO2 
pollution over Turkey, Marmara and Aegean regions show the highest 
spatial variability of NO2, whereas the Mediterranean, Southeastern 
Anatolia, and central Anatolia partly revealed high NO2 distribution. 

In addition to the spatio-temporal comparisons of 2019 and 2020 
images, it would be better to provide quantitative analyses for this 
period as in Fig. 4 and Table 2. Fig. 4 reveals the monthly average 
TROPOMI-based NO2 column density over Turkey in 2019 and 2020. As 
a general evaluation, the trend of monthly NO2 averages shows the 

Table 2 
Average, standard deviation, maximum, minimum, and percentage of change rate values of the TROPOMI NO2 column density calculated during January–September 
2019 and 2020 over Turkey.  

Month Jan. Feb. Mar. 

Year 2019 2020 2019 2020 2019 2020 
Average 1.6581 1.5213 1.4235 1.3764 1.4557 1.2148 
S.D 1.0930 1.1745 1.1187 0.9953 0.8698 0.7736 
Min − 1.4851 − 2.1240 − 1.4960 − 1.0804 − 0.7089 − 1.0800 
Max 13.1696 18.6903 39.3789 22.9577 12.4227 9.7954 
Area (km2) for NO2>4 23800.3 23509.2 18291.8 16129.8 13388.6 9027.1 
PCR − 8.25 − 3.31 − 16.55 

Month Apr. May Jun. 

Year 2019 2020 2019 2020 2019 2020 
Average 1.1364 1.0129 1.0530 0.9214 1.2372 1.0076 
S.D 0.7060 0.4808 0.5037 0.3791 0.3785 0.3999 
Min − 0.6486 − 1.3173 − 0.6213 − 0.8127 − 0.6144 − 0.5564 
Max 12.5657 6.2744 9.1033 5.9866 7.5727 6.5480 
Area (km2) for NO2>4 5733.7 1644.4 3476.6 356.1 808.2 903.8 
PCR − 10.86 − 12.49 − 18.56 

Month Jul. Aug. Sep. 

Year 2019 2020 2019 2020 2019 2020 
Average 1.1591 1.2772 1.2227 1.2437 1.1642 1.2789 
S.D 0.4211 0.4093 0.3626 0.4532 0.5225 0.5005 
Min − 0.4497 − 0.2739 0.0937 0.1062 0.0304 0.2295 
Max 6.8161 7.9473 7.7835 7.2345 7.2871 7.4934 
Area (km2) for NO2>4 1270.2 1689.8 618.6 1920.0 4225.0 3246.3 
PCR 10.19 1.71 9.85  

Fig. 4. The monthly average TROPOMI-based NO2 column density over Turkey in 2019 and 2020.  
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maximum amount in the winter, while the minimum amount in the 
summer. In Fig. 4, a decrease was observed in monthly average NO2 
values from January to July in 2020, and these values were also lower 
than 2019 monthly averages. Considering the lockdown period, the 
monthly average NO2 values declined in 2020 compared to the same 
period of 2019. On the other hand, after the lockdown period, the 
monthly average NO2 values increased dramatically in 2020, which 
were also higher than in 2019. Table 2 shows the results of the statistical 
parameters, namely, average, standard deviation (S.D), minimum (min), 
maximum (max), and percent of change rates (PCR) obtained from the 
monthly NO2 images. The average value of NO2 column density dropped 

from 1.66*1015 molec/cm2 to 1.05*1015 molec/cm2 from January to 
June, and then increased to 1.79*1015 molec/cm2 in December in 2019. 
On the other hand, in 2020, the average NO2 values started from 
1.52*1015 molec/cm2 in January, then slightly decreased to 0.92*1015 

molec/cm2 in May, and finally reached 1.28*1015 molec/cm2 in 
September. The statistical results in Table 2 demonstrate that a 
descending trend was observed in 2020 in comparison with 2019. In 
addition, the monthly PCR between 2019 and 2020 for March, April, 
May and June were calculated as − 16.5%, − 10.8%, − 12.49% and 
− 18.56%, respectively, proving the descending trend in the lockdown. It 
is obvious that the lockdown of the COVID-19 outbreak and staying at 

Fig. 5. The monthly images of SO2 column density over Turkey.  
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home have caused a significant reduction in tropospheric NO2 column 
density. 

4.2. Spatio-temporal distribution of SO2 column density over Turkey 

SO2 is one of the tropospheric trace gases that is mostly produced by 
volcanoes and industrial activities. Due to the presence of sulfur com
pounds in oil and coal, their combustion leads to the production of SO2. 
We analyzed the spatio-temporal variations of the monthly average SO2 
column density over Turkey as in Fig. 5. No-data pixels are available 
from January to April in both 2019 and 2020 data sets. The main reasons 
are cloud fraction condition, the algorithm limitations for producing the 
data and quality assurance contrast. Due to noise on the SO2 values, 
negative vertical column concentrations are perceived as low SO2 
emissions. According to the Sentinel-5P product readme file (https://se 
ntinel.esa.int/web/sentinel/technical-guides/sentinel-5p/products-al 
gorithms), it is recommended to filter outliers as concentration values 
lower than − 0.001 mol/m2. 

Since the number of no-data pixels is too many in Fig. 5 for January, 
February and March of 2019 and 2020 images, the proper comparison is 
not possible for these months. However, concerning the concentrations 

of SO2 values in these months, 2020 datasets had significantly higher 
concentrations than 2019. The area information in Table 3, where SO2 
> 60*1015 molec/cm2, was extracted to observe the areal changes. The 
area information from January to September 2019 varied from 38167.5 
km2 to 307.9 km2, respectively, while it ranged from 152073.3 km2 to 
317.0 km2 for the same period of 2020. In 2020, the area information of 
September image was the only image that showed less area than in 2019. 
The lockdown months, except March, showed no significant decrease 
compared to 2019. On the contrary, the spatial distribution of SO2 
values in the 2020 lockdown period had slightly higher concentrations 
than the same period of 2019. These results revealed that the lockdown 
had no effect on reducing the pollution caused by SO2. On the other 
hand, after the lockdown restrictions are relaxed in July, the monthly 
SO2 distributions were identical for the following months in both 2019 
and 2020. Concerning the literature, some studies also revealed similar 
results as in our study that the column density of SO2 remained un
changed or increased in some regions of the related countries (Ghah
remanloo et al., 2020; Tobías et al., 2020). 

Fig. 6 represents the monthly average TROPOMI-based SO2 column 
density over Turkey in 2019 and 2020. As a general evaluation, the trend 
of monthly SO2 averages shows the maximum amount in the winter, 

Fig. 5. (continued). 
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while the minimum amount in the summer. In Fig. 6, a decrease was 
observed in monthly average SO2 values from January to September in 
2020, and these values were close to or higher than 2019 monthly av
erages. Concerning the lockdown period, the monthly average SO2 
values were slightly higher in 2020 compared to the same period of 
2019. Table 3 provides the results of the statistical parameters, namely, 
average, S. D, min, max and PCR obtained from the monthly SO2 images. 
The average value of SO2 column density dropped from 23.51*1015 

molec/cm2 to 3.48*1015 molec/cm2 from February to July, and then 
increased to 72.46*1015 molec/cm2 in December 2019. On the other 
hand, in 2020, the average SO2 values started from 50.50*1015 molec/ 
cm2 in January, then slightly decreased to 2.40*1015 molec/cm2 in 
September. The statistical results in Table 3 (average and PCR) 
demonstrate that an ascending trend was observed when comparing 
2020 with 2019. The only negative monthly average SO2 trend between 
2020 and 2019 was observed in September as − 66.71%. The results of 
the monthly average SO2 values showed that the lockdown of COVID-19 
outbreak and staying at home had no significant reduction on tropo
spheric SO2 column density. 

4.3. Spatio-temporal distribution of MODIS-based AOD over Turkey 

Aerosols are suspensions of solid particles or liquid droplets in a gas, 
and they generally refer to dust particles such as ash, mist, smog, etc. 
Human-made aerosols are commonly found near large human habitats. 
The telemetry parameter used in this connection is the optical depth of 
the atmosphere. The aerosol optical depth (AOD) index is a measure of 
an aerosol that is calculated based on the ratio of solar waves propagated 
and absorbed in the atmosphere along the wavelength and the path 
traveled. This index is a quantitative parameter to indicate the density 
and concentration of particles in the atmosphere and is generally 
calculated along a vertical path (Filonchyk and Yan, 2019; Wei et al., 
2019). 

In order to provide the best quality AOD data, masking operation was 
applied to the AOD Quality Assessment (AOD_QA) band for generating 
monthly AOD images in Fig. 7. Although the number of no-data pixels is 
too many in Fig. 7 for January, February, March and April, proper 
comparison can be made since the spatial presence of the AOD data are 
identical in both 2019 and 2020 images. Concerning the spatial distri
bution of AOD in January and February 2020 images have lower AOD 

Table 3 
Average, standard deviation, maximum, minimum, and percentage of change rate values of the TROPOMI SO2 column density calculated during January–September 
2019 and 2020 over Turkey.  

Month Jan. Feb. Mar. 

Year 2019 2020 2019 2020 2019 2020 
Average 17.7540 50.4978 23.5050 33.1631 13.8294 15.9301 
S.D 32.2796 52.6739 20.4712 31.2283 13.8729 17.9774 
Min − 60.2049 − 60.2131 − 60.2036 − 60.1869 − 59.9939 − 60.1687 
Max 378.6225 971.4098 618.0464 628.6281 284.0248 455.0226 
Area(km2) for SO2 > 60 38167.5 152073.3 22561.5 93253.3 2661.4 8845.8 
PCR 184.43 41.09 15.19 

Month Apr. May Jun. 

Year 2019 2020 2019 2020 2019 2020 
Average 5.3751 9.3876 4.4431 4.9014 3.4746 4.7309 
S.D 9.9822 11.5643 6.3090 7.0158 4.8672 5.7577 
Min − 55.6041 − 59.8140 − 24.3164 − 27.1609 − 31.1326 − 21.0456 
Max 190.2 287.1 56.1 187.7 54.7 70.2 
Area (km2) for SO2>60 978.1 2149.7 0.0 54.8 0.0 19.4 
PCR 74.65 10.31 36.16 

Month Jul. Aug. Sep. 

Year 2019 2020 2019 2020 2019 2020 
Average 4.4094 4.6210 2.7875 3.2505 7.2199 2.4038 
S.D 6.4622 6.2672 6.6889 6.0039 6.9321 6.2358 
Min − 19.2326 − 32.0067 − 41.5177 − 46.8179 − 29.2360 − 28.8736 
Max 108.5817 111.0524 101.9469 108.5692 109.0529 92.9221 
Area (km2) for SO2>60 523.5 410.3 307.9 317.0 486.8 176.5 
PCR 4.80 16.61 − 66.71  

Fig. 6. The monthly TROPOMI-based SO2 column density over Turkey in 2019 and 2020.  
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concentration than 2019 images. However, in March, the AOD distri
bution is higher in 2020 compared to the 2019 image. In the following 
lockdown month, April, a significant decrease in monthly AOD distri
bution was observed in 2020 compared to the same month of 2019, 
indicating the effect of lockdown was significant on AOD reduction. 
Since April 2020 was the month with the tightest restrictions. In the last 
month of lockdown (May 2020) and June 2020, almost identical AOD 
distribution was observed as in May–June 2019, while the density of 
AOD distributions varied from region to region. After the lockdown 
period, the monthly AOD distribution was higher in July 2020 and 
September 2020, whereas lower in August 2020 compared to the same 

months of 2019. On the other hand, the area information in Table 4, 
where AOD >0.4, was extracted to observe the areal changes. The area 
information from January to April 2019 varied from 394.6 km2 to 
1026.8 km2, respectively, while it ranged from 722.4 km2 to 2121.9 km2 

for the same period of 2020. Then, from April 2019 to July 2019, the 
area information was between 1616.5 km2 and 1223.1 km2, respec
tively, which was higher than the same period of 2020 (940.2–820.5 
km2). After the restrictions were relaxed in June, the area information of 
July, August and September 2020 was higher than the same months of 
2019. The results of some studies also supported our findings by showing 
a decreasing trend in AOD in different test sites during the lockdown 

Fig. 7. The monthly images of MODIS-derived AOD concentration over Turkey.  
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period (Ghahremanloo et al., 2020; Kanniah et al., 2020; Otmani et al., 
2020). 

Fig. 8 and Table 4 present comparative and quantitative statistical 
results of monthly AOD values over the study area for both 2019 and 
2020. As a general evaluation of Fig. 8, the trend of monthly AOD av
erages from April to October is higher than the yearly averages, while 
the rest of the months reveal lower monthly average AOD than the 
yearly average. The monthly average AOD values in Fig. 8 coincided 
with the results of the spatio-temporal analysis presented above. We can 
see a significant decrease in April 2020 compared to April 2019. Besides, 
a sharp increase from 0.096 in March 2019 to 0.0186 in April 2019 can 
be seen clearly in the spatial distribution map in Fig. 7. In 2020, the 
lowest and highest values ranged from 0.096 to 0.186 in February and 
September, respectively. The statistical results of monthly AOD images 
in Table 4 display the PCR about − 29.84% in April and 20.62% in 
September considering the comparison between 2019 and 2020. 

4.4. Quantitative analysis of TROPOMI-based and station-based NO2 and 
SO2 for three test sites 

This quantitative analysis relies on geostatistical data processing of 
the collected data including TROPOMI-based NO2 column density 

(molec/cm2), TROPOMI-based SO2 vertical column density, related and 
ground station-based NO2 concentrations (μg/cm3). In Istanbul, we 
selected the statistical data from three ground stations (Fig. 1) as traffic- 
urban (Beşiktaş(, urban (Başakşehir), and suburban (Şile) stations. The 
monthly trendlines revealed the decrease in the tropospheric NO2 col
umn density from January to September for all selected hotspots 
(Fig. 9a–c) in 2019 and 2020. Furthermore, the ground station mea
surements also confirmed this downward trendline in 2019 and 2020 for 
all test sites (Fig. 9d–f). In the suburban location, due to no data in 
February (Fig. 9c), we could not calculate the satellite image data for 
2019 and 2020. The other important outcome of this analysis was that 
the monthly NO2 levels were higher in 2019 than 2020 for all three sites 
and both data sets. In the suburban site, TROPOMI-based NO2 (Fig. 9c) 
and station-based NO2 (Fig. 9f) showed identical behavior in 2019 and 
2020. However, in the urban test sites, the difference between 2019 and 
2020, especially in the lockdown months (March–May), are obviously 
seen for both datasets (Fig. 9a–b and Fig. 9d–e). As in the NO2 results, a 
decreasing trend in the SO2 column density was observed from January 
to September for all selected hotspots (Fig. 9g–i) in 2019 and 2020. 
However, the ground station-based SO2 provided opposite trends in 
2019 and 2020 for urban and suburban test sites (Fig. 9j-l). In these sites, 
the ground-based SO2 concentration has an increasing trend in 2020, 

Fig. 7. (continued). 
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while a decreasing trend is observed in 2019, showing that the lockdown 
restrictions were not effective in decreasing the ground-based SO2 levels 
as in the satellite-based results. 

Indeed, TROPOMI-based NO2 and SO2, and station-based measure
ments do not present the same quantity of NO2 and SO2, since the 
TROPOMI measures the total vertical amount of atmospheric NO2 and 
SO2, whereas ground stations provide only near-surface distribution of 
these pollutants. Even so, we checked if these data sets (satellite and 
ground measurements) have any relationship in this case study. In order 
to validate the TROPOMI-based vertical column product, it is required to 
have information on the vertical profile of the pollutant from the ground 
stations or other airborne systems. Concerning the total column of a 
pollutant, the vertical sensitivity of the retrieval is described by the total 
column-averaging kernel (Borsdorff et al., 2014). However, when the 
ground measurement is not a vertical profile, the application of the total 
column-averaging kernel becomes more difficult (Borsdorff et al., 2018). 
Only few ground stations are operational for providing the vertical 

profile of air pollutants over the world. The Total Carbon Column 
Observing Network (TCCON) and The Infrared Working Group (IRWG), 
having ground-based solar Fourier-transform spectrometers (FTS), are 
critical networks that provide regular ground-based measurements of 
the vertically integrated column amounts of some trace gases (Landgraf 
et al., 2018). Even so, some researchers claimed that they obtained from 
medium to high correlation coefficients between satellite and 
ground-based NO2 measurements (Cersosimo et al., 2020; Pinardi et al., 
2018; Vîrghileanu et al., 2020). In these studies, Vîrghileanu et al. 
(2020) had the correlation coefficients ranging from 0.597 to 0.865, and 
the correlation coefficients from the study of Cersosimo et al. (2020) 
varied between 0.50 and 0.90. Moreover, Pinardi et al. (2018) provided 
very good coherence for daily and monthly comparisons between 
TROPOMI tropospheric NO2 vertical column density and ground-based 
NO2 data about R equal to 0.89. Besides, some other experiments also 
revealed that the satellite-based NO2 column density had a strong cor
relation with ground-based station data with a correlation coefficient 
almost above 0.8 (Bucsela et al., 2008; Huijnen et al., 2009; Kramer 
et al., 2008). Therefore, we also compared the TROPOMI-based NO2 and 
SO2 with ground-based measurements in three test sites (urban, 
urban-traffic and suburban) in Istanbul, and we obtained the correlation 
coefficients between 0.65 and 0.83 for NO2, which coincide with the 
results of the above-mentioned studies. However, the SO2 analyses did 
not respond well with R-value ranging from 0.004 to 0.15. 

Considering the relationship between satellite-based and ground- 
based measurements, we applied the hourly measurement with a time 
shift of about ±30 min from January 1, 2019 to September 30, 2020 in 
three test sites. The NO2 results in Fig. 10 illustrate the correlation co
efficients of 0.83, 0.70, and 0.65 that were obtained from suburban 
(Fig. 10a), urban (Fig. 10b), and urban traffic stations (Fig. 10c), 
respectively. On the other hand, the SO2 results in Fig. 10 reveal the 
correlation coefficients of 0.15, 0.004, and 0.014 that were obtained 
from suburban (Fig. 10d), urban (Fig. 10e), and urban traffic stations 
(Fig. 10f), respectively. These results showed that the more the ground- 
based NO2 concentration was observed, the lower the correlation coef
ficient was obtained between satellite column density and ground-based 
measurements. Concerning the SO2 comparisons, no significant rela
tionship was found between satellite-based and ground-based 
measurements. 

4.5. Validation of MODIS-Derived AOD and AERONET AOD 

We have considered the AERONET AOD hourly data as reference 
data for validating the MODIS-derived AOD 470 nm. There are five 
AERONET sites over turkey, while two of them are appropriate in this 
study due to the time interval considered. First, because of lack of 
enough corresponding image data over the mentioned AERONET sites, 

Table 4 
Average, standard deviation, maximum, minimum, and percentage of change 
rate values of the MODIS-derived AOD calculated during January–December 
2019 and 2020 over Turkey.  

Month Jan. Feb. Mar. 

Year 2019 2020 2019 2020 2019 2020 
Mean 0.1298 0.1155 0.1155 0.0889 0.0955 0.1245 
S.D 0.0484 0.0447 0.0429 0.0459 0.0407 0.0494 
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Max 0.6040 2.1270 0.5980 1.1300 1.4710 0.8880 
Area (km2) for 

AOD>0.4 
394.6 722.4 426.0 1191.3 1026.8 2121.9 

PCR − 10.98 − 23.07 30.32 

Month Apr. May Jun. 

Year 2019 2020 2019 2020 2019 2020 
Mean 0.1859 0.1304 0.1757 0.1761 0.1736 0.1652 
S.D 0.0636 0.0517 0.0761 0.0568 0.0765 0.0680 
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Max 1.1970 4.0000 4.0000 4.0000 4.0000 4.0000 
Area (km2) for 

AOD>0.4 
1616.5 940.2 4262.5 1467.8 1223.1 820.5 

PCR − 29.84 0.24 − 4.80 

Month Jul. Aug. Sep. 

Year 2019 2020 2019 2020 2019 2020 
Mean 0.1444 0.1622 0.1695 0.1283 0.1514 0.1826 
S.D 0.0619 0.0854 0.0712 0.0897 0.0700 0.0946 
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Max 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 
Area (km2) for 

AOD>0.4 
378.0 1728.6 930.9 514.5 748.6 1050.4 

PCR 12.38 − 24.34 20.62  

Fig. 8. The monthly average MODIS-derived AOD over Turkey in 2019 and 2020.  
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we used a distance buffer around sites almost 1.5 km and 6 km on 
ERDEMLI site and TUZ_GÖLÜ_3 site, respectively (henceforth 
mentioned with ERDEMLI* and TUZ_GÖLÜ_3*). Due to the absence of 
AERONET data in Tuz_Gölü_3* site, only July–August 2018 data sets 
were used for this site, whereas, for the ERDEMLI* site, the data were 
available from July 2018 to March 2019. The results of the validation 
analysis between MODIS-derived AOD and AERONET-based AOD are 
illustrated in Fig. 11. The findings show that MODIS-derived AOD is well 
correlated with the AERONET AOD in both ERDEMLI* and 
TUZ_GÖLÜ_3* sites with the R-value equal to 0.86 and 0.82, and RMSE 
equal to 0.065 and 0.097, respectively. According to some studies, these 
correlation coefficient values are much similar with other resulted 
thought varies methods (Aldabash et al., 2020; Zhang et al., 2020b). It is 
also worth noting that estimated surface reflectance’s errors and AOD 
conversion algorithms in aerosol loading can be influence over obtained 
results (Grey et al., 2006; Gupta et al., 2016). 

4.6. Relationships between monthly average satellite-based air pollutants 
and climatological/meteorological parameters 

It is worth emphasizing that the air quality does not depend only on 
the concentration of the pollutants, but also on the local and regional 
climatological and meteorological conditions (Ji et al., 2020). Re
searchers have investigated the spatial and temporal relationship 

between air pollutants and key meteorological factors (Athanassiadou 
et al., 2010; Banerjee et al., 2011). In addition, some studies have shown 
that meteorological conditions controlled the spatial and temporal im
pacts on air quality (Ji et al., 2020; Qiao et al., 2019). Hence, these 
factors and parameters should be thoroughly investigated to find out the 
impact of human and industrial activities on the pollutant concentration 
in the atmosphere. Therefore, we examined the correlation between 
each pollutant and key meteorological/climatological parameters for 
the lockdown period. Meteorological/climatological parameters include 
the monthly average of air temperature (Temp.) from the ground to 2 m 
height in Kelvin, the monthly sum of total precipitation (Prec.) in me
ters, the monthly average of Surface pressure (Pres.) in pascal, and the 
monthly average of wind speed (WS) in 10 m of ground in m/s. Table 5 
provides the monthly average values of all parameters and the correla
tion coefficients between them. Table 5 shows significant correlations 
between all pollutants and air temperature in 2019 and 2020 ranging 
from 0.68 to 0.98. While the air temperature revealed strong negative 
correlations with NO2 and SO2, it had a high positive correlation with 
AOD for the lockdown period. Concerning the surface pressure, the 
correlations with all pollutants showed identical behaviors as in air 
temperature providing negative correlations with NO2 and SO2, whereas 
positive correlation with AOD. Besides, the absolute value of these 
correlations varied from 0.55 to 0.99 in 2019 and 2020. The precipita
tion and air pollutants did not have high correlations presenting almost 

Fig. 9. Comparative graphs of the monthly TROPOMI-based NO2 (a–c) and SO2 (g–i) with ground-based measurements (d–f, j-l) for three stations between January 
and September in 2019 and 2020. 
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zero correlation with AOD in 2019 and 2020, while moderate positive 
correlations with NO2 and SO2 in 2020. Considering the wind speed and 
air pollutant relations, low correlation coefficients were observed in 
2019 for all variables; however, moderate negative correlation and high 
positive correlation was obtained from NO2 (− 0.56)- SO2 (− 0.65) and 
AOD (0.92), respectively, in 2020. Hence, these results are indicating 
the main contribution of meteorological parameters in decreasing air 
pollution. According to Ghahremanloo et al. (2020), while there was a 
relatively high correlation between daily NO2 concentration and daily 
meteorological parameters, there was a relatively high correlation over 
four region of China in 2019, but the correlations have reduced in 2020 
during the quarantine. However, these results indicate the lockdown 
period times were the major reasons for decreasing in NO2 density. 

4.7. Relationships between monthly average satellite-based air pollutants 
and PMI data 

The PMI of a certain month is released on the first business day of the 
following month, and it mainly provides the earliest information about 
the economic performance, which is usually measured by Gross Do
mestic Product (GDP) (Tsuchiya, 2012). The PMI is also taken into ac
count as a good indicator of industrial production, which is one of the 
most important indices for assessing economic conditions (Tsuchiya, 
2012). Since industrial activities are sometimes shown as one of the 
main factors causing air pollution, we investigated if there is any cor
relation between PMI and satellite-derived pollutants. To the best of our 
knowledge, only one study investigated NO2 pollution and PMI rela
tionship during the February 2020 COVID-19 lockdown in China (Dia
mond and Wood, 2020). Diamond and Wood (2020) stated that the PMI 
and ln(NO2) showed a pronounced and unprecedented decline in 

Fig. 10. Coherent of the hourly satellite-based tropospheric NO2column number density derived from TROPOMI and the hourly ground-based measurements of NO2 
concentrations for tree sites as follows: suburban station, Şile, İstanbul (a); urban station, Başakşehir, İstanbul (b); urban traffic station, Beşiktaş, İstanbul (c). 
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February 2020 followed by a rapid recovery. In Turkey, almost more 
than 80% of economic activities are managed in Marmara and Aegean 
region. Therefore, in this analysis, the monthly PMI values were 
compared with the monthly average air pollutants of the Marmara and 
the Aegean regions. Fig. 12 presents the scatter plot (a) and bar charts 
(b-d) between monthly PMI and monthly average air pollutants. The 
time interval of this analysis covers from January 2019 to September 
2020. It is clear from Fig. 12a that air pollutants and PMI does not have 
high correlation coefficients with NO2 (R = − 0.08), SO2 (R = − 0.13) 
and AOD (R = 0.08) proving that industrial activities do not have a high 
impact on air pollution on their own. Although Fig. 12b and c illustrate a 

decreasing trend in NO2 and SO2 associated with PMI values in the 
lockdown period, it is clear that this trend is similar in both 2019 and 
2020, and the long-term variations in the PMI do not prove any rela
tionship with air pollutants. Unlike NO2 and SO2 trend, AOD has an 
increasing trend related to the PMI in the lockdown period, but the same 
trend is also observed for the same period of the previous year. Besides, 
the long-term variations in the PMI again do not prove any relationship 
with AOD. 

4.8. Discussion on the effect of COVID-19 on environmental sustainability 
and air quality 

So far, many studies have emphasized the effect of the COVID-19 on 
the sustainable development of the environment (Shulla et al., 2021; 
Rume and Islam, 2020; Mukherjee et al., 2020; Praveena and Aris, 2021; 
Kumar et al., 2020). Rupani et al. (2020) published a detailed review 
about the COVID-19 and its natural environmental impacts, which is 
also illustrated in Fig. 13. In addition, Bherwani et al. (2021) analyzed 
the impact of the COVID-19 on Sustainable Development Goals (SDGs) 
of the United Nations in Indian subcontinent with a focus on air quality. 

All these studies revealed that the measures taken to control the 
spread of the virus had both negative and positive effects on the envi
ronment globally (Fig. 14). Concerning the positive effects, there were 
noticeable improvements in air quality, and reduction in Greenhouse 
Gases (GHGs) emissions, water pollution and environmental noise. 
However, the pandemic had also negative sides such as the increase in 
medical waste and household plastics/waste, and careless and overusing 
of masks, gloves, and disinfectants. 

These environmental effects of the COVID-19 are assumed not to last 
long time. Therefore, this pandemic provides an opportunity to develop 
a proper strategy for a better and long-term sustainable environmental 
management, and to determine sustainable solutions for further 
improvement in the air quality after the pandemic. Within this context, 
Fig. 15, for which detailed information is provided by Rume and Islam 
(2020), illustrates some possible strategies for global environmental 
sustainability. 

5. Conclusion 

In this study, the spatial-temporal patterns of Sentinel-5P TROPOMI- 
derived air pollutants, namely, NO2 and SO2, and MODIS-derived AOD 
are monitored and investigated between January 2019 and September 
2020 including first wave lockdown period of COVID-19 outbreak over 
Turkey. The GEE platform is used for the retrieval and processing of 
satellite imagery, and data analysis. 

According to the obtained results, NO2 characteristically reach 
minimum values in the spring, then starting to increase in the summer 
and reaches maximum in the wintertime. Unlike NO2, SO2 becomes 
minimum in the whole spring and summer seasons. On the contrary, 
AOD is higher between the months of April and October than the others 
are. The NO2 results from Sentinel-5P are highly correlated with the 
results from the ground stations. Besides, MODIS-derived AOD is very 
consistent with AERONET results. In addition, all the results have sig
nificant correlations with some meteorological parameters, especially 
pressure and temperature. Interestingly, the correlations with all pa
rameters are higher in 2020. 

The results and analyses show that temporal variations are more 
representative in NO2 for the lockdown period of COVID19 outbreak. As 
seen from Figs. 3 and 4, NO2 concentrations in the lockdown period of 
2020 are significantly smaller than in the same period of 2019. After the 
lockdown, the concentrations leap higher levels than 2019, especially 
starting from July. The NO2 concentrations are mainly affected by 
transportation, industrial and agricultural activities, heating in the 
wintertime, air conditioning need in the summertime. PMI analyses 
show that there are weak correlation between industrial activities and 
NO2 concentration. The lockdown period covers the springtime in which 

Fig. 11. Scatterplots between MODIS-derived AOD 470 nm and AERONET 
AOD 470 nm. 

Table 5 
Monthly average values for air temperature, surface pressure, total precipita
tion, wind speed, and air pollutants during the lockdown period over Turkey. 
The abbreviations Cor., Temp., Pres., Prec., and WS refer to correlation, air 
temperature (K), surface pressure (hPa), total precipitation (m) and wind speed 
(m/s), respectively.  

Variables 2019 2020 

Mar. Apr. May Mar. Apr. May 

NO2 1.46 1.14 1.05 1.22 1.01 0.92 
SO2 13.83 5.38 4.44 15.93 9.39 4.90 
AOD 0.10 0.19 0.18 0.12 0.13 0.18 
Temp. (K) 278.77 282.40 289.92 280.43 283.22 288.72 
Cor.(NO2,Temp.) − 0.87 − 0.92 
Cor.(SO2,Temp.) − 0.81 − 0.96 
Cor.(AOD,Temp.) 0.68 0.98 
Pres. (hPa) 890.35 890.42 890.77 890.34 890.31 891.74 
Cor.(NO2,Pres.) − 0.77 − 0.73 
Cor.(SO2,Pres.) − 0.70 − 0.80 
Cor.(AOD,Pres.) 0.55 0.99 
Prec. (m) 0.07 0.09 0.05 0.09 0.07 0.08 
Cor.(NO2,Prec.) 0.29 0.55 
Cor.(SO2,Prec.) 0.19 0.46 
Cor.(AOD,Prec.) 0.01 − 0.01 
WS (m/s) 0.35 0.13 0.65 0.43 0.41 0.50 
Cor.(NO2,WS) − 0.28 − 0.56 
Cor.(SO2,WS) − 0.18 − 0.65 
Cor.(AOD,WS) − 0.01 0.92  
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heating, air conditioning agricultural needs are minimal. Therefore, it is 
considered that decreasing in transportation and industrial activities 
play the key role in decreasing NO2 concentration during the lockdown 
period. The increase of the concentrations after the lock down coincides 
with the summer time. As seen from Fig. 3, spatial distribution of the 
NO2 concentrations remarkably grows around the southern regions 
rather than the northern regions. They are the main touristic and agri
culture regions in Turkey. In summer time, human population in tour
istic regions dramatically increases, so transportation and air- 
conditioning need also dramatically increase in these regions, espe
cially in the southwestern part. For agriculture regions, irrigation, 
fertilization and stubble burning happen at the highest level in the 
summer time. As for the wintertime, it is understood the combustion 
increases due to house heating, which is the main parameter affecting 

the NO2 concentration. 
Unlike the decreasing trend of NO2 in the lockdown period, the same 

significant decrease are not observed in SO2 vertical column density and 
AOD during the whole lockdown period. Although, the AOD distribution 
significantly decreased only in April 2020, which the tightest re
strictions were applied due to the COVID-19 outbreak, same period of 
2019. These results reveal the lockdown had no effect on reducing effect 
on the vertical column density of SO2. As in NO2 analyses, the rela
tionship between SO2 and AOD, and meteorological/climatological pa
rameters presents that air temperature and surface pressure have strong 
correlations with air pollutants, whereas precipitation and wind speed 
are not effective as well as air temperature and surface pressure. PMI 
correlation results also present almost no relationship with SO2 and AOD 
showing economic/industrial activities do not have a high impact on the 
behavior of the air pollutants on their own. compared to the April 2019, 
the spatial distribution of SO2 in the 2020 lockdown period had slightly 
higher concentrations. 

This study is the first attempt to monitor and analyze the effects of 
the first wave COVID-19 lockdown period as well as on air pollution 
using satellite-derived air pollutants and their relationships with various 
parameters in Turkey at a national level. The analyses in this study show 
that air pollution variation due to human activity can be monitored most 
effectively through NO2 concentration using satellite imageries. In this 
way, GEE provides a powerful and very effective platform for re
searchers to analyze these parameters. Processing Sentinel-5P data in 
this platform, it is found out that NO2 concentration significantly 
decreased during the first wave lockdown period of COVID-19 outbreak. 
The further analyses of the results with other parameters, shows that the 
transportation and industrial activities played the key role in decreasing 
the NO2 level. As for the summer time after the lockdown, agricultural 
and touristic activities caused to higher NO2 levels. Thus, as a future 
work, the authors plan to investigate the relationship between air pol
lutants and with various parameters such as traffic density, touristic and 
agricultural statistics as well as with fatality cases of COVID-19 outbreak 
on the city level in Turkey. 
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