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ErbB2/Her2-dependent downregulation of a cell
death-promoting protein BLNK in breast cancer cells
is required for 3D breast tumor growth
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A significant proportion of breast cancers are driven by ErbB2/Her2 oncoprotein that they overexpress. These malignancies are
typically treated with various ErbB2-targeted drugs, but many such cancers develop resistance to these agents and become
incurable. Conceivably, treatment of ErbB2-positive cancers could be facilitated by use of agents blocking oncogenic signaling
mechanisms downstream of ErbB2. However, current understanding of these mechanisms is limited. The ability of solid tumor cells
to resist anoikis, cell death triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor
growth. In an effort to understand the mechanisms of ErbB2-driven breast cancer cell anoikis resistance we found that detachment
of non-malignant breast epithelial cells from the ECM upregulates a cell death-promoting tumor suppressor adapter protein BLNK
and that ErbB2 blocks this upregulation by reducing tumor cell levels of transcription factor IRF6. We further observed that
trastuzumab, a therapeutic anti-ErbB2 antibody, upregulates BLNK in human trastuzumab-sensitive but not trastuzumab-resistant
ErbB2-positive breast cancer cells. Moreover, we established that BLNK promotes anoikis by activating p38 MAP kinase and that
ErbB2-dependent BLNK downregulation blocks breast cancer cell anoikis. In search for pharmacological approaches allowing to
upregulate BLNK in tumor cells we found that clinically approved proteasome inhibitor bortezomib upregulates IRF6 and BLNK in
human breast cancer cells and inhibits their 3D growth in a BLNK-dependent manner. In addition, we found that BLNK upregulation
in human ErbB2-positive breast cancer cells blocks their ability to form tumors in mice. Furthermore, we used publicly available data
on mRNA levels in multiple breast cancers to demonstrate that increased BLNK mRNA levels correlate with increased relapse-free
survival in a cohort of approximately 400 patients with ErbB2-positive breast cancer. In summary, we discovered a novel mechanism

of ErbB2-driven 3D breast tumor growth mediated by ErbB2-dependent BLNK downregulation.
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INTRODUCTION

Approximately 15% of breast cancers overexpress ErbB2/Her2
receptor tyrosine kinase [1] and are normally treated with ErbB2-
targeted drugs [2, 3]. Approximately 20% of such malignancies
develop resistance to these agents and become incurable [2, 3].
Conceivably, treatment efficacy of ErbB2-positive cancers could be
facilitated by drugs blocking oncogenic mechanisms downstream
of ErbB2. However, current understanding of these mechanisms is
limited.

One critical feature of breast tumors is their ability to grow as
3D masses [4]. To grow in this manner, cancer cells need to survive
without adhesion to the extracellular matrix (ECM) [4]. This is due
to the fact that normal breast epithelial cells are attached to the
ECM in the mammary gland, and detachment kills them [4]. This
type of death is called anoikis [5]. In contrast, breast tumors grow
and metastasize as three-dimensional masses in which the cells

remain viable without being properly attached to the ECM [6].
Numerous studies indicate that cancer cell anoikis resistance is
critical for tumor progression. For example, tumor cell ability to
survive and grow without attachment to the ECM as colonies in
soft agar is a "gold standard” for oncogenic transformation [7]. In
addition, major oncoproteins, including ErbB2 [8] and EGFR [9],
inhibit anoikis. Moreover, approaches triggering anoikis of cancer
cells inhibit their tumorigenicity and metastatic capacity [10].
ErbB2 inhibits breast cancer cell anoikis by partially understood
mechanisms. We discovered recently that one such major
mechanism is driven by ErbB2-dependent downregulation of
transcription factor IRF6 [11], a member of the Interferon
Regulatory Factor transcription factor family [12]. IRF6 is upregu-
lated in the breast during mammary gland involution [13], and
such involution is likely mediated by breast epithelial cell anoikis
[14]. We found that ErbB2 downregulates IRF6 in breast cancer
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Fig. 1 ErbB2 downregulates BLNK in detached breast cancer cells. A MCF10A and MCF-ErbB2 cells were cultured detached from the ECM
(3D) for 24 h and BLNK mRNA levels were analyzed in the cells by quantitative PCR (qPCR). BLNK mRNA levels normalized by those of 18 S
rRNA (determined by gPCR) expressed in arbitrary units are shown. Results represent the average of three independent experiments plus the
SD. *p-value is < 0.05. B MCF10A and MCF-ErbB2 cells were cultured attached to (2D) or detached from (3D) the ECM for the indicated times
and assayed for BLNK levels by western blotting. a-tubulin was used as a loading control. C-E Human ErbB2-positive cell lines AU565, SKBR3
and BT474 were cultured attached to (2D) (left) or detached from the ECM (3D) (right) for 48 h in the absence (—) or in the presence (+) of

5 pg/ml trastuzumab (TZ) and assayed as in (B). F Trastuzumab-resistant variant of BT474 cells BT474TR was assayed as in (C-E).
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MATERIALS AND METHODS MCF-ErbB2

Materials

The following compounds were used. SB203580 (Sigma-Aldrich, St. Louis,
MO, USA), trastuzumab (Roche, Mississauga, ON, Canada), bortezomib
Santa Cruz Biotechnology (Santa Cruz, CA, USA) Matrigel (VWR, Mis-
sissauga, ON, Canada), HBSS medium (Sigma-Aldrich).

Expression vectors

BLNK cDNA in pcDNA3.1 was from Genscript (Piscataway, NJ, USA). pBABE-
hygro vector was from Addgene (Cambridge, MA, USA). pRetroX-TetOne™-
Puro expression vector was from Takara Bio (Mountain View, CA, USA). To
generate pRetroX-TetOne™-Puro-BLNK expression vector the BLNK-
encoding sequence was excised from pcDNA3.1 by EcoRl and BamHI
restriction enzymes and inserted using T4 DNA ligase in EcoRI- and BamHI-
digested pRetroX-TetOne™-Puro. To generate BLNK pRetroX-TetOne™-
Hygro-BLNK expression vector, pBabeHygro vector was digested with Mlul
and Sfil restriction enzymes, the hygromycin resistance gene was blunt-
ended with the Klenow DNA polymerase fragment and inserted by use of
T4 DNA ligase in BLNK-encoding pRetroX-TetOne™-Puro expression vector
from which the puromycin resistance gene was excised using Sfil and
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Fig. 2 Irfé6 upregulates BLNK in detached ErbB2-positive breast
cancer cells. A MCF-ErbB2 cells infected with the control (cont virus)
or the Irfé-encoding Maloney murine leukemia virus (MMLV) (Irf6
virus) were cultured detached from the ECM for 24 h and assayed for
Irf6 and BLNK levels by western blotting. a-tubulin was used as a
loading control. B MCF10A cells and a variant of MCF10A cells
obtained by infection of these cells with a retrovirus carrying
constitutively active Mek2 mutant (MCF-MekDD) were cultured
detached from the ECM for 24 h and assayed for BLNK expression as
in A.

EcoRV restriction enzymes. To generate pBABE-hygro-BLNK expression
vector, BLNK-encoding sequence was excised from pcDNA3.1, blunt-ended
as described above and inserted by use of T4 DNA ligase in BsaAl
restriction enzyme-digested pBABE-hygro vector. Generation of pBabe-
hygro-IRF6 expression vector was published [11]. pHIT and pVSVG
retroviral vectors were provided by P. Lee (Dalhousie University). pBABE-
hygro expression vector was from Addgene. pSPAX2 and pMD2.G were
provided by L. Attardi (Stanford University).
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Fig.3 Detachment-induced BLNK upregulation is required for anoikis of non-malignant breast epithelial cells. A MCF10A cells transfected
with 100 nM control RNA (cont RNA) or BLNK-specific siRNA (BLNK siRNA) 7 or 9 were detached for 3 h (3D) and assayed for BLNK expression
by western blotting. a-tubulin was used as a loading control. B MCF10A cells treated as in A were allowed to form colonies in monolayer
immediately or after being detached for the indicated times. The ratio of colony number formed by the cells detached for each time period to
that formed by the cells plated in monolayer immediately after transfection is shown in each case. This ratio observed for the cells detached
for 24 h was designated as 1.0. The data represent the average of three independent experiments plus the SD.

Cell culture

MCF-10A cells and their derivatives MCF-ErbB2 and MCF-MekDD cells were
provided by M. Reginato (Drexel University, USA) [16]. MCF10A cells were
authenticated as published [11]. Lack of mycoplasma contamination in all
cells was established as published [11]. BT-474 (American Type Culture
Collection (ATCC), Manassas, VA, USA), BT474TR and BT474T cells were
cultured as published [11]. Generation of BT-474TR cells is published [17].
To generate tumorigenic BT474T cells, BT474 cells were implanted
orthotopically into the mammary fat pad of severe combined immuno-
deficiency mouse, and resulting tumors were serially passaged into new
hosts over a three-year period [18]. AU-565 (ATCC), SKBR3 (ATCC) and
293 T cells (provided by A. Stadnyk, Dalhousie University) were cultured as
published [11]. To detach the cells from the ECM, they were plated in
suspension culture above a layer of 1% sea plaque agarose polymerized in
respective culture medium not containing any additional ingredients.

Antibodies

Anti-IRF6 (cat# 6948 S), anti-BLNK (cat# 36438), anti-p38MAPK (cat# 92125),
anti-phospho-p38MAPK (cat# 4511 T), anti-caspase-3 (cat# 9962 S), anti-JNK
(cat# 9255 S), anti-phospho-JNK (cat# 9252 S), anti-Jak3 (cat# 5481) and anti-a-
tubulin (cat# 3873) were from Cell Signalling Technology, Danvers, MA, USA.

RNA interference

Small interfering (si)RNAs (Horizon Discovery, Lafayette, CO, USA) were
used as described [19]. BLNK small hairpin (sh)RNA-encoding lentiviral
vectors were from Sigma-Aldrich (St. Louis, MO, USA). To generate BLNK-
deficient cells, 3x10° GP2-293 cells were incubated with 3ug pLKO
control shRNA or pLKO-Blnk shRNA 7, or 8 vectors in the presence of
2.25ug psPAX2 and 0.75ug pMD2.G vectors and 50 pl of Lipofectamine
2000 in 6 ml of OPTI-MEM. The medium was changed 4 h later to DMEM
containing 10% FBS. The medium was collected 48 h later and filtered
through a 0.45-micron filter. 3 ml of the resulting solution were added to
10° BT474 cells together with 8 pg/ml polybrene. Medium was changed
24 h later to the fresh medium, the cells were cultured for 72 h in the
presence of 2 ug/ml puromycin and expanded as stable cell lines.

Transduction of cells with retroviruses

To generate BLNK-overproducing MCF-ErbB2 cells, 3 x 10° 293 T cells were
incubated with 14pug of control pBabehygro expression vector or
pBabehygro-BLNK vector and 7 pug of pHIT and 7 ug of pVSVG vectors
encoding retroviral proteins in the presence of 50 pl of Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) in 6 ml of Opti-MEM. BLNK-overproducing
cells were generated as published [11]. Irf6-overproducing MCF-ErbB2 cells
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were generated as described above but pBabe-IRF6 expression vector was
used. To generate MCF-ErbB2 cells producing doxycycline-inducible BLNK,
pRetroX-TetOne™-Hygro and pRetroX-TetOne™-Hygro-BLNK vectors were
used as described above. To generate BT474T cells producing doxycycline-
inducible BLNK, pRetroX-TetOne™-PURO and pRetroX-TetOne™-PURO-
BLNK vectors were used as described above.

Flow cytometry
Cells were analyzed by use of PE Annexin V Apoptosis Detection Kit |, BD
Pharmingen (San Diego, CA, USA) according to manufacturer’s instructions.

Orthotopic tumor implantation

Animal studies were approved by Dalhousie University Committee on
Laboratory Animals. Female 6-week-old Nu/Nu Nude mice (Charles River
Canada, Saint-Constant, QC) were allowed to acclimatize for 2 weeks.
8 x 10° cells were harvested by trypsin treatment, washed thrice in ice-cold
PBS, resuspended in a 100 pyL of 1:1 mixture of PBS and Matrigel and
injected into the inguinal mammary fat pad. 2 mg/ml doxycycline was
added or not to the animals’ drinking water. Tumor volumes were
measured as published [20].

Statistical analysis
Statistical analysis of the data in Supplementary fig. 4C, 6C and 8 was
performed by the two-sided chi-square test for goodness-of-fit and
statistical analysis of all other data, by the two-sided Student’s t-test.
Western blotting [21], gPCR and detection of clonogenic cell survival
were performed as published [11]. Western blot quantification was
performed by Odyssey or Image J software and is shown shown as
supplementary data along with the original blots.
Sequences of siRNAs, shRNAs and DNA primers used in the study are
shown in Supplementary Table 1.

RESULTS

ErbB2 downregulates BLNK in breast epithelial cells

We found previously that ErbB2 blocks breast cancer cell anoikis
by downregulating transcription factor IRF6 [11]. Others applied
gene expression microarray analysis to identify mRNAs whose
expression is altered by IRF6 knockdown in human keratinocytes
by RNA interference (RNAi) [22]. One mRNA downregulated by
IRF6 knockdown was that encoding the cell death-promoting
adapter protein BLNK. BLNK carries multiple tyrosine

SPRINGER NATURE
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Fig. 4 Downregulation of BLNK is required for ErbB2-induced 3D
growth of breast cancer cells. A MCF-ErbB2 cells infected with the
control (cont virus) or the BLNK-encoding MMLV (BLNK virus) were
cultured detached from the ECM for 24 h (3D) and assayed for BLNK
levels by western blotting. GAPDH was used as a loading control.
B MCF-ErbB2 cells treated as in A were detached from the ECM for
72 h (3D) and counted. The number of cells detected in the control
sample was designated as 100%. C Indicated cell lines were cultured
detached from the ECM (3D) for 48 h in the absence (—) or in the
presence (+) of 5ng/ml doxycycline (doxy) and assayed for BLNK
expression by western blotting. a-tubulin was used as a loading
control. D Indicated cell lines were cultured detached from the ECM
(3D) for 6 h in the absence (—) or in the presence (+) of 5ng/ml
doxycycline (doxy) and assayed as in C. A short vertical black line
was used to indicate that lanes were removed from the image and
separate parts of an image were joined together. E Indicated cell
lines were cultured for 72 h as in C in the "standard” medium (Hybri-
Care medium supplemented with 10% Fetal Bovine Serum) used for
culturing these cells in all experiments except for F and counted.
The number of cells detected in the control sample was designated
as 100%. F Cells cultured in the “starvation” medium which
represented the Hybri-Care medium medium supplemented with
0.1% Fetal Bovine Serum and diluted 2.5-fold with HBSS medium
were assayed as in E. The data in B, E, F are the average of the three
independent experiments plus the SD. *p-value < 0.05.

phosphorylation sites, a C-terminal SH2 domain and a central
proline-rich region that binds SH3 domains of other proteins [15].
BLNK has mainly been studied in the context of B cell signalling
[15]. Upon activation by B cell receptor, a tyrosine protein kinase
Syk phosphorylates BLNK on various tyrosine residues serving as
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binding sites for enzymes PLCy, Vav and BTK as well as those for
linker proteins, e.g., Grb2 and Nck. BLNK-bound proteins can in
turn activate pro-apoptotic protein kinases JNK and p38MAP
kinase (p38MAPK) [15, 23]. It was found that BLNK-deficient mice
spontaneously develop pre-B-cell leukemia [23].

In an effort to identify the mechanisms by which IRF6 controls
breast cancer cell anoikis we used spontaneously immortalized
anoikis-susceptible human non-malignant breast epithelial cells
MCF10A and their anoikis-resistant derivative MCF-ErbB2 gener-
ated by infection of MCF10A cells with the wild type ErbB2-
encoding retrovirus [16]. We found that ErbB2 strongly down-
regulates BLNK mRNA in detached MCF10A cells (Fig. 1A).
Moreover, detachment of MCF-10A cells upregulated BLNK
protein, and ErbB2 blocked this upregulation (Fig. 1B).

The effect of ErbB2 on BLNK was not unique to MCF10A cells
since we found that while treatment of attached human ErbB2-
positive breast cancer cells AU565, SKBR3 and BT474 [11] with the
therapeutic anti-ErbB2 antibody trastuzumab does not upregulate
BLNK protein (Fig. 1C-E, left), trastuzumab noticeably upregulates
this protein when these cells are detached from the ECM (Fig.
1C-E, right). In contrast, trastuzumab failed to upregulate BLNK in
a trastuzumab-resistant variant of BT474 cells BT474TR [17]
regardless of whether these cells were attached to or detached
from the ECM (Fig. 1F). Thus, ErbB2 downregulates BLNK in
detached breast cancer cells.

Exogenous IRF6 upregulates BLNK in detached breast cancer
cells

To test whether ErbB2-induced BLNK downregulation is mediated
by IRF6 downregulation we infected MCF-ErbB2 cells, in which
IRF6 is downregulated by ErbB2, with the IRF6-encoded retrovirus
(Fig. 2A). We observed that IRF6 upregulates BLNK in these cells
(Fig. 2A). Thus, ErbB2 reduces BLNK levels in the indicated cells by
downregulating IRF6. Noteworthily, while others found that IRF6
knockdown by RNAi in human keratinocytes downregulates BLNK,
the same study used chromatin immunoprecipitation-sequencing
analysis to demonstrate that IRF6 does not bind genomic DNA
adjacent to the BLNK gene [22]. Hence, IRF6 does not directly
control the BLNK gene transcription but likely regulates transcrip-
tion of gene(s) that affect cellular BLNK levels.

We found previously that ErbB2 downregulates IRF6 in breast
cancer cells by activating protein kinase MEK [11]. In agreement
with these data, we observed now that expression of an activated
MEK mutant in MCF10A cells mimics the effect of ErbB2 on BLNK
(Fig. 2A). In summary, ErbB2-induced BLNK downregulation in
detached breast cancer cells is driven by IRF6 downregulation.

BLNK contributes to anoikis of non-malignant breast
epithelial cells

We observed that detachment of non-malignant anoikis-sensitive
breast epithelial cells MCF10A from the ECM upregulates BLNK
(Fig. 1B). To establish whether BLNK mediates anoikis of MCF10A
cells, we knocked BLNK down by two different BLNK-specific
siRNAs in these cells (Fig. 3A). We noticed that while detachment
from the ECM triggered a strong loss of clonogenic survival of the
control MCF10A cells, BLNK knockdown substantially delayed this
loss (Fig. 3B). Thus, detachment-induced BLNK upregulation
contributes to anoikis of non-malignant breast epithelial cells.

ErbB2-induced BLNK downregulation is required for anoikis
resistance of breast epithelial cells
To reverse the effect of ErbB2 on BLNK we infected MCF-ErbB2
cells with a BLNK-encoding retrovirus (Fig. 4A). We observed that
exogenous BLNK noticeably reduced the number of detached
MCF-ErbB2 cells (Fig. 4B).

To examine the role of BLNK in the regulation of anoikis of
ErbB2-overproducing breast cancer cells by a complementary
approach, we generated a variant of MCF-ErbB2 cells MCF-ErbB2-

Cell Death and Disease (2022)13:687
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was used as a loading control.

BLNK in which exogenous BLNK expression is controlled by the
doxycycline-inducible promoter (Fig. 4C). We found that treatment
of these cells with doxycycline significantly upregulated BLNK
compared to the control MCF-ErbB2-vector cells (Fig. 4C) or to the
parental MCF-ErbB2 cells (Fig. 4D). Moreover, exogenous BLNK
significantly reduced the number of detached MCF-ErbB2 cells
(Fig. 4E). Unlike the case in culture, where the cells grow in the
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presence of significant amounts of growth factors and nutrients,
cancer cells experience chronic metabolic stress in vivo due to
disorganized tumor vascularization and the resulting insufficient
growth factor and nutrient supply [24]. Notably, when we
mimicked this stress by reducing the amount of serum and
nutrients available to detached cells, the effect of BLNK on 3D
growth of MCF-ErbB2 cells was significantly enhanced (Fig. 4F).
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presence (+) of 20 pM SB203580 and counted. The number of untreated cells was designated as 100%. The data are the average of the three
independent experiments plus the SD. *p-value < 0.05. D MCF10A and MCF-ErbB2 cells were cultured attached to (2D) or detached from (3D)
the ECM for the indicated times and assayed as in A, B. A-G Indicated cells were cultured detached from the ECM for 6 h and assayed for
ErbB2 (E), phospho-Erk1/2 (F) and IRF6 (G) levels by western blotting. a-tubulin was used as a loading control in E, G and total ERK1/2,in F.H A
model of ErbB2-dependent-inhibition of breast cancer cell anoikis that emerged from our study. ErbB2-dependent ERK activation
downregulates IRF6, IRF6 downregulation causes reduction in the cellular BLNK levels, while BLNK loss in turn inactivates p38MAPK and thus

blocks breast cancer cell anoikis.

BLNK-induced reduction in the number of detached «cells
observed by us was likely caused by cell death since it was
accompanied by increased binding of detached BLNK-
overproducing cells to Annexin V, an apoptosis symptom (Fig.
5A-E) [25]. Of note, apoptotic cells are not phagocytosed in
culture and ultimately become permeable to vital dyes [26].
Indeed, we noticed that further to BLNK overexpression, some
Annexin V-positive cells became permeable to a vital dye 7-AAD
(Fig. 5A-D). In an effort to further demonstrate that BLNK triggers
apoptosis of detached breast cancer cells we established that
BLNK triggers the cleavage (a sign of activation) of procaspsase-3
(Fig. 5F), the key apoptosis executioner [27]. Thus, ErbB2-
dependent BLNK downregulation is required for anoikis resistance
of breast epithelial cells.

SPRINGER NATURE

p38MAP kinase mediates BLNK-dependent breast cancer cell
anoikis
We further investigated the mechanisms of BLNK-dependent
anoikis. It was proposed that simultaneous binding of distinct
BLNK phospho-tyrosine residues to PLCy and VAV, a GTP
exchange factor for the Rho family GTPases, triggers a complex
set of events that activate p38MAPK and a JNK protein kinases,
both of which can kill cells [15]. Although all aspects of this model
have not been formally proven, the ability of BLNK to activate
p38MAPK and JNK is well-established [28, 29]. In addition, BLNK
was proposed to be able to kill cells by binding a protein kinase
JAK3 [23].

We found that doxycycline-dependent BLNK upregulation in
MCF-ErbB2-BLNK cells (see Fig. 4C) does not affect JNK

Cell Death and Disease (2022)13:687



BZ: - +
7 -

34 -
BT474

3D

cont RNA BLNK BLNK
shRNA7 shRNAS

BZ: - + - + - +

-— BLNK

5

wown

5

BT474

BLNK 85

GAPDH

T D G G G G S () ulin

X. Liu et al.

C 3D

BZ: - +
«w phospho-p3SMAPK
43— = p3SMAPK

BT474

BT474 3D

o <

o
1

=

% cell number

BZ: - + - + - 4+

cont RNA BLNK
shRNA7

BLNK
shRNAS

Fig. 7 Bortezomib causes BLNK-dependent anoikis of ErbB2-overproducing breast cancer cells. A, B BT474 cells were cultured detached
from the ECM (3D) for 48 h in the absence (—) or in the presence (+) of 100 nM bortezomib (BZ) and assayed for IRF6 (A), BLNK (B) and
phospho-p38MAPK (C) expression by western blotting. GAPDH was used as a loading control in (A, B) and total p38MAPK, in C. D BT474 cells
were infected with a control lentivirus or that encoding BLNK shRNA (BLNKshRNA) 7 or 8, cultured for 24 h in the absence (—) or in the
presence (4) of 100 nM bortezomib (BZ) detached from the ECM (3D) and assayed for BLNK expression by western blotting. a-tubulin was
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three independent experiments plus the SD. *p-value < 0.05.

phosphorylation (an established sign of JNK activation [28, 29])
(not shown). Moreover, we did not detect JAK3 expression in
these cells (not shown). In contrast, we found that exogenous
BLNK noticeably increases phosphorylation of p38MAPK, a
symptom of p38MAPK activation [28, 29] (Fig. 6A, B). Four p38
MAPK isoforms are known, a, 3, y and 6. We found BLNK-
dependent loss of MCF-ErbB2-BLNK cells in 3D culture is reversed
by SB203580, a widely used small molecule inhibitor of p38MAPK
a and B [30] (Fig. 6C).

ErbB2 prevents detachment-induced BLNK upregulation in
breast epithelial cells (Fig. 1B). Since BLNK controls p38MAPK
activity (Fig. 6A, B), detachment of non-malignant breast
epithelial cells can be expected to activate p38MAPK and this
activation can be anticipated to be blocked by ErbB2. This is,
indeed, what we observed (Fig. 6D). We confirmed that similar to
what we found previously [11], other elements of the BLNK-
dependent anti-anoikis mechanism identified by us, i.e. ErbB2-
dependent ERK activation and ErbB2-driven IRF6 downregulation,
can be detected in our experimental setting (Fig. 6E-G). Thus, our
data are consistent with a model whereby ErbB2-dependent ERK
activation downregulates IRF6, IRF6 downregulation causes
reduction in the cellular BLNK levels, whereas BLNK loss in turn
inactivates p38MAPK and thus blocks breast cancer cell anoikis
(Fig. 6H).

Proteasome inhibition triggers BLNK-dependent death of
detached breast cancer cells

We further tested whether understanding of the mechanisms by
which ErbB2 downregulates BLNK can potentially be used for
designing anoikis-promoting breast cancer treatments. Others
found that IRF6 protein turnover is controlled by the ubiquitin
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proteasome system [31]. Indeed, we observed that a small
molecule proteasome inhibitor bortezomib used for multiple
myeloma treatment [32] upregulates both IRF6 and its target BLNK
in ErbB2-positive breast cancer cells BT474 (Fig. 7A, B). As
expected, bortezomib treatment also increased phosphorylation
of the BLNK effector p38MAPK (Fig. 7C). Furthermore, bortezomib
triggered significant loss of detached BT474 cells and this loss was
substantially reduced by BLNK knockdown by two separate
shRNAs (Fig. 7D, E). Thus, proteasome inhibition represents
potential novel pharmacological approach for causing BLNK-
dependent breast cancer cell anoikis.

BLNK blocks the ability of ErbB2-positive breast cancer cells to
form tumors in vivo

To form 3D tumor masses, cancer cells need to resist anoikis
[20, 33]. Thus, we tested whether BLNK upregulation blocks the
ability of ErbB2-positive breast cancer cells to form tumors in mice.
To this end, we used a variant of BT474 cells BT474T selected for
increased tumorigenicity by serial passaging in mice upon
injection in the mammary fat pad. We generated a variant of
the cells BT474T-BLNK carrying the BLNK gene under the control
of doxycycline-inducible promoter (Fig. 8A). Since as discussed
above, tumor cells tend to grow under metabolic stress in vivo
[24], we tested whether BLNK inhibits 3D growth of BT474T cells
under such stress and found that this the case (Fig. 8B).

To examine the effect of BLNK on the in vivo tumorigenicity of
these cells we injected the control or BT474T-BLNK cells in the
mammary fat pads of immunodeficient mice receiving or not
doxycycline. While the presence of doxycycline had no effect on
tumorigenicity of the control cells (Fig. 8C), it strongly blocked
tumorigenicity of BT474T-BLNK cells (Fig. 8D). Hence, BLNK
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upregulation blocks tumorigenicity of ErbB2-positive breast cancer
cells in vivo.

Increased BLNK breast tumor mRNA levels are associated with
increased relapse-free survival of patients with ErbB2-positive
breast cancer
Since BLNK blocks breast cancer cell tumorigenicity (Fig. 8D), it is
conceivable that increased BLNK gene expression in patients’
tumors is associated with slower breast cancer progression. To test
whether this is the case we used Kaplan-Meier plotter, a web-
based platform that allows the analysis of the gene microarray
expression data on breast cancer-derived mRNAs based on the
Gene Expression Omnibus and European Genome-Phenome
Archive repositories [34]. We found that in a cohort of 398
patients with ErbB2/Her2-positive breast carcinoma, increased
BLNK mRNA expression is significantly associated with increased
disease-free survival: p-value = 0.0018, hazard ratio = 0.6 (95% Cl
0.43-0.83) (Fig. 9). These data are consistent with our findings that
BLNK blocks 3D breast cancer cell growth.

In summary, we have discovered a novel mechanism of ErbB2-
driven breast tumor growth driven by ErbB2-dependent BLNK
downregulation.

DISCUSSION

We found that ErbB2 promotes survival of breast cancer cell
detached from the ECM by a novel mechanism involving
downregulation of transcription factor IRF6 and further
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downregulation of the cell death-promoting protein BLNK
[23, 35]. ErbB2-induced BLNK downregulation likely blocks the
apoptotic form of death of detached cancer cells since we
observed that ectopic BLNK triggers apoptosis symptoms in the
cells, such as caspase-3 cleavage and Annexin V positivity (Fig. 5).

Cell Death and Disease (2022)13:687



We found previously that these changes when observed in a
fraction of cells at discreet time points, tend to accumulate in the
total cell population over time and ultimately, cause significant
loss of detached breast cancer cells [8].

We also found that ErbB2-induced BLNK downregulation
inactivates a BLNK effector p38MAPK [15]. These data are consistent
with findings that p38MAPK can kill cells by phosphorylating and
inactivating the anti-apoptotic proteins BCL2, MCL1 and BCLX, [36]
and/or phosphorylating and activating the pro-apoptotic proteins
BAX and BIM [36]. Moreover, we [37] and others [38] found that
detachment-induced p38MAPK activation triggers anoikis of non-
malignant intestinal and breast epithelial cells respectively.

We found that BLNK upregulation in breast tumor cells by a
genetic approach blocks their tumorigenicity (Fig. 8). We also
observed that a small molecule proteasome inhibitor bortezomib
used for multiple myeloma treatment upregulates IRF6 and BLNK
in detached ErbB2-positive breast cancer cells and kills them in a
BLNK-dependent manner (Fig. 7). These data are consistent with
the known ability of bortezomib to strongly suppress viability of
ErbB2-positive breast cancer cells, including BT474 cells used in
this study, by triggering their apoptosis [39, 40]. Our data indicate
that proteasome inhibition represents a potential pharmacological
approach for upregulating BLNK in breast cancer cells. This
approach could serve for enhancing the anti-tumor effect of
ErbB2-targeted therapeutic agents or for treatment of breast
cancers resistant to these drugs. Bortezomib is presently being
tested as an anti-cancer drug in a breast cancer clinical trial
(ClinicalTrials.gov identifier: NCT04265872) and several trials
directed at other solid tumors types (see ClinicalTrial.gov).
Moreover, novel proteasome inhibitors are now being developed
for solid tumor treatment [41] and could be explored as BLNK-
upregulating drugs in ErbB2-positive breast cancer.

Another possible application of our finings is to use BLNK as a
predictive marker in ErbB2-positive breast cancer. Conceivably, the
ability of ErbB2 to downregulate BLNK depends on the degree of
ErbB2 upregulation in the tumor. Moreover, ErbB2-positive tumors
contain numerous mutations that differ between patients [42] and
could also affect tumor BLNK levels and disease progression. We
found that increased BLNK mRNA expression is significantly
associated with increased disease-free survival of patients with
ErbB2/Her2-positive breast carcinoma (Fig. 9). Utilizing such data to
predict whether the patient is likely to benefit from the intended
therapies could allow oncologists to modify these therapies earlier
than is presently possible to better manage the disease.

DATA AVAILABILITY
The datasets used for assessment of probability of patient’s relapse-free survival are
publicly available and were analyzed using the Kaplan-Meier plotter [34].
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