Skip to main content
. 2022 Aug 6;13:4588. doi: 10.1038/s41467-022-32383-0

Table 1.

Model fit statistics of the 12 EF latent variable models

Model χ2 df CFI RMSEA SRMR AIC BIC
Correlated-factors models
1. I+U+S 41.17 24 0.99 0.02 0.02 48,991 49,161
2. S/I+U 339.83 26 0.73 0.08 0.06 49,286 49,444
3. U/I+S 74.41 26 0.96 0.03 0.02 49,021 49,179
4. S/U+I 402.08 26 0.68 0.08 0.06 49,349 49,507
5. G 431.91 27 0.65 0.08 0.06 49,376 49,529
Bifactor models
6. C+I+U+S 28.45 18 0.99 0.02 0.02 48,991 49,195
7. C+I+S 43.83 21 0.98 0.02 0.02 49,000 49,187
8. C+I+U 219.96 21 0.83 0.07 0.06 49,176 49,363
9. C+U+S 30.01 21 0.99 0.01 0.02 48,987 49,173
10. C+I 401.81 24 0.67 0.09 0.06 49,352 49,522
11. C+S 73.29 24 0.96 0.03 0.02 49,024 49,193
12. C+U 331.92 24 0.73 0.08 0.06 49,282 49,452

χ2 chi-squared statistics, df degrees of freedom, CFI comparative fit index, RMSEA the root-mean-square error of approximation, SRMR standardized root-mean square residual, AIC Akaike information criterion, BIC Bayesian information criterion.

CFI > 0.95 is commonly used as an indication of the adequate fit. Lower values of SRMR and RMSEA indicate better fit, with  < 0.05 indicating a good fit. Lower values of AIC and BIC indicate better fit. The good-fit models are indicated in bold, of which the C+U+S model showed the best overall fit.