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Abstract

Functional regulation via conformational dynamics is well known in structured proteins, but 

less well characterized in intrinsically disordered proteins and their complexes. Using NMR 

spectroscopy we have identified a dynamic regulatory mechanism in the human insulin-like 

growth factor (IGF) system involving the central, intrinsically disordered linker domain of human 

IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of 

IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic 

disorder upon binding IGF-1 but its dynamics are significantly altered, both in the IGF binding 

region and distantly located protease cleavage sites. The increase in flexibility of the linker domain 

upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this 

domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is 

a key contributor to several cancers, our findings open up new avenues for the design of IGFBP 

analogs inhibiting IGF-dependent tumors.
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1. Introduction

The insulin-like growth factor (IGF) system plays an essential role in cell growth, 

differentiation, and function, and in recent years has become an important target for cancer 

therapeutics, with more than 30 anti-cancer drugs focusing on this system.1–5 This system 

consists of two peptide hormones: IGF−1 and −2; the receptors: IGF-1R and IGF-2R; six 

soluble, high-affinity IGF-binding proteins (IGFBPs; numbered 1–6) and IGFBP proteases 

(Fig. 1). IGF−1 and −2 are small proteins (∼7.5 kDa) that circulate in the bloodstream and 

function in signaling by binding to IGF receptors.5–7 The biological activities of the IGFs 

are modulated by IGFBPs, which bind IGFs with higher affinities than the IGF-1R, thereby 

restricting their delivery to the IGF-1R.8,9 Proteolysis of the IGFBPs dissociates IGFs from 

the complex, enabling them to bind to and activate their receptors (Fig. 1).

The biological actions of the IGF: IGFBP: IGF-R axis have been studied extensively.1–3,8,10 

However, a comprehensive understanding of the structural basis for IGF-IGFBP interactions 

is still lacking. The IGFBPs consist of structured globular N- and C-domains joined by a 

central (linker) domain.2,3 The three-dimensional structures of full-length IGFBPs have not 

yet been determined, although structures are available for the N- and C- terminal domains 

of the different IGFBPs either free in solution or bound to IGFs.2,3,10–20 These studies 

have shown that all IGFBPs interact similarly with IGFs and that binding sites for the 

IGFs are located primarily in the N-terminal and C-terminal domains of IGFBPs.2,3,21 The 

intrinsically disordered linker domain, which contains several post-translational modification 

motifs22 and the IGFBP-protease cleavage sites3,23,24, has been proposed to merely tether 

the N- and C-terminal domains.3,12 However, deletion of the linker domain from full-length 

proteins results in the loss of IGF binding affinity3, indicating that this domain may 

contribute to IGF-binding in the full-length proteins. Further, in some of the IGFBPs, 

proteolysis in the linker domain requires the binding of IGFs.7,25–31 Despite its apparent 

importance in IGFBP function, the structure of the linker domain and its interaction 

with IGFs have not been characterized. Here we have investigated the interaction of the 

linker domain of human IGFBP2 (L-hIGFBP2; residues A97-C191) with IGFs using NMR 

spectroscopy and surface plasmon resonance (SPR). Our study confirms that L-hIGFBP2 

is intrinsically disordered and shows that it retains moderate binding affinity to IGFs (Kd 

∼ 4 μM). IGF binding has a specific effect on the dynamics of L-hIGFBP2 residues that 

interact with IGF-1, but also on the protease cleavage sites. This altered dynamics may 

explain the IGF-dependent proteolysis of IGFBP2 in this domain. Our understanding of the 

role of dynamics in the functional regulation of the IGF-system offers new insights that will 

help guide the design and development of IGFBP- based analogs for inhibiting IGF-IGF-1R 

signaling and growth of IGF-dependent tumors.

2. Results

2.1 NMR Studies of L-hIGFBP2

L-hIGFBP2 was cloned, overexpressed, and purified as described in Materials and Methods. 

The purified protein had a molecular mass of 12.2 kDa as verified by MALDI-TOF mass 

spectrometry (expected: 12.211 kDa) and migrated at ∼20 kDa on SDS-PAGE (Fig. S1). 

Such aberrant mobility on SDS-PAGE is typical of intrinsically disordered proteins (IDPs)32 

Jaipuria et al. Page 2

Proteins. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and has been described for the linker domain of IGFBP5.33 The 2D [15N-1H] heteronuclear 

single quantum coherence (HSQC) spectrum of recombinant L-hIGFBP2 (Fig. 2a) shows 

a unique 15N-1H correlation for each residue, indicating that conformational averaging is 

fast on the NMR time scale. Comparison of the 2D [15N-1H] HSQC spectra (Fig. S2) 

for L-hIGFBP2 (in red) and full-length hIGFBP2(in blue)34 shows mainly overlap of all 

residues in the linker region regardless of whether they are part of the full-length protein or 

in isolation, implying that the linker domain is also disordered in the full-length protein.

The limited 1H chemical shift dispersion of the 2D [15N-1H] HSQC spectrum implies that 

L-hIGFBP2 is unstructured.3536 In support of this, 3JHNHα coupling constants (measured 

using G-matrix Fourier transform (GFT) (3,2) D HNHA37), a lack of deviations of backbone 

chemical shifts from random coil values, and secondary structure propensity prediction38 

also indicate an overall lack of ordered secondary structure (Fig. S3). The NH bond order 

parameter estimation based on the chemical shifts of the backbone (1Hα, 13Cα, 13C′, 15N) 

and sidechain (13Cβ) nuclei39 confirms a high degree of disorder in L-hIGFBP2 (Fig. 2b), in 

agreement with the general consensus that the linker domains of all IGFBPs are disordered 

(Fig. S4).3,40 The backbone 1H amide exchange rates could not be obtained from 2D 
15N-1H HSQC spectra, as the decrease in intensity of cross-peaks in the 2D spectrum upon 

dissolving the protein in 100 % 2H2O was too fast to be measurable. The exchange rates 

were therefore characterized from 2D 13CO-15N EXSY at pH 6 and 20 °C, which indicated 

an upper limit of kex ∼1 s−1 for kex for all residues for a 1:1 mixture of H2O and 2H2O (Fig. 

S5).41

2.2 Binding of 15N L-hIGFBP2 to IGF-1 and IGF-2

Dissociation constants (Kd) of 4.1 ± 2.2 μM for IGF-1 and 3.7 ± 1.5 μM for IGF-2 were 

estimated from surface plasmon resonance (SPR) based on the association and dissociation 

rates (Figs. 3a, b). The binding of IGF-1 and IGF-2 to L-hIGFBP2 was also monitored using 

NMR. To identify L-hIGFBP2 residues involved in binding IGFs, a sample of 15N-labeled 

L-hIGFBP2 was titrated with unlabeled IGF-1. Fig. 3c shows an overlay of the 2D [15N-1H] 

HSQC spectrum of the complex with that of free (unbound) L-hIGFBP2, with residues 

undergoing significant shifts highlighted in the inset. For 1 mM IGFBP2 protein, the peaks 

stop moving after the addition of 1 mM IGF-1, showing a clear 1:1 ratio for binding. 

Therefore, the binding is both very dynamic (fast on and off rates) and of moderate affinity 

(Kd of 4.1 ± 2.2 μM as measured from SPR, Fig. 3a). However, a substantial change in the 

overall dynamics of the protein was observed, as discussed below. Assignment of the shifted 

resonances was based on inspection of their position for the unbound L-hIGFBP2 spectrum. 

HSQC spectra of free IGFBP2 protein before the addition of IGF-1 and after the addition of 

increasing molar ratios of IGF-1 to IGFBP2 are shown in Fig. S9. The magnitude of 15N/1H 

chemical shift perturbations for each residue of L-hIGFBP2 (Fig. 3d) shows that residues 

K150-E161 and Q165 undergo the largest chemical shift changes upon binding IGF-1, with 

an average shift of 0.032±0.017 ppm. Similar shifts were observed when IGF-1 bound to 

full-length IGFBP2 (Fig. S6). A region containing these residues (K150-E161) is predicted 

to be a molecular recognition feature (MoRF) (a short binding region located within a longer 

intrinsically disordered region)42 and is located adjacent to the protease cleavage sites of 

hIGFBP2 (Figs. 3e). To confirm the involvement of these residues in binding IGF-1, we 
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prepared a mutant form of L-IGFBP2 with deletion of K150-E161 (L-hIGFBP2[desK150-

E161]), which showed weaker binding to IGF-1 (Fig. S7).

We also identified residues in IGF-1 involved in binding L-hIGFBP2. For this purpose, 
15N-labeled IGF-1 in 50 mM Na-phosphate buffer (pH 6.0) was titrated at 20°C with a 

solution of unlabeled L-hIGFBP2. An overlay of the 2D [15N-1H] HSQC spectrum of the 

L-hIGFBP2: IGF-1 complex with that of free IGF-1 is shown in Fig. S8. Chemical shifts 

for most residues of IGF-1 remained unchanged, but cross-peaks for residues E3, T4, A13, 

V17, C18, G19, D20, R21, G22, M59, Y60, C61, and A62, which were very weak or absent 

in free IGF-1, exhibited a significant increase in intensity in the bound form (Fig. S8). This 

implies that the dynamics of IGF-1 are also significantly affected upon binding L-hIGFBP2, 

even though its average conformation is unchanged (Fig. S8).

2.3 Backbone Dynamics of L-hIGFBP2 from 15N relaxation

Insight into the functional regulation of IGF-1 by L-hIGFBP2 was achieved by studying the 

dynamics of L-hIGFBP2 in the free and IGF-1-bound forms using 15N relaxation. Reduced 

spectral density mapping43 was used to examine dynamics in the microsecond-millisecond 

(μs-ms) and picosecond-nanosecond (ps-ns) regimes. The 15N relaxation rates (R1, R2, R1ρ) 

and 15N-1H heteronuclear nuclear Overhauser effects (HetNOE) were measured at a 1H 

resonance frequency of 800 MHz (Fig. 4). Based on 15N R1 and R1ρ relaxation values, 

an average overall rotational correlation time of ∼3 ns for the disordered linker domain 

was obtained for unbound L-hIGFBP2. The average overall correlation time for the linker 

domain in full-length hIGFBP2 (32 kDa) determined by a similar method was ∼4 ns at 

293 K, implying that the disordered linker domain retains a high degree of flexibility in the 

full-length form, largely unaffected by the presence of the N- and C-domains.

The 15N R1, R2, and 15N-1H het-NOE values and a plot of the calculated spectral density 

functions- J(0), J(ωN), and J(0.87*ωH) for L-hIGFBP2 in free and IGF-1-bound forms 

are shown in Fig. 4 and Fig. 5, respectively. Several important observations can be made. 

First, L-hIGFBP2 exhibits a high degree of flexibility in both the free and IGF-1-bound 

forms, as reflected by the J(0.87*ωH) and J(0) values, with the latter being significantly 

less than 2/5τc for most residues (where τc is the rotational correlation time of a rigid 

isotropically tumbling protein of equivalent size).44 Second, the 15N relaxation rates for 

residues K150-E161, Q165, and M166 of the linker domain are significantly perturbed 

by IGF-1 in complex with L-hIGFBP2, as the large complex causes a great increase in 

correlation time (tc) which in turn causes the fast T2 relaxation (Fig. 4). In the full-length 

hIGFBP2 complex the intensities of cross-peaks corresponding to these residues in the 

2D [15N, 1H] HSQC spectrum are reduced owing to the formation of a large complex 

which causes an increase in correlation time (tc), resulting in the fast T2 relaxation and 

increased NMR line-width (Fig. S6). Third, large J(0) values indicative of dynamics in 

the μs-ms regime are significantly enhanced for L-domain residues involved in binding 

IGF-1 (K150-E161), as well as those distant from the binding site (V110, N113, H117, 

H172, Q165, M166, L174, and L182). This increase in J(0) values can be attributed to 

the larger size of the complex and slow conformational exchange in the μs-ms regime, 

and is quantified by the exchange rate, Rex, which was estimated by measuring the 15N 
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transverse relaxation rate in the rotating frame (R1ρ) at 800 MHz for both the unbound and 

bound forms of L-hIGFBP2. Values of Rex calculated using the difference in J(0) values 

obtained with R2 and R1ρ
44 are plotted in Fig. 5. Notably, an overall increase in Rex is 

observed in the IGF-bound complex for residues of L-hIGFBP2 both close to and distant 

from the binding site. This implies that in the IGF-1-bound complex L-hIGFBP2 populates 

an ensemble of alternate conformations that interconvert on the μs-ms timescale. The region 

bound to IGF-1 exhibits a ‘reduced’ level of conformational dynamics, such that some of 

the ns-ps timescales have now entered the μs-ms timescale (and therefore now entered the 

exchange regime in these experiments). Interestingly, it is known that proteolytic cleavage 

of hIGFBP2 by the pregnancy-associated plasma protein-A (PAPP-A) is enhanced in the 

IGF-1-bound state.30 The disordered linker domain of hIGFBP2 has a helical propensity, as 

indicated by the 13C chemical shift predictions shown in Fig. S3f. The region K150-E161 is 

also predicted by AlphaFold45 to have a helical propensity, as shown in Fig. 7; this region 

binds to IGF-1 and shows a change in exchange in μs-ms timescale due to the formation 

of the larger complex upon binding. The IGF-1 bound complex has a higher correlation 

time (tc) which in turn causes the fast T2 relaxation, resulting in a higher relaxation rate, 

as the relaxation times and relaxation rates are simple inverses of each other. The majority 

of the L-hIGFBP2 residues recognized by proteases (Fig. 3) show increases in Rex upon 

IGF binding (Fig. 5). This explains the IGF-dependent dynamic modulation of a protease 

cleavage site region in the intrinsically disordered linker domain of hIGFBP2.

To estimate the conformational entropy associated with binding IGF-1, approximate 

backbone NH order parameters (S2) using J (0) and J(ωN)43,46 were calculated for 

L-hIGFBP2. J (0) and J(ωN) calculated from R1ρ were used to avoid the effect of 

conformational exchange when estimating S2 values. Order parameters were calculated 

for both free and bound forms of L-hIGFBP2 and the change in conformational entropy 

(ΔS) was estimated using the calculated S2 values (for residues with S2 < 1) (Eq. 2; Fig. 

6).44 The overall ΔS value (summed over all residues) of ∼100 J/mole (0.024 kcal/mol) 

implies an increase in entropy for the system upon IGF-1 binding. The contribution of the 

conformational entropy to the free energy of binding is given by –TΔS, which yields a 

contribution of −7 kcal/mol.

3. Discussion

In recent years, the concept of “fuzzy complexes” in IDPs has been described 47,48, which 

proposes that functionally important regions of IDPs in protein complexes can retain their 

structural disorder. In fuzzy complexes, dynamic regulation ensues when the ensemble 

average population of conformers of the IDP and/or their flexibility are affected upon ligand 

binding. The current study involving the intrinsically disordered linker domain of human 

IGFBP2 exemplifies such a case.

In the IGF system, proteolysis plays a crucial role in regulating the bioavailability of 

IGFs.25 IGFBP levels are regulated by proteolysis following their secretion from the cell 

and the resulting proteolytic fragments have reduced affinity for IGF ligands.25 The net 

effect is an increase in IGFs availability for interaction with the IGF-1R. Thus, efforts to 

reduce protease action could have a beneficial effect on reducing IGF-1R activity in cancer. 
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Proteolysis of IGFBPs has been observed to be both IGF-dependent and IGF-independent; 

IGF-dependent proteolysis has been observed for IGFBP230 and in IGFBP425–27, whereas 

IGFBP3 and IGFBP549 undergo IGF-independent proteolysis.25,50 K150-E161 residues in 

IGFBP2 are more ordered (less disorder disposition, Fig. S4), and our experimental results 

show an increase in dynamics for those residues in IGFBP2 after binding with IGF-1. As 

these K150-E161 residues in the linker region become more flexible after binding, the 

conformational ensemble populated by the linker domain of IGFBP2 shifts so that it is more 

readily recognized by the protease and/or is more amenable to proteolysis. This highlights 

an interesting link between binding of IGF-1 and proteolysis for hIGFBP2, which is not 

the case for IGFBP3 and IGFBP5. An example of an IGF-dependent protease action on 

hIGFBP2 is PAPP- A, which cleaves hIGFBP2 in an IGF-dependent manner at a single 

site between Gln165 and Met166, to yield two proteolytic fragments having weak IGF 

binding affinity.30 Another recent finding shows that ParD antitoxin hotspot binding to its 

cognate ParE toxin alters a disorder-to-order transition, lessening its interaction affinity and 

increasing its protease degradation kinetics51.

The different susceptibilities of the different IGFBPs to proteolysis have been attributed 

to ligand-induced conformational changes. Our studies demonstrate that K150-E161, 

Q165, and M166 residues of L-hIGFBP2, which are involved in binding IGF-1, exhibit 

enhanced conformational exchange upon IGF binding (Fig. 4). Moreover, this enhanced 

conformational exchange is not confined to the binding site but extends to some distant 

residues (V110, N113, H117, H172, Q165, M166, L174, and L182) (Fig. 4) and is 

accompanied by an increase in conformational entropy. This implies distant dynamic 

regulation52–55, where changes in protein dynamics induced by ligand binding extend 

to residues distant from the ligand-binding site, even in the absence of a well-defined 

conformational change. The increase in μs-ms motions of residues in the vicinity of protease 

cleavage sites of L-hIGFBP2 provides an interesting link to proteolytic cleavage upon 

binding IGF-1 as it is well known that changes in conformational dynamics upon ligand 

binding are important for regulation of proteolysis.56–58 In the presence of IGF-1, the 

conformational ensemble populated by the linker domain of IGFBP2 shifts so that it is more 

readily recognized by the protease and/or is more amenable to proteolysis. Considering the 

current findings, we, therefore, propose that dynamic regulation in the linker domain of 

IGFBP2 plays an important role in its susceptibility to PAPP-A proteolytic cleavage.

These results have significant implications for the development of IGFBPs (mutants and/or 

chimeras) as antagonists of IGF-1R activation that can block IGF-1R mediated tumor 

progression.2,3 Most current cancer therapeutics target the IGF-signaling pathway and focus 

on blocking the IGF-1R directly (kinase inhibitors) and/or its downstream effectors.59 

However, a drawback of this approach is the resulting high serum IGF-1 levels in response 

to targeted inhibition of IGF-1R and adverse side-effects and/or toxicities arising from 

potential interference with the insulin pathway.60 It has been suggested recently that 

therapeutics targeting the interaction of IGFs with IGFBPs may overcome these serious 

drawbacks.3,5,61 For example, IGFBPs engineered to be protease--resistant by mutating or 

deleting the protease cleavage sites in the linker domain should act as IGF antagonists. 

Recently, in separate studies, engineered protease-resistant hIGFBP2 and hIGFBP4 were 

found to inhibit tumor growth in breast cancer.62–64 Interestingly, the engineered protease-
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resistant form of hIGFBP2 lacking residues 114–170 (des(114–170)) retains high-affinity 

binding to IGF-1 and IGF-2, with only a 1.6–2-fold reduction in affinity compared to 

full-length hIGFBP2. The present study may now explain the loss in binding affinity of 

des(114170)63 towards both IGFs compared to the full-length protein by the fact that 

residues K150-E161 of the linker domain, which facilitates IGF binding (Fig. S7), were 

deleted from the construct. This suggests that, in addition to alteration of the protease 

cleavage sites, more potent IGFBP-based antagonists could be designed by considering the 

binding affinity of the linker domain for the IGFs and taking into account the resulting 

change in dynamics upon binding. These studies will facilitate the development of future 

IGFBP-based antagonists.

In summary, our studies of the intrinsically disordered linker domain of human IGFBP2 

provide new insights into the regulatory mechanisms in the IGF system. Contrary to 

currently held models, the intrinsically disordered linker domain of IGFBP2 is involved 

in binding IGF-1. L-hIGFBP2 does not undergo a well-defined conformational change upon 

binding its ligand, but binding is accompanied by a significant change in dynamics on both 

the millisecond-microsecond and picosecond-nanosecond time scales. This is an example of 

functional regulation in an intrinsically disordered protein complex by dynamic regulation, 

which is being recognized increasingly in recent years.47,48

4. Materials and Methods

4.1 Cloning, expression, and purification of L-hIGFBP2

The primers were designed for L-hIGFBP2 [residues 97–191 of the full-length protein] and 

its L-hIGFBP mutants (L-hIGFBP2[desK150-E161]) lacking the C-terminal tag and residues 

150–161. Oligonucleotide strands 5’ CAT GGT ACC GAT GAT GAT GAT AAA AAG CGC 

CGG GAC GCC GAG TAT G 3’ with enterokinase cleavage site and 5’ GAC GAA TTC 

TTA GGG AGT CCT GGC AGG GGG TGG TCG CA 3’ were used as forward and reverse 

primers for L-hIGFBP2[desK150-E161]. The insert was cloned between Kpn1 and Xho1 

restriction sites of the pET 32a vector having a thioredoxin tag fused to the protein.

The oligonucleotide strands 5’ ATTG GGA TCC GAG AAG CGC CGG 3’ and 3’ ATTG 

GAA TTCTTA CAG GGA GTC CTG 5’ with BamH1 and EcoR1 restriction sites on 

forward and reverse primers, respectively, were synthesized by MWG-Eurofins and used to 

amplify L-hIGFBP2 at 65 °C in a thermo-cycler. Following amplification, PCR products 

were purified using a Sigma Gel elution kit after analyzing on 1% agarose gel in 1X TAE 

buffer. The vector used was an IPTG-inducible pGEX6P-1 with a GST tag. The vector 

and L-hIGFBP2 were digested with BamH1 and EcoR1, producing staggered ends, and 

treated with ligase at 16 °C for 16 h. The ligated product was used to transform E. coli 
Top10 cells, and the desired clone was obtained using a Sigma miniprep plasmid isolation 

kit. The clone was confirmed by sequencing. During the process of cloning the following 

C-terminal tag was introduced: KNSRVDSSGRIVTD. This tag did not affect the binding 

of IGF-1 as verified using the construct L-hIGFBP2[desK150-E161], which did not contain 

these additional residues. At the N-terminal end, cleavage by HRV 3C protease to separate 

the GST tag from the protein resulted in the following residues added to the N-terminus: 

GPLGS.
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The L-hIGFBP2 construct was transformed into E. coli BL21(DE3) competent cells. The 

transformed colony was inoculated in 50 mL of primary culture (LB broth with 100 

μg/mL ampicillin) and incubated at 37 °C for 16 h, 200 rpm. The cells were transferred 

to minimal media and grown to the mid-log phase (optical density at 600 nm (OD600) 

∼ 0.6). At this OD, the expression of L-hIGFBP2 was induced with 1 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG) for 5 h at 37 °C, 200 rpm.

Cells were harvested by centrifugation at 6000 rpm and resuspended in phosphate-buffered 

saline (PBS) [150 mM NaCl, 2.5 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4], and 

1 mM PMSF. Lysis by sonication was carried out on the ice for 10 min (30 s pulse) and the 

lysate was centrifuged at 8000 rpm for 40 min. The supernatant was collected and allowed 

to bind to the pre-equilibrated GST bind resin for 2 h at 4 ° C on a rotator. The resin was 

washed three times with each of 10 bed volume of PBS buffer, high salt [25 mM HEPES, 

0.05% NaN3, 0.5M NaCl, 0.1% Triton X-100, pH 7.5] and low salt [25 mM HEPES, 0.5% 

NaN3, 0.1 M NaCl, 0.1% TritonX-100, pH 7.5] buffer. The cleavage buffer (PBS) was used 

to wash the beads before adding HRV 3C protease to perform on-column cleavage at 4 °C 

for 16 h.

L-hIGFBP2[desK150-E161] was expressed in E. coli BL21 cells at 30 °C and induced for 4 

h with 0.5 mM IPTG. For the purification of thioredoxin fused L-hIGFBP2[desK150-E161], 

the cell pellet was resuspended in buffer A (20 mM Tris pH 8.0, 100 mM NaCl, 10 mM 

imidazole, and 10% glycerol) containing 0.3 mg/mL lysozyme and incubated for 20 min in 

the presence of EDTA-free protease inhibitor cocktail from Roche. The cell resuspension 

was sonicated, and the cell lysate was clarified by centrifuging at 14,000 rpm for 30 min 

at 4 °C. The supernatant was loaded onto a pre-equilibrated Ni-NTA HisTrap column (GE 

Healthcare, 5ml) with a flow rate of 0.25 mL /min. Unbound proteins were removed by 

extensive washing with buffer A followed by a wash with buffer A containing 0.5 M NaCl. 

The fusion protein was eluted with buffer A containing 250 mM imidazole and exchanged 

with enterokinase cleavage buffer (50 mM Tris-Cl, pH 8.0, 1mM CaCl2, and 50 mM NaCl). 

The thioredoxin tag was removed by incubating the fusion protein in enterokinase at 23 °C 

for 16 h and passing the mixture back onto the Ni-NTA HisTrap column (GE Healthcare, 

5ml). Unbound protein was eluted in buffer A. The protein was concentrated using a 

Millipore centricon with a 3 kDa molecular weight cut-off.

4.2 Expression and purification of full-length hIGFBP2

A 15N-labeled sample of full-length hIGFBP2 was prepared as described previously.34 

Briefly, the hIGFBP2 construct was transformed into E. coli BL21(DE3) Star™ competent 

cells. The transformed colony was inoculated in 10 mL primary culture of LB medium 

containing 200 μg/ml ampicillin and incubated at 37 °C for 16 h, 200 rpm. The cells were 

then diluted 100-fold into fresh LB (amp) and grown up to a cell density corresponding 

to OD600∼ 0.6. The cells were centrifuged and the cell pellet transferred to 1 L minimal 

media followed by growth at 37 °C up to a cell density corresponding to OD600 ∼ 0.8 before 

inducing the protein expression with 0.5 mM IPTG at 25°C for 6 h. Cells were harvested 

by centrifugation, solubilized in Buffer-I [Phosphate-buffer (50 mM sodium phosphate, 0.3 

M NaCl, pH 8.0) containing 8 M urea, 5 mM DTT, and 1 mM PMSF] and then sonicated 
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on ice. The supernatant was incubated at 4 °C for 2 h with 1 mL of pre-equilibrated His-

Select™ Nickel affinity agarose (Sigma–Aldrich) followed by washing and elution of the 

protein with 200 mM imidazole in Buffer-I. The eluate was dialyzed in Buffer-I to remove 

urea, followed by removal of DTT. The dialyzed protein was exchanged with phosphate 

buffer (50 mM sodium phosphate, 50 mM NaCl, pH 6.0) and concentrated to 500 μL for 

NMR experiments.

4.3 SPR studies of L-hIGFBP2 and its mutants

SPR studies to estimate the binding affinity of IGF-1 and IGF-2 to L-hIGFBP2 and its 

mutant (lacking the residues 150–161) were carried out on a Biacore 3000 instrument. IGF-1 

(10 μg/μL) in 10 mM sodium acetate buffer, pH 4.0, was immobilized at a flow rate of 2 

μL/min onto the activated CM-5 sensor chip using the amine coupling kit. 520 response 

units (RU) of IGF-1 were coupled on separate flow cells. The immobilization of pure IGF-2 

(5.5 μg/μL) was carried out on a separate chip at 25 °C at a flow rate of 2 μL/min and 350 

response units of IGF-2 were coupled on the flow cell. Binding experiments were carried out 

for different concentrations of L-hIGFBP2 and its mutants in HBS buffer (10 mM HEPES, 

150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20, pH 7.5) at a flow rate of 10 uL/min. 

Regeneration of the biosensor surface before the next reading was done by passing 5 μL of 2 

M MgCl2 across the chip. The data were fit to the Langmuir 1:1 binding model65 using the 

fitting procedures in BIA-evaluation software 3·0·1 to calculate dissociation constants.

4.4 Sequence-specific resonance assignments

NMR spectra were acquired at 20 °C on an 800 MHz NMR spectrometer equipped with 

a triple-resonance cryogenic probe. The following spectra (with measurement times) were 

acquired for sequence-specific resonance assignment of backbone and side-chain nuclei: 

2D HSQC (0.6 h), 3D HNCO (4.2 h), 3D HNCACB (13 h), 3D CBCACONH (13 h), 

3D HBHACONH (6.8 h), 3D (H)C(CO)NH TOCSY (10.4 h), 3D 13C-TOCSY-Methyl 

COSY (11.2 h), Reduced Dimensionality (RD) 3D HN(CA)NH (12.4 h), GFT (3,2)D 

HNHA (6 h). Data were processed with NMRPipe66 and analyzed using XEASY.67 

Resonance assignments were obtained using a semi-automated approach in the program 

AUTOASSIGN.68 Sequence-specific resonance assignments were aided by amino acid 

selective unlabeling of Arg, Asn, Thr, Ser, Gly, and Ala and reduced dimensionality. 69–72 

The complete chemical shifts assignments have been deposited in the BioMagResBank 

(accession code: 19475).73

4.5 Backbone Dynamics of L-hIGFBP2 from 15N relaxation

The experiments for dynamics studies of 15N-labeled hL-IGFBP2 in the presence and 

absence of IGF-1 were performed at 20 °C on a Bruker 800 MHz NMR spectrometer 

equipped with a cryogenic probe. For R1 measurements, eight different time points were 

collected with relaxation delay periods of 0.01 s, 0.05 s, 0.1 s, 0.2 s, 0.4 s, 0.8 s, 1 s, and 1.5 

s. R2 and R1ρ measurements were carried out at eight different time points with relaxation 

delay periods of 0.01 s, 0.03 s, 0.05 s, 0.1 s, 0.13 s, 0.17 s, 0.2 s, 0.23 s. For the R1, 

R2, R1ρ experiments: 2 scans with an interscan relaxation delay of 2.5 s, 256 points, and 

a spectral window of 24 ppm (65 ms acquisition time) were used in the 15N dimension. 

The 1H dimension was acquired using 2048 points (tmax = 106 ms) over a 12-ppm spectral 
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width. For R1ρ a 4 ms spin-lock block with a field strength of 2 kHz was used. The same 

data sets with identical time points, relaxation delays, and experimental time were recorded 

for the IGF-1-bound form of L-hIGFBP2. All the relaxation experiments were processed 

with a shifted sine-bell function and zero-filled with twice the time domain points in both 

dimensions. [15N-1H] Het-NOE spectra for the free and bound form of L-hIGFBP2 were 

recorded with 32 transients for 23 h each with 2048 and 256 points in the direct and indirect 

dimensions, respectively. An interscan delay of 5 s was used and acquisition times were 80 

ms in the direct and 65 ms in the indirect dimension.

An approximate S2 to estimate the conformational entropy of the NH bond vector was 

calculated using Equation 1 and the entropy was calculated using Equation 2.

S2 = 5
2

J 0 − J ωN 1 + ωN
2 τm2

ωN
2 τm3

(1)

ΔSconf = − kBlnπ 3 − 1 + 8S 1/2
(2)

The entropy estimated in this manner is considered as an upper limit due to the inherent 

assumption that the NH bond fluctuations for each residue are independent of others.46

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of the components in the insulin-like growth factor system (top box) and their 

functional regulation (lower right diagram). IGFBPs tightly bind and sequester IGFs in 

the serum and inhibit their interaction with the IGF receptor (IGF-1R). IGFBP protease 

cleavage within the disordered linker domain of the IGFBP releases IGF allowing it to bind 

to the IGF-R, stimulating intracellular IGF signaling. The crystal structure of the N- and 

C-domains of IGFBP4 (N-BP-4 (green) and C-BP-4 (blue), respectively) bound to IGF-1 

(PDB ID: 2DSR, red) is shown, with the intrinsically disordered linker domain (L-domain) 

drawn as a dotted line for illustration. In the case of IGFBP2, the N-, C-, and the L-domains 

are each approximately 100 residues in length.
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Fig. 2: 
(a) Two dimensional [15N-1H] HSQC NMR spectrum of L-hIGFBP2 acquired at 1H 

resonance frequency of 800 MHz at 20 °C in 50 mM Na-phosphate buffer (pH 6.0) and 

100 mM NaCl. The peaks are numbered according to full-length protein (i.e., starting from 

97 to 191), the peaks numbered −5 to −1 are a part of the N terminal tag while peak numbers 

1 to14 belong to the additional C-terminal residues. (b) The predicted order parameter 

of L-hIGFBP2 as calculated with TALOS+74 using the observed 1H, 15N, 13Cα, 1Hα, C’ 

chemical shifts.39
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Fig. 3: 
Characterization of the interaction of the IGFs with L-hIGFBP2. Sensorgrams of (a) IG 

F1, (b) IGF-2 immobilized on the surface of a CM5 chip with L-hIGFBP2 as analyte. (c) 

Overlay of the 2D [15N-1H] HSQC spectra of L-hIGFBP2 (blue) and IGF-1: L-hIGFBP2 

(red). Inset shows an expanded view of the region where residues show maximum 

chemical shift perturbations (residues 150–170). (d) Combined (15N and 1HN) chemical 

shift difference plot for L-hIGFBP2 residues upon addition of IGF-1, calculated using 

Δδ ppm = δ H bound − δ N free
2 + 0.17 δ N bound − δ N free

2. The dotted line is shown at 

one standard deviation of the chemical shift differences. (e) Reported proteolysis sites on 

L-hIGFBP2.8 (f) Residues of the linker domain were analyzed for their predicted propensity 

to lie within MoRF motifs using the web-based program MoRFpred. A line between the 

peak centers of the red and blue signals for L152 and R156 residues shows the largest 

chemical shift deviations (in the insert, Fig. 3c).
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Fig. 4: 
R2, R1ρ, and het-NOE plots for L-hIGFBP2 (blue) and IGF-1: L-hIGFBP2 (red) measured at 
1H resonance frequency of 800 MHz. A-asterisks mark signals with overlap.
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Fig. 5: 
Spectral density function values at J (0), J(ωN), and J(0.87ωH) frequencies for L-hIGFBP2 

(left) and the L-hIGFBP2:IGF-1 (right) complex at a 1H resonance frequency of 800 MHz. 

A-asterisks mark signals with overlap.
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Fig. 6: 
The difference in S2 values (calculated using Eq. 1) between the free and bound forms of 

L-hIGFBP2 as estimated from J (0) and J(ωN) calculated from R1ρ.
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Fig. 7: 
Predicted structure of full-length IGFBP2 from AlphaFold protein structure database where 

the disordered linker domain is represented in red, starting from A97 residue to C191 as 

marked, with N- and C-terminal domains of FL-IGFBP2 represented in cyan and blue 

respectively. The helix in the linker domain was predicted by Alpha Fold only (https://

alphafold.ebi.ac.uk/)45 and consistent with the fact that K150-E161 is more ordered in 

IGFBP2 as we can see from Fig. S4
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