Table 1.
Authors, Year | AI Method | Study Population | Outcome Measure | Imaging Modality | Number of Images | Number of Patients | Demographics Reported | Algorithm Results |
---|---|---|---|---|---|---|---|---|
Microbial Keratitis | ||||||||
Li et al., 2021 [15] | CNN | MK, controls | MK detection | SLP, External Photography | 13,557 | 7,988 | Complete | AUC 0.998, Sens 98%, Spec 98%* |
Tiwari et al., 2022 [16] | CNN | MK, controls | MK detection | External Photography | 1,445 | 1,445 | Partial | Internal set (India): AUC 0.973, Sens 94%, Spec 84% External set (US): AUC 0.947, Sens 78%, Spec 91% |
Lv et al., 2020 [26] | CNN | FK, controls | FK detection | Confocal | 2,623 | NR | NR | AUC 0.988, Acc 96%, Sens 92%, Spec 98% |
Xu et al., 2021 [28] | CNN | BK, FK | FK detection | Confocal | 1,089 | 35 | NR | AUROC 0.983, Acc 97%, Sens 94%, Spec 98% |
Liu et al., 2020 [27] | CNN | FK, controls | FK detection | Confocal | 1,213 | NR | NR | Acc 99.9% |
Xu et al., 2021 [17] | CNN | MK, controls | MK detection Differentiate MK subtypes |
SLP | 2,284 | 867 | NR | Acc 80%, 53%, 83%, and 93% for overall, BK, FK, and HSK |
Wang et al., 2021 [18] | CNN | MK, controls | MK detection Differentiate MK subtypes |
SLP | 5,673 | 3,320 | Complete | AUC 0.959 |
Koyama et al., 2021 [20] | CNN | MK | Differentiate MK subtypes | SLP | 4,306 | 362 | Complete | Acc 88% |
Hung et al., 2021 [25] | CNN | BK, FK | Differentiate MK subtypes | SLP | 1,330 | 580 | Complete | AUC 0.85, Sens range 26 – 66%, Spec range 80 – 96%, BK Acc range 80 – 96%, FK Acc range 26 – 66% |
Redd et al., 2022 [21] | CNN | BK, FK | Differentiate MK subtypes | External Photography | 980 | 980 | Complete | AUC 0.83 |
Ghosh et al., 2021 [22] | CNN | BK, FK | Differentiate MK subtypes | SLP | 2,167 | 194 | NR | Sens 77%, F1 score 83% |
Kuo et al., 2020 [24] | CNN | MK | Differentiate FK from other MK | SLP | 288 | 288 | NR | AUC 0.65 |
Kuo et al., 2021 [23] | CNN | MK | Differentiate BK from other MK | External Photography | 1,512 | 1,512 | NR | Sens 74%, Spec 64% |
Loo et al., 2021 [30] | CNN | MK | MK feature quantification | SLP | 266 | 133 | NR | DSC range 0.62 – 0.95 |
Loo et al., 2021 [31] | CNN | MK | Visual Acuity | SLP | 152 | 76 | Complete | r = 0.84 |
Keratoconus | ||||||||
Kuo et al., 2020 [37] | CNN | KCN, ffKCN, controls | KCN detection | Corneal Topography | 354 | 206 | NR | AUROC 0.995, Acc 96%, Sens 94%, Spec 97% |
Cao et al., 2020 [39] | ML | ffKCN, controls | KCN detection | Corneal Tomography | NR | 88 | Partial | AUC 0.96, Acc 87%, Sens 88%, Spec 85% |
Castro-Luna et al., 2021 [38] | ML | ffKCN, controls | KCN detection | Corneal Tomography, Tonometry | NR | 81 | Partial | Acc 89%, Sens 86%, Spec 93% |
Al-Timemy et al., 2021. [32] | Hybrid DL - CNN | KCN, controls | KCN detection | Corneal Tomography | 4,844 | 365 | Partial | Normal vs KCN: AUC 0.99, Acc 92% Normal vs KCN vs suspected KCN: AUC 0.81, Acc 69% |
Zéboulon et al., 2020 [35] | Hybrid ML - CNN | KCN, controls | KCN detection | Corneal Topography | 3,000 | 3,000 | Complete | Overall Acc: 99.3% Detection of KCN: Sens 100%, Spec 100% |
Aatila et al., 2021 [40] | ML | KCN, ffKCN, controls | KCN detection, staging | AS-OCT | 12,242 | NR | NR | Diagnostic Acc 98% Staging Acc 95% |
Ghaderi et al., 2021 [42] | CNN | KCN, controls | KCN detection, staging | Corneal Tomography | NR | 450 eyes | Partial | Detection: Acc 98%, Sens 99%, Spec 96% Staging: Acc 98%, Sens 99%, Spec 99% |
Feng et al., 2021 [34] | CNN | KCN, ffKCN, controls | KCN detection, staging | Corneal Tomography | 854 | 854 | Complete | Acc 95% |
Abdelmotaal et al., 2020 [33] | CNN | KCN, ffKCN, controls | KCN detection, staging | Corneal Tomography | 3,218 | 1,619 | Partial | Normal: Acc 99%, Sens 99%, Spec 99% Subclinical KCN: Acc 99%, Sens 99%, Spec 99% KCN: Acc 100%, Sens 100%, Spec 100% |
Shi et al., 2020 [36] | ML | KCN, ffKCN, controls | KCN detection, staging | Corneal Tomography, OCT | NR | 121 eyes | NR | Normal vs ffKCN: AUC 0.93, Sens 99%, Spec 95% Normal vs KCN: AUC 1.0, Sens 100%, Spec 100% |
Kamiya et al., 2021 [43] | CNN | KCN, controls | KCN detection, staging | Corneal Topography | 519 | 519 eyes | Partial | Detection: Acc 97%, Sens 99%, Spec 94% Classification: AUC 0.888 – 0.997, Acc 79% |
Chen et al., 2021 [44] | CNN | KCN, controls | KCN detection, staging | Corneal Tomography | 1,926 | 1,836 | NR | AUC range 0.82 – 0.91, Acc rage 85 – 99%, Sens range 69 – 99%, Spec range 80 – 94% |
Malyugin et al., 2021 [41] | ML | KCN, controls | KCN detection, staging | Corneal Tomography | NR | 852 eyes | NR | Overall AUC: 0.97 AUC by KCN stage: Normal 0.98, preclinical KCN 0.95, Stage 1 0.96, Stage 2 0.97, Stage 3 0.97, Stage 4 1.0 |
Kamiya et al., 2021 [45] | DL | KCN | KCN progression | AS-OCT | NR | 218 | NR | Acc 79% |
Kato et al., 2021 [46] | CNN | KCN | KCN progression | Corneal Tomography | 274 | 158 | Complete | AUC 0.81, Sens 78%, Spec 70% |
Yousefi et al., 2020 [47] | ML | KCN, controls | KCN progression | AS-OCT | 12,242 | 3,162 | Complete | Normalized likelihood of need for keratoplasty for clusters 1–5: 2%, 1%, 33%, 33%, 31% |
Dry Eye Syndrome | ||||||||
Chase et al., 2021 [48] | CNN | DES, control | DES detection | AS-OCT | 27,180 | 91 | Partial | Acc 85%, Sens 86%, Spec 82% |
Su et al., 2020 [50] | CNN | SPK, control | SPK detection, grading | SLP | 10,468** | 101 | NR | SPK detection: Acc 97% Grading threshold: Sens 97%, Spec 79% |
Qu et al., 2021 [51] | CNN | SPK, control | SPK detection, grading | SLP | 763 | NR | NR | AUROC 0.940, Acc 77% |
Stegmann et al., 2020 [52] | CNN | control | Tear meniscus segmentation | Custom OCT | 6,658 | 10 | Complete | Sens 96%, Spec 99.9% |
Deng et al., 2021 [53] | CNN | NR | Tear meniscus segmentation, quantification | Corneal Topography | 485 | 217 | Complete | Segmentation: Sens 90%, F1 score 90% Quantification: r = 0.97 (p < 0.001) |
Wei et al., 2021 [54] | CNN | NR | Corneal nerve fiber segmentation | Confocal | 691 | 104 | NR | AUC 0.96, Sens 96%, Spec 75% |
Maruoka et al., 2020 [49] | CNN | MGD, control | MGD detection | Confocal | 221 | 221 | Complete | Single model: AUC 0.966, Sens 94%, Spec 82% Ensemble model: AUC 0.981, Sens 92%, Spec 99% |
Yeh et al., 2021 [56] | ML | MGD, control | MGD quantification, grading | Corneal Topography | 706 | 576 | Complete | Acc 81% |
Wang et al., 2021 [57] | DL | NR | MGD segmentation | Corneal Topography | 1,443 | 475 | Complete | Segmenting MG (upper, lower): Sens 54%, Sens 74% Identifying ghost glands: Sens 84%, Spec 72% |
Setu et al., 2021 [58] | CNN | NR | MGD segmentation | Corneal Topography | 728 | NR | NR | AUROC 0.96, Sens 81%, F1 score 84% |
Khan et al., 2021 [60] | CGAN | MGD | MGD segmentation | Corneal Topography | 112 | 112 | Partial | MG segmentation: F1 score 83% MG dropout grading: r = 0.962, p < 0.001 |
Prabhu et al., 2020 [59] | CNN | MGD, control | MGD segmentation, quantification | Corneal Topography, Prototype handheld camera | 800 | NR | NR | p - values > 0.005 for all metrics between CNN and manual |
Fuchs Endothelial Dystrophy | ||||||||
Eleiwa et al., 2020 [61] | CNN | FED, control | FED detection | AS-OCT | 18,720 | 81 | Complete | Early-stage FED: AUC 0.997, Sens 91%, Spec 97% Late-stage FED: AUC 0.974, Sens up to 100%, Spec 92% Healthy vs. all FED: AUC 0.998, Sens 99%, Spec 98% |
Zéboulon et al., 2021 [62] | CNN | Edema, control | Edema detection | AS-OCT | 806 | 110 | Partial | AUROC 0.994, Acc 99%, Sens 96%, Spec 100% |
Shilpashree et al., 2021 [63] | CNN | FED, control | FED segmentation, quantification | Specular Microscopy | 2,246 | 130 | Complete | AUROC 0.967, Acc of 88%, F1 score 82% |
Vigueras-Guillén et al., 2020 [64] | CNN | FED, control | FED segmentation, quantification | Specular Microscopy | 783 | 141 | Partial | CNN: able to estimate parameters in 98% of images; percentage error 2.5% - 5.7% Specular Microscopy: able to estimate parameters in in 31 – 72% of images; percentage error 7.5% - 18.3% |
Multiple Cornea Conditions | ||||||||
Elsawy et al., 2021 [65] | DL | FED, KCN, controls | Multi-disease diagnosis | AS-OCT | 16,721 | 258 | NR | FED: AUC 1.0, Sens 94%, Spec 100% KCN: AUC 0.95, Sens 94%, Spec 94% Healthy: AUC 0.93, Sens 91%, Spec 95% |
Elsawy et al., 2021 [66] | CNN | FED, KCN, DES, controls | Multi-disease diagnosis | AS-OCT | 158,220 | 478 | Complete | FED: AUC 1.0, F1 score 100% KCN: AUC 0.99, F1 score 98% DES: AUC 0.99, F1 score 90% Healthy: AUC 0.98, F1 score 93% |
Gu et al., 2020 [67] | DL | MK, noninfectious keratitis, corneal dystrophy, surface neoplasm, cataract, controls | Multi-disease diagnosis | SLP | 5,835 | ≥ 510 *** | NR | Retrospective data set: AUC range 0.903 – 0.951 Prospective data set: AUC > 0.91 |
Li et al., 2020 [68] | DL | Keratitis; pterygium; conjunctival hyperemia, hemorrhage, edema; cataract | Multi-disease diagnosis | SLP | 1,772 | NR | Partial | Acc range 79 – 99%, Sens range 53 – 99%, Spec range 85 – 99% |
Acc, accuracy; AK, acanthamoeba keratitis; ANN, artificial neural network; AS-OCT, Anterior segment optical coherence tomography; AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; BK, bacterial keratitis; CGAN, conditional generative adversarial network; CNN, convolutional neural network; DES, dry eye syndrome; DL, deep learning; DSC, Dice similarity coefficient; ffKCN, forme fruste keratoconus; FK, fungal keratitis; HSV, herpes simplex virus keratitis; KCN, keratoconus; MGD meibomian glad dysfunction; MK, microbial keratitis; ML, machine learning; NR, not reported; Sens, sensitivity; SLP, slit lamp photography; Spec, specificity; SPK, superficial punctate keratitis; r, Pearson correlation coefficient, UHR-OCT, Ultra-high-resolution optical coherence tomography; VK, Viral keratitis.
Multiple algorithms testing different outcome measures and in different datasets.
Number of original images, study augmented images to increase number for final data set.
Number of patients partially reported.