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Abstract

Purpose of review: Artificial intelligence has advanced rapidly in recent years and has provided 

powerful tools to aid with the diagnosis, management, and treatment of ophthalmic diseases. 

This article aims to review the most current clinical artificial intelligence applications in anterior 

segment diseases, with an emphasis on microbial keratitis (MK), keratoconus, dry eye syndrome 

(DES), and Fuchs endothelial dystrophy.

Recent findings: Most current artificial intelligence approaches have focused on developing 

deep learning algorithms based on various imaging modalities. Algorithms have been developed 

to detect and differentiate MK classes and quantify MK features. Artificial intelligence may 

aid with early detection and staging of keratoconus. Many advances have been made to detect, 

segment, and quantify features of DES and Fuchs. There is significant variability in the reporting 

of methodology, patient population, and outcome metrics.

Summary: Artificial intelligence shows great promise in detecting, diagnosing, grading, and 

measuring diseases. There is a need for standardization of reporting to improve the transparency, 

validity, and comparability of algorithms.
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INTRODUCTION

Advances in artificial intelligence (AI) have generated novel insights and are transforming 

screening, diagnosis, and treatment in various medical fields. AI in ophthalmology has 

expanded significantly in the last decade. The eye community is well-positioned to create AI 

strategies given the broad use of imaging tools in clinical practice and hence the availability 

of codified data from imaging to numeric clinical parameters (e.g., visual acuity, intraocular 

pressure, etc.). Image-based ophthalmic AI began by focusing on eye diseases involving the 

posterior segment, such as macular degeneration, diabetic retinopathy, and glaucoma, due to 
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the population prevalence and use of ophthalmic imaging in routine clinical practice [1–4]. 

This led to advances in medicine - the first autonomous AI-based diagnostic tool approved 

by the Food and Drug Administration was for detecting diabetic retinopathy [5].

These advances have inspired AI development to address diagnostic and management 

concerns for diseases of the anterior segment. AI algorithms for anterior segment conditions 

have been reviewed in the past [6–14,13**]. This review article focuses on advancements in 

the past eighteen months for the use of AI for corneal diseases.

METHODS

A literature search was conducted using PubMed and Scopus databases. The search 

focused on studies involving the use of AI in screening, diagnosis, staging, or management 

of corneal diseases, with special emphasis on microbial keratitis, keratoconus, dry eye 

syndrome including meibomian gland dysfunction, and Fuchs endothelial dystrophy. Full 

methods, inclusion, and exclusion criteria are found in Supplemental Material 1. Articles are 

summarized into tabular format (Table 1).

Microbial Keratitis

Microbial keratitis (MK) is a leading cause worldwide of corneal opacification and resulting 

vision impairment. Management of MK is complex due to delayed patient presentation, 

unclear differentiation of the organism, lack of a staging system linked to outcomes, and 

lack of quantified methods to evaluate healing (or non-healing) of MK to tailor management 

appropriately. In addition, clinicians managing MK are rarely experts in this condition. As a 

result, clinicians could benefit from AI software and tools that could help alleviate some of 

the underlying uncertainties with detection, diagnosis, and management of MK.

Detection of MK—Primary detection of MK and differentiation of MK from other 

conditions and normal eyes has been the focus of recent research. Li et al. optimized 

pre-existing convolutional neural network (CNN) software to detect keratitis using slit lamp 

photography (SLP) and smartphone photography [15*]. The best model detected MK with 

an area under the curve (AUC) of 0.998 from normal eyes and other corneal conditions. 

Tiwari et al. trained a CNN to differentiate MK ulceration from healed scars from external 

photographs. The model was tested on internal (India) and external (United States) data 

sets and achieved high performance (AUCs>0.94) [16**]. Xu et al. gathered SLP data from 

89 corneal conditions including patients with MK subtypes to train a CNN model [17*]. 

Final overall accuracy was 80%, outperforming ophthalmologists reviewing imaging data, 

but was variable when differentiating organism subtypes. Wang et al. also detected MK and 

differentiated between organism types on a larger SLP dataset with reported AUC of 0.959 

and improved accuracy when compared to clinicians [18].

Distinguishing Between MK Types—Eye clinicians recognize the complexity 

of differentiating organism types causing MK. Organisms cause different, but often 

overlapping, morphologic characteristics. The combination of organisms, patient 

inflammatory responses, and circumstances of the infection, lead to clinical presentations 

that make determination of the underlying organism difficult, even for cornea specialists 
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[19]. AI algorithms have the potential to guide clinicians to aid point-of-care diagnosis. 

Three recent studies expanded upon previous work [11] by testing CNN algorithms 

to distinguish MK organisms. Koyama et al. trained models based on SLP images to 

differentiate between bacterial, fungal, herpes simplex, and Acanthamoeba keratitis (BK, 

FK, HSK, and AK, respectively) [20*]. The overall accuracy of multiclass diagnosis was 

88% and >90% for differentiation of each organism subtype. However, another study, using 

binary classification on external photography images, had lower accuracy for BK and FK 

[21**]. The best performing CNN had an AUC of 0.81, 75% sensitivity to detect BK from 

FK, and 81% sensitivity to detect FK from BK. Another study trained an ensemble CNN to 

discriminate between BK and FK using SLP images with a sensitivity of 77% and F1 score 

of 83% [22]. Other studies have reported performance below the recommended threshold of 

80% sensitivity and/or 80% specificity [23–25].

It is known that interpretation of confocal images requires expertise and time. Optimizing 

CNN algorithms for confocal interpretation could aid clinicians. Lv et al. and Liu et al. 

trained CNNs on confocal images with and without FK [26*,27]. Both models showed high 

performance with accuracies of 96% and 99.9%, respectively. The former research team 

[26*] then used gradient-weighted class activation mapping to enhance evaluation helping to 

identify fungal hyphae [28].

Quantifying MK Features—Evaluating MK severity and healing has been explored less 

extensively. A recent publication for MK severity staging was performed with classical 

[29] but not with machine learning (ML) methods. Our group has focused on quantifying 

morphologic features of MK to aid MK staging and monitoring of features over time. We 

used a de novo CNN architecture to quantify MK features on SLP imaging with promising 

results [30]. That architecture was refined, and feature sizes were found to be correlated with 

the patient’s visual acuity [31*].

Keratoconus

Keratoconus (KCN) is a prevalent corneal condition causing ectatic changes to the cornea. 

The disease is progressive, and is often detected by and monitored with imaging, particularly 

the early form of KCN called forme fruste KCN (ffKCN). The presence of imaging on many 

patients with various stages of KCN makes it a primary target for AI algorithm development.

Detection of KCN—Several studies have aimed to detect KCN, ffKCN, and normal 

eyes. Most studies trained models using corneal tomography images with promising results. 

Al-Timemy et al. trained a hybrid-CNN deep learning (DL) model to identify features then 

used to train a support vector machine to detect KCN [32]. The final model had a 92% 

accuracy in differentiating normal from KCN eyes and 69% accuracy in differentiating 

normal, suspected KCN, and KCN. Two studies used CNN models to differentiate normal, 

ffKCN, and KCN eyes with high accuracy (99% [33], 95% [34]), while another successfully 

detected KCN from normal and post-refractive eyes with 99% accuracy [35]. Finally, a study 

used both tomography and optical coherence tomography (OCT) images to detect disease 

with resulting high discrimination between normal and ffKCN (AUC=0.93) [36]. However, 

implementing multimodality imaging in a clinical setting may prove difficult.
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Several studies focused specifically on detecting ffKCN, given the clinical need to detect 

progression early so surgical interventions can be offered. Kuo et al. trained three CNN 

models with topography images of normal, ffKCN, and KCN eyes with high performance 

(AUC>0.95) [37]. Additionally, feature recognition was performed; the models identified 

patterns of ffKCN including asymmetric bowtie, inferior steepening, and presence of a 

central cone. Other studies have compared ML algorithms to detect ffKCN. Castro-Luna et 

al. found that the random forest (RF) outperformed decision tree model (89% accuracy vs 

71%, respectively) based on tomographic and biomechanical variables [38]. Cao et al. also 

found the RF model outperformed other ML algorithms using tomographic and demographic 

data [39], while Aatila et al. found the RF model to have the highest accuracy compared to 

other ML models trained on anterior segment (AS)-OCT images in detecting all classes of 

KCN including ffKCN [40].

Staging of KCN—Some studies have focused on staging KCN severity. Malyugin et al. 

trained a ML model using tomography images and visual acuity to classify KCN stage 

based on the Amsler-Krumeich classification system [41]. The model’s overall classification 

accuracy was 97%, highest for stage 4 KCN and lowest for ffKCN. Another study trained 

an ensemble CNN on tomography measurements to differentiate between normal eyes and 

early, moderate, and advanced KCN with a staging accuracy of 98% [42]. Two studies used 

only topography images to detect and stage KCN [43*,44]. Both studies had high overall 

accuracies (79% [43*] 93% [44]), with better performance on color-coded maps than the 

raw topographic indices.

Progression of KCN—Other studies have focused on detecting KCN progression, though 

each study had varying definitions of disease progression. The first study trained a CNN 

model on AS-OCT images, which achieved a 79% accuracy in discriminating KCN with and 

without progression [45*]. Analysis of the posterior elevation map had the highest accuracy 

and pachymetry map had the lowest in detecting progression. Another study trained a model 

to predict KCN progression and the need for corneal crosslinking using tomography maps 

and patient age with an AUC of 0.814 [46]. Another group trained an unsupervised ML 

model to predict need for keratoplasty using baseline OCT data and reported the normalized 

likelihoods of receiving certain kinds of transplants; however, algorithm performance was 

not reported [47]. AI may be able to aid clinicians in determining timing of interventions for 

KCN.

Dry Eye Syndrome

Dry eye syndrome (DES) is a multifactorial disease of the ocular surface characterized by 

the loss of homeostasis of the tear film. DES can be caused by many factors including 

reduced tear production, increased evaporation of the tear film, or abnormalities of the 

ocular surface. Diagnosing DES can be challenging due to a variety of signs and symptoms 

and the low standardization of interpreting clinical tests. Diagnostic tests employed do not 

always link to clinical symptom findings. As a result, development of AI algorithms for DES 

is complicated by the difficulty in “ground truth” diagnosis of DES.
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Detection of DES—Some recent AI studies have focused on detecting DES. Chase 

et al. developed a CNN algorithm to detect DES using AS-OCT images with good 

performance (accuracy=85%, sensitivity=86%, specificity=82%) [48**]. The model had a 

significantly higher accuracy at detecting DES than corneal staining, conjunctival staining, 

and Schirmer’s testing, but not Ocular Surface Disease Index or tear breakup time. Maruoka 

et al. focused specifically on detecting meibomian gland dysfunction (MGD) from confocal 

images by training CNN models [49*]. The highest performing single and ensemble model 

achieved an AUC of 0.966 and 0.981, respectively.

Quantifying DES Features—Authors of two recent publications report CNN models 

based on SLP to detect and quantify surface keratopathy. A model by Su et al. that 

automatically quantified and staged keratopathy in DES patients achieved a 97% accuracy 

in detecting keratopathy [50]. Keratopathy quantification was correlated with clinical grade, 

but the model’s sensitivity and specificity of determining clinical grade from quantification 

did not achieve 80% for every grade. A model developed by Qu et al. achieved an AUC of 

0.940 and accuracy of 77% in grading keratopathy. The model’s automated grading scores 

had strong correlation with clinical grades of the images [51].

Other imaging modalities have been employed to quantify specific features of DES, for 

example the lower tear meniscus height (LTMH). A custom built AS-OCT was used by 

Stegmann et al. to train a CNN that quantified the LTMH [52]. Two approaches were tested: 

direct segmentation of the tear meniscus and segmentation localized to the region of interest. 

Both models had an accuracy, sensitivity, and specificity >93%. However, since images were 

obtained from a custom-built system, clinical translatability may be difficult. Another group 

trained a CNN on topography images to quantify the LTMH, which achieved a sensitivity 

and F1 score of 90% [53*]. Sub-basal corneal nerve fibers have also been quantified on 

confocal images [54]. The CNN model achieved an AUC of 0.96. Though this algorithm was 

not built specifically for DES, the authors propose that it could be applied to this population 

because nerve fiber length has been shown to be reduced in DES patients [55].

Many recent AI approaches have focused on quantifying MGD features by training models 

based on meibography images using both machine [56] and deep [57–60] learning methods 

with promising results.

Fuchs Endothelial Dystrophy

Fuchs endothelial dystrophy (FED) is the most prevalent form of corneal endothelial 

dystrophies. Hence, many advances in AI algorithms have focused on FED. The diagnosis 

of FED is typically performed by clinicians using slit lamp examination. However, many 

diagnostic tools are used for clinical staging including specular microscopy, OCT, and 

tomography to evaluate endothelial cell count, corneal thickness, corneal haze, and other 

features.

Detection of FED—Eleiwa et al. trained a CNN model to detect cases without clinically 

evident corneal edema (termed early-FED) using AS-OCT images and achieved high 

performance in differentiating early-FED, late-FED, and normal corneas (AUCs >0.97, 

sensitivities and specificities >91%) [61**]. Zéboulon et al. developed a CNN model to 
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differentiate corneal edema from normal eyes and eyes with other corneal conditions from 

AS-OCT images with high performance (AUROC=0.994, accuracy=99%) [62].

Quantifying FED features—Recent advances to measure FED features have focused on 

training models to quantify cell counting and morphologic characteristics from specular 

microscopy images. Shilpashree et al. trained a CNN model to segment endothelial 

cell density, coefficient of variation, and percentage of guttae with high performance 

(AUROC=0.967, accuracy=88%) [63*]. Analysis of specular microscopy images has also 

been performed to analyze cell counts after keratoplasty [64].

Multiple Cornea Conditions

AI algorithms have also been explored to detect and screen for multiple corneal conditions 

simultaneously. Elsawy et al. developed a DL algorithm using AS-OCT images to detect 

FED and KCN from normal eyes, which achieved an image classification accuracy of 

94% [65**]. The model had the highest performance for FED patients, followed by KCN, 

then healthy controls. The algorithm was expanded to include DES patients and achieved 

AUROCs >0.99 for diagnosing each corneal condition [66]. Two other studies used DL 

algorithms trained on SLP images to detect different corneal pathologies. Gu et al. trained 

a hierarchical DL framework to detect infectious keratitis, noninfectious keratitis, and other 

corneal conditions [67**]. The AUC for detecting each disease was >0.91 and performed on 

par or better than clinical diagnoses made by ophthalmologists. The other study combines a 

semantic segmentation annotation technique to improve the performance of a DL algorithm 

for detection of anterior segment pathologies [68**]. The model had an accuracy of 

differentiating normal from abnormal eyes of 100% and accuracy of 79–99% in diagnosing 

10 different pathological features.

CONCLUSION

There are limitations to the field of AI algorithm development. Trust will be critical 

for clinicians to use AI tools as there is a clear lack of standardization of reporting. 

Changing from “black box” to “clear box” AI methodologies are meant to build that trust. 

Methodology should be honed to prevent cross-contamination of groups (e.g., datasets split 

by patients, not by images) and variability in reporting results. Importantly, representation of 

all persons equitably in the datasets is needed to ameliorate inherent biases. Thought leaders 

have highlighted these limitations and are working on improving this burgeoning field to the 

benefit of science, medicine, and patient care [69].

Overall, this review shows the great promise to aid clinicians with algorithms developed to 

detect a specific corneal condition, to differentiate between types or stages of a condition, 

and to quantify features. However, most studies and datasets have been limited to single 

institutions or single healthcare systems. High performance of these algorithms should 

spur research teams to expand external datasets for training and testing in other patient 

populations. Another next logical step would be to pilot test algorithms for anterior 

segment diseases in clinical settings to learn implementation issues and to begin randomized 

controlled trials to test algorithm performance. Another key advance will be when datasets 

and algorithms and methods are made available open source. Ultimately, the reported AI 
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algorithms and tools in development for corneal conditions are helping us to understand 

disease pathogenesis, identify disease biomarkers, and develop novel treatments for corneal 

diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points:

• AI algorithms had high performance across corneal diseases.

• There was variable reporting of methodology, patient populations, and 

outcome metrics.

• As most algorithms were developed and tested within one institution, testing 

with other population data sets are needed to improve generalizability.
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