Skip to main content
. Author manuscript; available in PMC: 2023 Sep 1.
Published in final edited form as: Curr Opin Ophthalmol. 2022 Jul 12;33(5):407–417. doi: 10.1097/ICU.0000000000000885

Table 1.

Summary of reviewed articles.

Authors, Year AI Method Study Population Outcome Measure Imaging Modality Number of Images Number of Patients Demographics Reported Algorithm Results
Microbial Keratitis
Li et al., 2021 [15] CNN MK, controls MK detection SLP, External Photography 13,557 7,988 Complete AUC 0.998, Sens 98%, Spec 98%*
Tiwari et al., 2022 [16] CNN MK, controls MK detection External Photography 1,445 1,445 Partial Internal set (India): AUC 0.973, Sens 94%, Spec 84%
External set (US): AUC 0.947, Sens 78%, Spec 91%
Lv et al., 2020 [26] CNN FK, controls FK detection Confocal 2,623 NR NR AUC 0.988, Acc 96%, Sens 92%, Spec 98%
Xu et al., 2021 [28] CNN BK, FK FK detection Confocal 1,089 35 NR AUROC 0.983, Acc 97%, Sens 94%, Spec 98%
Liu et al., 2020 [27] CNN FK, controls FK detection Confocal 1,213 NR NR Acc 99.9%
Xu et al., 2021 [17] CNN MK, controls MK detection
Differentiate MK subtypes
SLP 2,284 867 NR Acc 80%, 53%, 83%, and 93% for overall, BK, FK, and HSK
Wang et al., 2021 [18] CNN MK, controls MK detection
Differentiate MK subtypes
SLP 5,673 3,320 Complete AUC 0.959
Koyama et al., 2021 [20] CNN MK Differentiate MK subtypes SLP 4,306 362 Complete Acc 88%
Hung et al., 2021 [25] CNN BK, FK Differentiate MK subtypes SLP 1,330 580 Complete AUC 0.85, Sens range 26 – 66%, Spec range 80 – 96%, BK Acc range 80 – 96%, FK Acc range 26 – 66%
Redd et al., 2022 [21] CNN BK, FK Differentiate MK subtypes External Photography 980 980 Complete AUC 0.83
Ghosh et al., 2021 [22] CNN BK, FK Differentiate MK subtypes SLP 2,167 194 NR Sens 77%, F1 score 83%
Kuo et al., 2020 [24] CNN MK Differentiate FK from other MK SLP 288 288 NR AUC 0.65
Kuo et al., 2021 [23] CNN MK Differentiate BK from other MK External Photography 1,512 1,512 NR Sens 74%, Spec 64%
Loo et al., 2021 [30] CNN MK MK feature quantification SLP 266 133 NR DSC range 0.62 – 0.95
Loo et al., 2021 [31] CNN MK Visual Acuity SLP 152 76 Complete r = 0.84
Keratoconus
Kuo et al., 2020 [37] CNN KCN, ffKCN, controls KCN detection Corneal Topography 354 206 NR AUROC 0.995, Acc 96%, Sens 94%, Spec 97%
Cao et al., 2020 [39] ML ffKCN, controls KCN detection Corneal Tomography NR 88 Partial AUC 0.96, Acc 87%, Sens 88%, Spec 85%
Castro-Luna et al., 2021 [38] ML ffKCN, controls KCN detection Corneal Tomography, Tonometry NR 81 Partial Acc 89%, Sens 86%, Spec 93%
Al-Timemy et al., 2021. [32] Hybrid DL - CNN KCN, controls KCN detection Corneal Tomography 4,844 365 Partial Normal vs KCN: AUC 0.99, Acc 92%
Normal vs KCN vs suspected KCN: AUC 0.81, Acc 69%
Zéboulon et al., 2020 [35] Hybrid ML - CNN KCN, controls KCN detection Corneal Topography 3,000 3,000 Complete Overall Acc: 99.3%
Detection of KCN: Sens 100%, Spec 100%
Aatila et al., 2021 [40] ML KCN, ffKCN, controls KCN detection, staging AS-OCT 12,242 NR NR Diagnostic Acc 98%
Staging Acc 95%
Ghaderi et al., 2021 [42] CNN KCN, controls KCN detection, staging Corneal Tomography NR 450 eyes Partial Detection: Acc 98%, Sens 99%, Spec 96%
Staging: Acc 98%, Sens 99%, Spec 99%
Feng et al., 2021 [34] CNN KCN, ffKCN, controls KCN detection, staging Corneal Tomography 854 854 Complete Acc 95%
Abdelmotaal et al., 2020 [33] CNN KCN, ffKCN, controls KCN detection, staging Corneal Tomography 3,218 1,619 Partial Normal: Acc 99%, Sens 99%, Spec 99%
Subclinical KCN: Acc 99%, Sens 99%, Spec 99%
KCN: Acc 100%, Sens 100%, Spec 100%
Shi et al., 2020 [36] ML KCN, ffKCN, controls KCN detection, staging Corneal Tomography, OCT NR 121 eyes NR Normal vs ffKCN: AUC 0.93, Sens 99%, Spec 95%
Normal vs KCN: AUC 1.0, Sens 100%, Spec 100%
Kamiya et al., 2021 [43] CNN KCN, controls KCN detection, staging Corneal Topography 519 519 eyes Partial Detection: Acc 97%, Sens 99%, Spec 94%
Classification: AUC 0.888 – 0.997, Acc 79%
Chen et al., 2021 [44] CNN KCN, controls KCN detection, staging Corneal Tomography 1,926 1,836 NR AUC range 0.82 – 0.91, Acc rage 85 – 99%, Sens range 69 – 99%, Spec range 80 – 94%
Malyugin et al., 2021 [41] ML KCN, controls KCN detection, staging Corneal Tomography NR 852 eyes NR Overall AUC: 0.97
AUC by KCN stage: Normal 0.98, preclinical KCN 0.95, Stage 1 0.96, Stage 2 0.97, Stage 3 0.97, Stage 4 1.0
Kamiya et al., 2021 [45] DL KCN KCN progression AS-OCT NR 218 NR Acc 79%
Kato et al., 2021 [46] CNN KCN KCN progression Corneal Tomography 274 158 Complete AUC 0.81, Sens 78%, Spec 70%
Yousefi et al., 2020 [47] ML KCN, controls KCN progression AS-OCT 12,242 3,162 Complete Normalized likelihood of need for keratoplasty for clusters 1–5: 2%, 1%, 33%, 33%, 31%
Dry Eye Syndrome
Chase et al., 2021 [48] CNN DES, control DES detection AS-OCT 27,180 91 Partial Acc 85%, Sens 86%, Spec 82%
Su et al., 2020 [50] CNN SPK, control SPK detection, grading SLP 10,468** 101 NR SPK detection: Acc 97%
Grading threshold: Sens 97%, Spec 79%
Qu et al., 2021 [51] CNN SPK, control SPK detection, grading SLP 763 NR NR AUROC 0.940, Acc 77%
Stegmann et al., 2020 [52] CNN control Tear meniscus segmentation Custom OCT 6,658 10 Complete Sens 96%, Spec 99.9%
Deng et al., 2021 [53] CNN NR Tear meniscus segmentation, quantification Corneal Topography 485 217 Complete Segmentation: Sens 90%, F1 score 90%
Quantification: r = 0.97 (p < 0.001)
Wei et al., 2021 [54] CNN NR Corneal nerve fiber segmentation Confocal 691 104 NR AUC 0.96, Sens 96%, Spec 75%
Maruoka et al., 2020 [49] CNN MGD, control MGD detection Confocal 221 221 Complete Single model: AUC 0.966, Sens 94%, Spec 82%
Ensemble model: AUC 0.981, Sens 92%, Spec 99%
Yeh et al., 2021 [56] ML MGD, control MGD quantification, grading Corneal Topography 706 576 Complete Acc 81%
Wang et al., 2021 [57] DL NR MGD segmentation Corneal Topography 1,443 475 Complete Segmenting MG (upper, lower): Sens 54%, Sens 74%
Identifying ghost glands: Sens 84%, Spec 72%
Setu et al., 2021 [58] CNN NR MGD segmentation Corneal Topography 728 NR NR AUROC 0.96, Sens 81%, F1 score 84%
Khan et al., 2021 [60] CGAN MGD MGD segmentation Corneal Topography 112 112 Partial MG segmentation: F1 score 83%
MG dropout grading: r = 0.962, p < 0.001
Prabhu et al., 2020 [59] CNN MGD, control MGD segmentation, quantification Corneal Topography, Prototype handheld camera 800 NR NR p - values > 0.005 for all metrics between CNN and manual
Fuchs Endothelial Dystrophy
Eleiwa et al., 2020 [61] CNN FED, control FED detection AS-OCT 18,720 81 Complete Early-stage FED: AUC 0.997, Sens 91%, Spec 97%
Late-stage FED: AUC 0.974, Sens up to 100%, Spec 92%
Healthy vs. all FED: AUC 0.998, Sens 99%, Spec 98%
Zéboulon et al., 2021 [62] CNN Edema, control Edema detection AS-OCT 806 110 Partial AUROC 0.994, Acc 99%, Sens 96%, Spec 100%
Shilpashree et al., 2021 [63] CNN FED, control FED segmentation, quantification Specular Microscopy 2,246 130 Complete AUROC 0.967, Acc of 88%, F1 score 82%
Vigueras-Guillén et al., 2020 [64] CNN FED, control FED segmentation, quantification Specular Microscopy 783 141 Partial CNN: able to estimate parameters in 98% of images; percentage error 2.5% - 5.7%
Specular Microscopy: able to estimate parameters in in 31 – 72% of images; percentage error 7.5% - 18.3%
Multiple Cornea Conditions
Elsawy et al., 2021 [65] DL FED, KCN, controls Multi-disease diagnosis AS-OCT 16,721 258 NR FED: AUC 1.0, Sens 94%, Spec 100%
KCN: AUC 0.95, Sens 94%, Spec 94%
Healthy: AUC 0.93, Sens 91%, Spec 95%
Elsawy et al., 2021 [66] CNN FED, KCN, DES, controls Multi-disease diagnosis AS-OCT 158,220 478 Complete FED: AUC 1.0, F1 score 100%
KCN: AUC 0.99, F1 score 98%
DES: AUC 0.99, F1 score 90%
Healthy: AUC 0.98, F1 score 93%
Gu et al., 2020 [67] DL MK, noninfectious keratitis, corneal dystrophy, surface neoplasm, cataract, controls Multi-disease diagnosis SLP 5,835 ≥ 510 *** NR Retrospective data set: AUC range 0.903 – 0.951
Prospective data set: AUC > 0.91
Li et al., 2020 [68] DL Keratitis; pterygium; conjunctival hyperemia, hemorrhage, edema; cataract Multi-disease diagnosis SLP 1,772 NR Partial Acc range 79 – 99%, Sens range 53 – 99%, Spec range 85 – 99%

Acc, accuracy; AK, acanthamoeba keratitis; ANN, artificial neural network; AS-OCT, Anterior segment optical coherence tomography; AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; BK, bacterial keratitis; CGAN, conditional generative adversarial network; CNN, convolutional neural network; DES, dry eye syndrome; DL, deep learning; DSC, Dice similarity coefficient; ffKCN, forme fruste keratoconus; FK, fungal keratitis; HSV, herpes simplex virus keratitis; KCN, keratoconus; MGD meibomian glad dysfunction; MK, microbial keratitis; ML, machine learning; NR, not reported; Sens, sensitivity; SLP, slit lamp photography; Spec, specificity; SPK, superficial punctate keratitis; r, Pearson correlation coefficient, UHR-OCT, Ultra-high-resolution optical coherence tomography; VK, Viral keratitis.

*

Multiple algorithms testing different outcome measures and in different datasets.

**

Number of original images, study augmented images to increase number for final data set.

***

Number of patients partially reported.