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Abstract

Purpose of review: Artificial intelligence has advanced rapidly in recent years and has provided
powerful tools to aid with the diagnosis, management, and treatment of ophthalmic diseases.

This article aims to review the most current clinical artificial intelligence applications in anterior
segment diseases, with an emphasis on microbial keratitis (MK), keratoconus, dry eye syndrome
(DES), and Fuchs endothelial dystrophy.

Recent findings: Most current artificial intelligence approaches have focused on developing
deep learning algorithms based on various imaging modalities. Algorithms have been developed
to detect and differentiate MK classes and quantify MK features. Artificial intelligence may

aid with early detection and staging of keratoconus. Many advances have been made to detect,
segment, and quantify features of DES and Fuchs. There is significant variability in the reporting
of methodology, patient population, and outcome metrics.

Summary: Artificial intelligence shows great promise in detecting, diagnosing, grading, and
measuring diseases. There is a need for standardization of reporting to improve the transparency,
validity, and comparability of algorithms.
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INTRODUCTION

Advances in artificial intelligence (Al) have generated novel insights and are transforming
screening, diagnosis, and treatment in various medical fields. Al in ophthalmology has
expanded significantly in the last decade. The eye community is well-positioned to create Al
strategies given the broad use of imaging tools in clinical practice and hence the availability
of codified data from imaging to numeric clinical parameters (e.g., visual acuity, intraocular
pressure, etc.). Image-based ophthalmic Al began by focusing on eye diseases involving the
posterior segment, such as macular degeneration, diabetic retinopathy, and glaucoma, due to
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the population prevalence and use of ophthalmic imaging in routine clinical practice [1-4].
This led to advances in medicine - the first autonomous Al-based diagnostic tool approved
by the Food and Drug Administration was for detecting diabetic retinopathy [5].

These advances have inspired Al development to address diagnostic and management
concerns for diseases of the anterior segment. Al algorithms for anterior segment conditions
have been reviewed in the past [6-14,13**]. This review article focuses on advancements in
the past eighteen months for the use of Al for corneal diseases.

METHODS

A literature search was conducted using PubMed and Scopus databases. The search

focused on studies involving the use of Al in screening, diagnosis, staging, or management
of corneal diseases, with special emphasis on microbial keratitis, keratoconus, dry eye
syndrome including meibomian gland dysfunction, and Fuchs endothelial dystrophy. Full
methods, inclusion, and exclusion criteria are found in Supplemental Material 1. Articles are
summarized into tabular format (Table 1).

Microbial Keratitis

Microbial keratitis (MK) is a leading cause worldwide of corneal opacification and resulting
vision impairment. Management of MK is complex due to delayed patient presentation,
unclear differentiation of the organism, lack of a staging system linked to outcomes, and
lack of quantified methods to evaluate healing (or non-healing) of MK to tailor management
appropriately. In addition, clinicians managing MK are rarely experts in this condition. As a
result, clinicians could benefit from Al software and tools that could help alleviate some of
the underlying uncertainties with detection, diagnosis, and management of MK.

Detection of MK—Primary detection of MK and differentiation of MK from other
conditions and normal eyes has been the focus of recent research. Li et al. optimized
pre-existing convolutional neural network (CNN) software to detect keratitis using slit lamp
photography (SLP) and smartphone photography [15*]. The best model detected MK with
an area under the curve (AUC) of 0.998 from normal eyes and other corneal conditions.
Tiwari et al. trained a CNN to differentiate MK ulceration from healed scars from external
photographs. The model was tested on internal (India) and external (United States) data
sets and achieved high performance (AUCs>0.94) [16**]. Xu et al. gathered SLP data from
89 corneal conditions including patients with MK subtypes to train a CNN model [17*].
Final overall accuracy was 80%, outperforming ophthalmologists reviewing imaging data,
but was variable when differentiating organism subtypes. Wang et al. also detected MK and
differentiated between organism types on a larger SLP dataset with reported AUC of 0.959
and improved accuracy when compared to clinicians [18].

Distinguishing Between MK Types—Eye clinicians recognize the complexity

of differentiating organism types causing MK. Organisms cause different, but often
overlapping, morphologic characteristics. The combination of organisms, patient
inflammatory responses, and circumstances of the infection, lead to clinical presentations
that make determination of the underlying organism difficult, even for cornea specialists
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[19]. Al algorithms have the potential to guide clinicians to aid point-of-care diagnosis.
Three recent studies expanded upon previous work [11] by testing CNN algorithms

to distinguish MK organisms. Koyama et al. trained models based on SLP images to
differentiate between bacterial, fungal, herpes simplex, and Acanthamoeba keratitis (BK,
FK, HSK, and AK, respectively) [20*]. The overall accuracy of multiclass diagnosis was
88% and >90% for differentiation of each organism subtype. However, another study, using
binary classification on external photography images, had lower accuracy for BK and FK
[21**]. The best performing CNN had an AUC of 0.81, 75% sensitivity to detect BK from
FK, and 81% sensitivity to detect FK from BK. Another study trained an ensemble CNN to
discriminate between BK and FK using SLP images with a sensitivity of 77% and F1 score
of 83% [22]. Other studies have reported performance below the recommended threshold of
80% sensitivity and/or 80% specificity [23—-25].

It is known that interpretation of confocal images requires expertise and time. Optimizing
CNN algorithms for confocal interpretation could aid clinicians. Lv et al. and Liu et al.
trained CNNSs on confocal images with and without FK [26*,27]. Both models showed high
performance with accuracies of 96% and 99.9%, respectively. The former research team
[26*] then used gradient-weighted class activation mapping to enhance evaluation helping to
identify fungal hyphae [28].

Quantifying MK Features—Evaluating MK severity and healing has been explored less
extensively. A recent publication for MK severity staging was performed with classical

[29] but not with machine learning (ML) methods. Our group has focused on quantifying
morphologic features of MK to aid MK staging and monitoring of features over time. We
used a de novo CNN architecture to quantify MK features on SLP imaging with promising
results [30]. That architecture was refined, and feature sizes were found to be correlated with
the patient’s visual acuity [31*].

Keratoconus

Keratoconus (KCN) is a prevalent corneal condition causing ectatic changes to the cornea.

The disease is progressive, and is often detected by and monitored with imaging, particularly
the early form of KCN called forme fruste KCN (ffKCN). The presence of imaging on many
patients with various stages of KCN makes it a primary target for Al algorithm development.

Detection of KCN—Several studies have aimed to detect KCN, ffKCN, and normal

eyes. Most studies trained models using corneal tomography images with promising results.
Al-Timemy et al. trained a hybrid-CNN deep learning (DL) model to identify features then
used to train a support vector machine to detect KCN [32]. The final model had a 92%
accuracy in differentiating normal from KCN eyes and 69% accuracy in differentiating
normal, suspected KCN, and KCN. Two studies used CNN models to differentiate normal,
ffKCN, and KCN eyes with high accuracy (99% [33], 95% [34]), while another successfully
detected KCN from normal and post-refractive eyes with 99% accuracy [35]. Finally, a study
used both tomography and optical coherence tomography (OCT) images to detect disease
with resulting high discrimination between normal and ffKCN (AUC=0.93) [36]. However,
implementing multimodality imaging in a clinical setting may prove difficult.
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Several studies focused specifically on detecting ffKCN, given the clinical need to detect
progression early so surgical interventions can be offered. Kuo et al. trained three CNN
models with topography images of normal, ffKCN, and KCN eyes with high performance
(AUC>0.95) [37]. Additionally, feature recognition was performed; the models identified
patterns of ffKCN including asymmetric bowtie, inferior steepening, and presence of a
central cone. Other studies have compared ML algorithms to detect ffKCN. Castro-Luna et
al. found that the random forest (RF) outperformed decision tree model (89% accuracy vs
71%, respectively) based on tomographic and biomechanical variables [38]. Cao et al. also
found the RF model outperformed other ML algorithms using tomographic and demographic
data [39], while Aatila et al. found the RF model to have the highest accuracy compared to
other ML models trained on anterior segment (AS)-OCT images in detecting all classes of
KCN including ffKCN [40].

Staging of KCN—Some studies have focused on staging KCN severity. Malyugin et al.
trained a ML model using tomography images and visual acuity to classify KCN stage
based on the Amsler-Krumeich classification system [41]. The model’s overall classification
accuracy was 97%, highest for stage 4 KCN and lowest for ffkKCN. Another study trained
an ensemble CNN on tomography measurements to differentiate between normal eyes and
early, moderate, and advanced KCN with a staging accuracy of 98% [42]. Two studies used
only topography images to detect and stage KCN [43*,44]. Both studies had high overall
accuracies (79% [43*] 93% [44]), with better performance on color-coded maps than the
raw topographic indices.

Progression of KCN—Other studies have focused on detecting KCN progression, though
each study had varying definitions of disease progression. The first study trained a CNN
model on AS-OCT images, which achieved a 79% accuracy in discriminating KCN with and
without progression [45*]. Analysis of the posterior elevation map had the highest accuracy
and pachymetry map had the lowest in detecting progression. Another study trained a model
to predict KCN progression and the need for corneal crosslinking using tomography maps
and patient age with an AUC of 0.814 [46]. Another group trained an unsupervised ML
model to predict need for keratoplasty using baseline OCT data and reported the normalized
likelihoods of receiving certain kinds of transplants; however, algorithm performance was
not reported [47]. Al may be able to aid clinicians in determining timing of interventions for
KCN.

Dry Eye Syndrome

Dry eye syndrome (DES) is a multifactorial disease of the ocular surface characterized by
the loss of homeostasis of the tear film. DES can be caused by many factors including
reduced tear production, increased evaporation of the tear film, or abnormalities of the
ocular surface. Diagnosing DES can be challenging due to a variety of signs and symptoms
and the low standardization of interpreting clinical tests. Diagnostic tests employed do not
always link to clinical symptom findings. As a result, development of Al algorithms for DES
is complicated by the difficulty in “ground truth” diagnosis of DES.

Curr Opin Ophthalmol. Author manuscript; available in PMC 2023 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kang et al.

Page 5

Detection of DES—Some recent Al studies have focused on detecting DES. Chase

et al. developed a CNN algorithm to detect DES using AS-OCT images with good
performance (accuracy=85%, sensitivity=86%, specificity=82%) [48**]. The model had a
significantly higher accuracy at detecting DES than corneal staining, conjunctival staining,
and Schirmer’s testing, but not Ocular Surface Disease Index or tear breakup time. Maruoka
et al. focused specifically on detecting meibomian gland dysfunction (MGD) from confocal
images by training CNN models [49*]. The highest performing single and ensemble model
achieved an AUC of 0.966 and 0.981, respectively.

Quantifying DES Features—Authors of two recent publications report CNN models
based on SLP to detect and quantify surface keratopathy. A model by Su et al. that
automatically quantified and staged keratopathy in DES patients achieved a 97% accuracy
in detecting keratopathy [50]. Keratopathy quantification was correlated with clinical grade,
but the model’s sensitivity and specificity of determining clinical grade from quantification
did not achieve 80% for every grade. A model developed by Qu et al. achieved an AUC of
0.940 and accuracy of 77% in grading keratopathy. The model’s automated grading scores
had strong correlation with clinical grades of the images [51].

Other imaging modalities have been employed to quantify specific features of DES, for
example the lower tear meniscus height (LTMH). A custom built AS-OCT was used by
Stegmann et al. to train a CNN that quantified the LTMH [52]. Two approaches were tested:
direct segmentation of the tear meniscus and segmentation localized to the region of interest.
Both models had an accuracy, sensitivity, and specificity >93%. However, since images were
obtained from a custom-built system, clinical translatability may be difficult. Another group
trained a CNN on topography images to quantify the LTMH, which achieved a sensitivity
and F1 score of 90% [53*]. Sub-basal corneal nerve fibers have also been quantified on
confocal images [54]. The CNN model achieved an AUC of 0.96. Though this algorithm was
not built specifically for DES, the authors propose that it could be applied to this population
because nerve fiber length has been shown to be reduced in DES patients [55].

Many recent Al approaches have focused on quantifying MGD features by training models
based on meibography images using both machine [56] and deep [57-60] learning methods
with promising results.

Fuchs Endothelial Dystrophy

Fuchs endothelial dystrophy (FED) is the most prevalent form of corneal endothelial
dystrophies. Hence, many advances in Al algorithms have focused on FED. The diagnosis
of FED is typically performed by clinicians using slit lamp examination. However, many
diagnostic tools are used for clinical staging including specular microscopy, OCT, and
tomography to evaluate endothelial cell count, corneal thickness, corneal haze, and other
features.

Detection of FED—Eleiwa et al. trained a CNN model to detect cases without clinically
evident corneal edema (termed early-FED) using AS-OCT images and achieved high
performance in differentiating early-FED, late-FED, and normal corneas (AUCs >0.97,
sensitivities and specificities >91%) [61**]. Zéboulon et al. developed a CNN model to
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differentiate corneal edema from normal eyes and eyes with other corneal conditions from
AS-OCT images with high performance (AUROC=0.994, accuracy=99%) [62].

Quantifying FED features—Recent advances to measure FED features have focused on
training models to quantify cell counting and morphologic characteristics from specular
microscopy images. Shilpashree et al. trained a CNN model to segment endothelial

cell density, coefficient of variation, and percentage of guttae with high performance
(AUROC=0.967, accuracy=88%) [63*]. Analysis of specular microscopy images has also
been performed to analyze cell counts after keratoplasty [64].

Multiple Cornea Conditions

Al algorithms have also been explored to detect and screen for multiple corneal conditions
simultaneously. Elsawy et al. developed a DL algorithm using AS-OCT images to detect
FED and KCN from normal eyes, which achieved an image classification accuracy of

94% [65**]. The model had the highest performance for FED patients, followed by KCN,
then healthy controls. The algorithm was expanded to include DES patients and achieved
AUROCs >0.99 for diagnosing each corneal condition [66]. Two other studies used DL
algorithms trained on SLP images to detect different corneal pathologies. Gu et al. trained
a hierarchical DL framework to detect infectious keratitis, noninfectious keratitis, and other
corneal conditions [67**]. The AUC for detecting each disease was >0.91 and performed on
par or better than clinical diagnoses made by ophthalmologists. The other study combines a
semantic segmentation annotation technique to improve the performance of a DL algorithm
for detection of anterior segment pathologies [68**]. The model had an accuracy of
differentiating normal from abnormal eyes of 100% and accuracy of 79-99% in diagnosing
10 different pathological features.

CONCLUSION

There are limitations to the field of Al algorithm development. Trust will be critical

for clinicians to use Al tools as there is a clear lack of standardization of reporting.
Changing from “black box” to “clear box™ Al methodologies are meant to build that trust.
Methodology should be honed to prevent cross-contamination of groups (e.g., datasets split
by patients, not by images) and variability in reporting results. Importantly, representation of
all persons equitably in the datasets is needed to ameliorate inherent biases. Thought leaders
have highlighted these limitations and are working on improving this burgeoning field to the
benefit of science, medicine, and patient care [69].

Overall, this review shows the great promise to aid clinicians with algorithms developed to
detect a specific corneal condition, to differentiate between types or stages of a condition,
and to quantify features. However, most studies and datasets have been limited to single
institutions or single healthcare systems. High performance of these algorithms should

spur research teams to expand external datasets for training and testing in other patient
populations. Another next logical step would be to pilot test algorithms for anterior

segment diseases in clinical settings to learn implementation issues and to begin randomized
controlled trials to test algorithm performance. Another key advance will be when datasets
and algorithms and methods are made available open source. Ultimately, the reported Al
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algorithms and tools in development for corneal conditions are helping us to understand
disease pathogenesis, identify disease biomarkers, and develop novel treatments for corneal
diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points:
. Al algorithms had high performance across corneal diseases.
. There was variable reporting of methodology, patient populations, and
outcome metrics.
. As most algorithms were developed and tested within one institution, testing

with other population data sets are needed to improve generalizability.
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