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Abstract

No anti-cocaine addiction drugs have been approved by the Food and Drug Administration despite 

decades of effort. The main challenge is the intricate molecular mechanisms of cocaine addiction, 

involving synergistic interactions among proteins upstream and downstream of the dopamine 

transporter. However, it is difficult to study so many proteins with traditional experiments, 

highlighting the need for innovative strategies in the field. We propose a proteome-informed 

machine learning (ML) platform for discovering nearly optimal anti-cocaine addiction lead 

compounds. We analyze proteomic protein–protein interaction networks for cocaine dependence 

to identify 141 involved drug targets and build 32 ML models for cross-target analysis of more 

than 60,000 drug candidates or experimental drugs for side effects and repurposing potentials. 

We further predict their ADMET (absorption, distribution, metabolism, excretion, and toxicity) 

properties. Our platform reveals that essentially all of the existing drug candidates fail in our cross-

target and ADMET screenings but identifies several nearly optimal leads for further optimization.
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Graphical Abstract

Substance use disorders (SUD) involving alcohol, opioids, cocaine, etc., adversely affect 

a growing population of individuals and families worldwide, constituting a significant 

socioeconomic burden with increasing medical expenses and crime. Psychostimulants, 

especially cocaine, account for a large portion of SUD and impact millions of lives. In 

the United States alone, among the 70,630 SUD-related deaths in 2019, 15,883 were due 

to cocaine addiction. The hazard from cocaine addiction and subsequent mortality calls 

for effective medications. However, currently no cocaine addiction medications have been 

approved by the U.S. Food and Drug Administration (FDA).1

The psychotropic properties of cocaine primarily derive from blocking the dopamine 

transporter (DAT). Specifically, cocaine blocks DAT and prevents dopamine reuptake from 

the synaptic cleft into the presynaptic axon terminal. As a result, a higher dopamine level 

in the synaptic cleft promotes the activation of dopamine receptors in the postsynaptic 

neuron, which generates euphoria and arousal.2 Among these dopamine receptors, the D3 

dopamine receptor (D3R) plays a critical role in the reward and addiction of cocaine because 

the population of D3R in the mesolimbic reward system is large.3 Therefore, D3R may 

be an important target for treating cocaine addiction. Among other dopamine receptors, 

D1R and D2R are the most abundant in the brain. D1R along with other D1-like receptors 

stimulates intracellular cyclic adenosine monophosphate (cAMP) levels.4 The functions of 

D1-like receptors are to regulate the growth of neurons, some D2R-mediated events, and 

other behaviors.5 D2R, D3R, and D4R belong to the group of D2-like receptors and inhibit 

intracellular cAMP levels. D2R intimately joins in the circuitry of motor control, and it is the 

main target of most antipsychotic drugs.6 D4R relates to many neurological and psychiatric 

conditions,7 including schizophrenia and bipolar disorder, attention deficit hyperactivity 

disorder (ADHD), addictive behaviors, Parkinson’s disease, and eating disorders such as 

anorexia nervosa. Some studies also suggest that D1R, D2R, and D4R are involved in the 

changes of locomotor activity induced by cocaine and other psychostimulants.8

Cocaine also blocks the serotonin transporter and norepinephrine transporter, inhibiting the 

reuptake of serotonin and norepinephrine and thus increasing the level of the activation 

of serotonin and norepinephrine receptors. Additionally, cocaine exposure could regulate 
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opioid receptors and endogenous opioid peptides9 and may also affect the selection of 

G-protein versus β-arrestin pathways.10,11 Repeated use of psychostimulants alters gene 

expression throughout the brain, including in the nucleus accumbens, a critical center for 

reward processing. Frequent cocaine exposure increases the level of expression of the 

transcription factor ΔFosB and brain-derived neurotrophic factor (BDNF), which in turn 

regulate gene expression to alter both dendritic and synaptic morphology and function in the 

nucleus accumbens and prefrontal cortex,12 likely driving the long-term compulsion for drug 

seeking and taking that underlies addiction.13

Currently, experimental medications against cocaine addiction mainly target DAT and D3R.1 

(1) Atypical DAT inhibitors are studied widely. While cocaine and its analogues (typical 

DAT inhibitors) bind and stabilize outward-facing conformations of DAT,14 atypical DAT 

inhibitors stabilize inward-facing conformations of DAT upon their binding. DAT with an 

inward-facing conformation is much harder for cocaine to bind (an approximate 100-fold 

loss of the potency of cocaine for the inward-facing conformation compared with that of 

the outward-facing conformation).14,15 In other words, even binding affinities (BAs) for 

DAT are weaker than that of cocaine, and the pretreatment by atypical inhibitors can still 

prevent DAT from being blocked by cocaine. More importantly, atypical DAT inhibitors do 

not induce cocaine-like behaviors or addiction.15 (2) Another promising approach against 

cocaine addiction involves D3R antagonists and/or partial agonists. D3R antagonists could 

effectively attenuate the motivation to earn psychostimulants and reduce relapse-related 

behaviors. D3R partial agonists not only can functionally block the effect of cocaine 

addiction but also can elicit the partial activation of their receptor targets under abstinence 

conditions and thus potentially mitigate withdrawal effects.16

In addition to potency, the safety of cocaine addiction treatments must be carefully 

evaluated. One dangerous side-effect target for drug addiction treatments is the human 

ether-ago-go (hERG) potassium channel, which could incur adverse side effects and even 

death. hERG generates the delayed rectifying potassium current. When a compound inhibits 

the hERG channel, it interferes with potassium current, prolongs the QT interval, and 

results in torsades de pointes (TdP), a potentially lethal ventricular tachycardia.17 Thus, 

hERG poses a serious challenge to drug development because it can easily attract small 

compounds, especially those with protonatable amines and aromatic groups, a hallmark of 

many neurotransmitter transport inhibitors and GPCR ligands.18 The hERG blockade was a 

popular reason for drug withdrawals in the 1990s and early 2000s. Therefore, in early 2000, 

the FDA included the hERG side effect in their updated regulations: the TdP liability of drug 

candidates must be evaluated in vivo or in vitro in phase 1 clinical trials.19

The mechanism of cocaine addiction is very complicated, involving far more targets than 

DAT, D3R, and hERG. All of the proteins upstream and downstream of DAT functions 

could be impacted by cocaine, which covers a large number of proteins and interactions 

as shown in Figure 1a. On one hand, these proteins can become potential treatment targets 

for cocaine addiction. On the other hand, blocking these proteins also probably brings 

cocaine-like symptoms or other severe off-target effects. Therefore, these proteins could 

be critical sources of side effects. Thus, we need to systematically investigate potential 
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compounds that inhibit different cocaine addiction targets, as well as the putative side effects 

from agents blocking these targets.

One method for systematically unveiling potential treatment and critical side-effect targets is 

to examine sizable protein–protein interaction (PPI) networks on the proteome scale. A PPI 

network accounts for not only direct (physical and chemical) interactions but also indirect 

(functional) association,20 in which a connection represents two proteins jointly contributing 

to a specific biological function even without direct physical or chemical interaction. As a 

result, a proteomic PPI network is a suitable tool for systematically searching a large number 

of proteins relating to a specific disease, providing a “pool” of potential treatments and 

critical side-effect targets, such as cocaine addiction in this work. The String v11 database 

collects a large number of protein–protein interactions involving a total of 24,584,628 

proteins from 5090 organisms..20 One can extract the large-scale PPI network for a specific 

human protein from String.

Traditional in vivo or in vitro experiments are too time-consuming and expensive to test all 

of the proteins in a proteomic PPI network efficiently. Additionally, large-scale experiments 

on animals could raise important ethical concerns. For large-scale assays, machine learning/

deep learning (ML/DL) technologies are promising, at least for initial evaluation and 

screening. ML/DL technologies have been widely applied at different stages of drug design 

and discovery.21 ML/DL could help to predict drug potency,21 repurpose existing drugs 

to new diseases,22 and even generate new druglike compounds for further screening.23 

ML/DL methods have also been established for the lead optimization of various druggable 

properties,24,25 including solubility, partition coefficient, toxicity, pharmacokinetics, and 

pharmacodynamics. These technologies could largely reduce the need for time-consuming 

and expensive experiments and thus accelerate drug discovery, significantly benefiting 

human health and welfare.

In this work, we designed a proteome-informed ML/DL workflow to discover nearly optimal 

anti-cocaine addiction leads, as shown in Figure 1. First, we extracted a proteomic PPI 

network of cocaine addiction from the String database20 to infer 141 potential treatment and 

critical side-effect targets. Although more side-effect targets outside the PPI network should 

be considered, we limit our effort to critical ones revealed by the PPI network in this work. 

Second, for targets in the network, the associated molecules are presented by latent-vector 

fingerprints (LV-FPs) via an autoencoder (AE) and built ML/DL-based BA predictors. Third, 

we carry out cross-target BA predictions of more than 60,000 associated compounds to 

screen possible side effects and repurposing potentials. Interestingly, the correlation between 

predicted BAs for different targets could reveal binding-site similarities among targets, 

which is a byproduct of our proteome-informed ML/DL workflow. Finally, we applied 

ML-based models to further evaluate the pharmacokinetic properties, i.e., absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) as well as synthesizability. These 

evaluations, together with the potency and side-effect analysis, form a series of filters to 

screen nearly optimal lead compounds. Finally, we also study atypical or typical inhibition 

of these nearly optimal leads via induced-fit docking.
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DAT is well-known as the critical direct target of cocaine. To study the PPI network of 

cocaine addiction, we input “DAT” into the String database and extracted a global network 

and a core network of DAT interactions (see Figure 1a). The global network contains 

141 nodes and 1696 edges. The core network considers only the proteins having direct 

known interactions with DAT, which leads to 12 nodes and 29 edges. The global network 

could be decomposed into three clusters, implying these proteins involve three different 

primary functions. The core network resides in one cluster, with 12 critical proteins in the 

biochemical pathways of cocaine addiction.

Apart from DAT, VMAT2 is another critical node in the core network. VMAT2 is 

a transport protein integrated into the membrane of synaptic vesicles of presynaptic 

neurons. Its main function is to transport monoamines, especially neurotransmitters such 

as dopamine, norepinephrine, serotonin, and histamine, from the cytosol into synaptic 

vesicles, which then release the neurotransmitters into synapses as chemical messages to 

postsynaptic neurons. Many psychostimulants such as cocaine interact with VMAT2, which 

emphasizes its clinical significance.26 Moreover, α-synuclein is a neuronal protein that 

plays several roles in synaptic activity, such as regulation of synaptic vesicle trafficking 

and subsequent neurotransmitter release. It participates as a monomer in synaptic vesicle 

exocytosis by enhancing vesicle priming, fusion, and dilation of exocytotic fusion pores. 

Cocaine abusers typically have overexpression of α-synuclein in dopamine neurons.27 

TH is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine 

to L-3,4-dihydroxyphenylalanine (L-DOPA), which is a precursor for dopamine. Studies 

also suggested cocaine administration could increase TH enzyme activity.28 STX1A is a 

nervous system-specific protein implicated in the docking of synaptic vesicles with the 

presynaptic plasma membrane. E-Cadherin is a type of cell adhesion molecule that is 

important in the formation of adherens junctions to bind cells to each other. Flotillin-1 and 

−2 are ubiquitously expressed, evolutionarily conserved peripherally membrane-associated 

proteins. Flotillins are found to regulate the membrane mobility of DAT.

The 12 aforementioned proteins constitute the core network of cocaine addiction. Their 

mutual interactions in the network also indicate DAT is the most important node, which 

connects the upper and lower parts of the network. Network analysis shows that DAT has the 

highest degree (11) among all of the nodes and is a hub of the core network. Additionally, 

the closeness centrality of DAT is as high as 1.000, which also suggests its full connection to 

all of the other proteins in the core network. More importantly, the betweenness centrality of 

DAT (0.470) is higher than those of any other nodes, suggesting other than the hub, DAT is 

also a critical bottleneck. In other words, DAT is a bridge of the network, and almost half of 

the interactions must be via DAT. If DAT is removed, the communication between the upper 

and lower parts of the core network will be essentially cut off.

The connections also reveal the importance of VMAT2 and α-synuclein. Their degrees 

are both 8, and the closeness centrality values are both 0.786. They have connections to 

all nodes in the upper part of the network, and both have betweenness centrality values 

of 0.033, forming shortcuts between other proteins. Three other proteins with positive 

betweenness centrality are D3R, D2R, and TH. Their betweenness centrality values are all 

0.003, suggesting they play some roles as bottlenecks. For example, the shortest pathway 
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between D1R and D4R is through D3R or D2R. Their degree and closeness centrality are 7 

and 0.733, respectively.

As mentioned previously, the global PPI network of cocaine addiction involves as many as 

141 proteins, which not only play roles in cocaine addiction but also participate in other 

biological activities. A drug must be specific to its own target and not affect other protein 

functions to avoid side effects. In this section, through ML/DL models, we systematically 

predict inhibitor BAs to analyze side effects and repurposing potential.

We collect inhibitor data from the ChEMBL database.29 We build ML models for 32 

proteins that have sufficient inhibitor data to build such models. These models are used for 

drug repurposing and side-effect studies.

Figure 2a depicts the heat map of cross-target BA predictions for 32 targets. Each diagonal 

element shows the Pearson correlation coefficient (R) of 10-fold cross-validation (CV) of 

the ML BA predictions (ML-BAs) for the corresponding protein inhibitor data set. Three 

of 32 models have R values of >0.90, showing excellent accuracy. The R values of 21 ML 

models are >0.80. For example, the R value of the ML model for the DAT data set of 2877 

compounds is 0.84. Only one model’s R value is <0.70 (i.e., R = 0.69 for the GRK5 model). 

Therefore, these ML models are quite reliable.

In Figure 2a, elements right to the diagonal in each row are the maximum BA values of 

the data set of the diagonal element predicted by the corresponding models. For example, 

element (1,2) is the maximum BA value of the DAT data set (2877 compounds) predicted 

by the D3R ML model. Elements below the diagonal in each column are the maximum BA 

values of other data sets predicted by the diagonal model. For example, element (2,1) is 

the maximum BA value of the D3R data set (4685 compounds) predicted by the DAT ML 

model.

For a given drug candidate, its predicted high cross-target ML-BAs might suggest strong 

side effects. Among 992 cross-target screenings in Figure 2a, there are 330 potential side 

effects judged by a threshold BA of −9.57 kcal/mol (Ki = 0.1 μM, which is a broadly 

accepted threshold for high affinity30). Some side effects are due to highly similar targets, 

such as receptors D3R, D2R, and D4R, cannabinoid receptors CNR1 and CNR2, glutamate 

metabotropic receptors GRM2 and GRM3, and matrix metallopeptidases MMP3, MMP7, 

and MMP9. Their high degress of sequence and structure similarity contribute their mutual 

side effects. However, mutual side effects are also found between seemingly unrelated 

proteins, such as DAT and Sigma1, etc.

We next investigate the positive correlations between predicted ML-BAs. Figure 2b exhibits 

two examples of cross-target BA correlations. The first example depicts compounds in the 

DAT data set binding to targets MMP3 and MMP9, which play an important role in cocaine 

relapse.31 The correlation plot reveals an R value of 0.48 between their predicted BAs. 

The second and third plots are the three-dimensional (3D) alignment of the proteins and 

two-dimensional (2D) sequence alignment of their binding sites, respectively, which suggest 

these proteins, and especially their binding sites, are highly similar, with a binding-site 

sequence identity as high as 64.9%.
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In addition to the targets from the same protein family leading to correlated BAs, we 

also found some seemingly unrelated proteins with correlated BAs, indicating their binding 

sites are similar as shown in Figure 2b. Although tyrosine-protein kinase met (MET) and 

proto-oncogene tyrosine-protein kinase src (SRC) are not of the same family, they are both 

kinases. MET is a tyrosine kinase that transduces signals from the extracellular matrix into 

the cytoplasm by binding to a hepatocyte growth factor ligand. SRC is a tyrosine kinase 

that is activated following the engagement of many different classes of cellular receptors. 

The alignment plots in Figure 2b reveals the binding domains of MET and SRC having 

conserved 3D conformations with a 2D sequence identity of 50.1%. Thus, the R values 

between the BAs of MET and SRC data sets are as high as 0.82. More examples can be 

found in Figure S1.

One significant application of cross-target BA predictions is to evaluate side effects and 

repurposing potentials. Our basic idea is to systematically predict the BAs of the inhibitors 

of one target by using the ML models of data sets for other proteins. It is desirable for a 

drug candidate to be highly specific, i.e., having a high BA for its target, and have weak side 

effects, i.e., having very low BAs for all other human proteins. Moreover, if a drug candidate 

interacts weakly with its designated target but is predicted to be potent at another unintended 

protein, then it has repurposing potential. Here, we carefully studied the 330 data set-target 

pairs with potential mutual side effects in Figure 2a. Panels c and d of Figure 2 depict 

some typical examples of our side-effect and repurposing detection through cross-target BA 

predictions. In each chart, three targets are involved: its designated target and two other 

potential side-effect targets.

Figure 2c exemplifies side-effect predictions. The first row illustrates active inhibitors 

having no serious side effects on either of two other targets. In the three plots, all active 

compounds, which are represented by red or even deep red points, are predicted to have low 

BAs (i.e., BA values of >−9.57 kcal/mol) for two other proteins. Therefore, we anticipated 

that these active inhibitors would not have strong side effects on two other targets studied. 

The second row contains examples with predicted side effects on one of two targets. For 

instance, the second plot in this row shows that the potent inhibitors of protein CNR2 are 

unlikely to bind to EPHA2. However, some of these potent inhibitors have strong predicted 

BAs (≈−12 kcal/mol) for CNR1. This potential side effect is expected, as CNR1 and CNR2 

are similar cannabinoid receptors. The third row is the worst case in which side effects are 

predicted for both of the two other proteins. The most obvious cases are due to the kinship of 

the involved proteins, which are included in Figure S2. However, we also noticed that some 

inhibitors can still cause simultaneous side effects on unrelated targets, such as Sigma1 and 

D4R in the first chart in this row.

In addition to side-effect evaluation, our cross-target BA predictions could also suggest 

repurposing potential as shown in Figure 2d. In each subplot of Figure 2d, some inactive 

inhibitors are predicted to be potent inhibitors of other proteins. For instance, in the first 

chart, some inactive D2R inhibitors have high ML-BAs (BA values of <−9.57 kcal/mol) on 

DAT, suggesting these D2R inhibitors are potential DAT inhibitors for further studies. In the 

second chart, some compounds inactive to hERG are predicted to be very potent to DAT, 

while some other inactive compounds are predicted to strongly block D3R. In the fifth chart, 
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some inactive DAT inhibitors are predicted to be potent inhibitors of D3R or D2R. More 

side-effect and repurposing examples are given in Figure S2.

Because DAT is the main target of cocaine and hERG is a critical side-effect target 

especially for neurotransmitter transport inhibitors and GPCR ligands, in this section, we 

focused on predicting the BAs of inhibitors from all of the other 30 data sets on DAT and 

hERG, which could allow evaluation of their hERG side effects and repurposing potential 

against DAT.

Avoiding hERG side effects is a priority for all drugs. Herein, we designate a more strict 

threshold of −8.18 kcal/mol (Ki = 1 μM) for any hERG side effect. As shown in Figure S3, 

most of the inhibitors in many data sets have predicted hERG BA values of over −8.18 kcal/

mol, which suggests no serious hERG side effect. Especially for data sets GRM3, LRRK2, 

and SPR, almost all of the compounds in these data sets weakly bind to hERG with BA 

values of over −8.18 kcal/mol. However, a large number molecules in data sets D2R, D3R, 

and D4R were predicted to have serious hERG side effects.

In the examination of the repurposing potential for DAT compounds, inactive inhibitors in 

data sets D2R, D3R, D4R, EGFR, MET, and Sigma1 with experimental BA values of more 

than −9.57 kcal/mol are predicted to be potent at DAT with BA values of less than −9.57 

kcal/mol for DAT. Some of these compounds possess a low potential for hERG side effects 

as shown in Figure S3. Of particular note is the Sigma1 data set containing 44 inactive 

inhibitors but predicted to strongly inhibit DAT with ML-BA values of less than −9.57 kcal/

mol. Additionally, 11 of the 44 compounds were predicted to have weak hERG side effects 

with BA values of larger than −8.18 kcal/mol. Therefore, according to our predictions, these 

11 compounds could potentially be repurposed for inhibiting DAT without strong hERG side 

effects. However, to qualify as nearly optimal lead compounds, further screenings for other 

side effects, ADMET properties, and synthesizability are indispensable.

Here we performed systematic screenings on ADMET properties, synthesizability, and 

hERG side effects. Figure 3 illustrates the example screening implemented on the data 

sets of five proteins (DAT, D3R, CDK1, HDAC, and Sigma1) that play essential roles in 

cocaine addiction. The optimal ranges of ADMET properties and synthesizability are listed 

in Table 1, while a BA value of larger than −8.18 kcal/mol is applied as the required range 

for exempting hERG side effects.

Two critical properties for potential drug candidates are the FDA maximum recommended 

daily dose (FDAMDDs) and the BA for hERG (hERG_BA), representing the potential 

for toxicity and hERG side effects, respectively. The first row of Figure 3 depicts the 

distributions of these two properties of inhibitors from the five critical data sets. The green 

frames are the optimal domains of the two properties mentioned above. The colors of points 

represent experimental BA values for targets. According to this screening, all five data sets 

contain sufficient compounds with optimal toxicity and hERG side effects. However, for the 

CDK1 and DAT data sets, the optimal domains of toxicity and hERG side effects contain 

only very few potent inhibitors. This suggests ADMET properties and side effects must be 

considered before a new compound is synthesized.

Gao et al. Page 8

J Phys Chem Lett. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The second row of Figure 3 illustrates the screening based on important absorption 

properties T1/2 (half-life) and F20% (bioavailability 20%). All five plots in the second row 

reveal that the optimal domain of T1/2 and F20% is only a small fraction of chemical space. 

However, for all five data sets, the small optimal domain does indeed contain some potent 

inhibitors.

The third row of Figure 3 displays the log P and log S screening. Log P and log S relate to 

the distribution of chemicals in human bodies. For all five targets, only a small portion of 

potent inhibitors can be found in the optimal domain, suggesting a huge waste of resources 

in early studies. Notably, there is an obvious line in the second subplot of this row, which is 

very unusual under natural conditions. This obvious line is probably caused by the intended 

optimization to improve log P.

The last row of Figure 3 depicts the Caco-2 and SAS screening. Caco-2 represents the cell 

permeability of compounds, while SAS describes how hard a compound is to synthesize. 

These plots indicate almost all of the compounds from the five data sets are not hard to 

synthesize, and approximately half of the compounds have good cell permeability. More 

importantly, many potent inhibitors are also in the optimal domain.

According to the literature,1 some experimental medications are being investigated to treat 

cocaine addiction. Here we used our proteome-informed ML models to predict the side 

effects of these experimental medications. Ibogaine is a naturally occurring psychoactive 

substance that may have antiaddiction properties, and its docking structure and some 

experimental and predicted BAs are shown in Figure 4d. All of the 2D structures of existing 

experimental medications discussed in this work and their experimental or predicted BA 

values are available in Figures S4 and S5.

A typical DAT inhibitor such as cocaine binds and stabilizes an outward-facing 

conformation of DAT. However, an atypical DAT inhibitor stabilizes an inward-facing 

conformation of DAT upon its binding, which makes the binding of cocaine difficult.15 

Therefore, even with a weaker BA on DAT than cocaine, the pretreatment by an atypical 

inhibitor could still prevent DAT from being blocked by cocaine. More importantly, 

compared to typical DAT inhibitors such as cocaine, atypical DAT inhibitors increase the 

accessibility of residues in the cytoplasmic substrate permeation pathway and do not induce 

a cocaine-like behavior or addiction.15

Ibogaine is a natural psychoactive substance extracted from the plants in the Apocynaceae 

family such as Tabernanthe iboga, Voacanga africana, and Tabernaemontana undulata (see 

Figure 4d). Ibogaine was originally used in African spiritual ceremonies. However, its 

antiaddictive properties were accidentally discovered in 1962. Since then, ibogaine has been 

tested to treat SUD, especially for cocaine addiction. Now it is already approved for clinical 

use in The Netherlands, Canada, and Mexico.

Ibogaine inhibits DAT and SERT with IC50 values of 4.0 and 0.59 μM, respectively.32 

More importantly, ibogaine is an atypical inhibitor of DAT and SERT and has potential for 

treating cocaine addiction. However, its severe side effects and related deaths are of serious 

concern. Between 1990 and 2008, a total of 19 fatalities associated with the ingestion of 

Gao et al. Page 9

J Phys Chem Lett. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ibogaine were reported, and six of these fatalities were caused by acute heart failure or 

cardiopulmonary arrest.33 Our model predicted a moderate BA of ibogaine to hERG with 

a BA value of −8.43 kcal/mol, which suggests a risk for ibogaine to incur heart issues. 

Additionally, with predicted BA values of −9.71, −9.54, −9.46, and −9.43 kcal/mol with 

proteins YES1, LRRK2, GRM2, and FER, respectively, our models anticipated high risks of 

side effects on these proteins, especially for YES1 and FER, associated with severe diseases 

sarcoma and acute myeloid leukemia, respectively.

The structure of docking of ibogaine to DAT in Figure 4d reveals that, just like the 

crystal structure of cocaine with DAT in Figure 4b, ibogaine binds to DAT mainly through 

hydrophobic interactions. Strong hydrogen interactions are absent.

Modafinil is a functional stimulant targeting DAT and NET,34 which has been approved 

for the treatment of excessive sleepiness, such as narcolepsy or idiopathic hypersomnia. It 

was also reported that modafinil exerts some effects on cocaine reward and reinforcement.34 

As a result, its potential utility to establish abstinence from cocaine addiction was tested 

in a phase I clinical trial, which reported a cocaine-blunting effect.35 As an atypical DAT 

inhibitor, even with a DAT affinity (Ki = 8.16 μM1) lower than that of cocaine, modafinil 

could still prevent DAT from being blocked by cocaine.

Using the proteome-informed ML models, we also predicted the side effects of modafinil on 

other proteins in our cocaine addiction PPI network. Consistent with the fact that modafinil 

is an approved drug, its predicted BA values to these side-effect targets are all larger than −9 

kcal/mol, and among them, 65.7% are larger than −8 kcal/mol. In particular, modafinil only 

very weakly binds to hERG (−6.96 kcal/mol).

Because modafinil is a potential treatment for cocaine addiction, many of its analogues 

have been developed and tested. The first modafinil analogue is JJC8–016.36 Because it is 

a potent atypical DAT inhibitor (Ki = 0.116 μM), its pretreatment inhibits cocaine-enhanced 

locomotion, cocaine self-administration, and cocaine-induced reinstatement of drug-seeking 

behavior. However, an experimental study found that it may block the hERG channel.37 

Our prediction for JJC8–016 also showed a BA value of −10.34 kcal/mol for hERG, which 

suggests serious potential cardiotoxicity.

Another series of modafinil analogues consists of JJC8-088, JJC8-089, JJC8-091,38 and 

RDS3-094.39 Their Ki values to DAT are 0.0026, 0.0378, 0.23, and 0.0231 μM, respectively. 

Although JJC8-091 is not as potent as JJC8-088 and JJC8-089, its efficiency in blocking 

cocaine effects is the best among these three. The possible reason is that JJC8-091 prefers 

an inward-facing conformation of DAT and thus exhibits a stronger atypical inhibition.38 

As a result, JJC8-091 is under further investigation. RDS3–094 was identified as a 

newly developed modafinil analogue in 2020. With similar chemical structures, JJC8-088, 

JJC8-089, JJC8-091, and RDS3–094 were predicted to have similar side effects. In our 

prediction, they all strongly bind to targets Sigma1 (BA values of −10.06, −10.15, −10.16, 

and −9.99 kcal/mol, respectively) and YES1 (BA values of −9.15, −9.31, −9.25, and −9.14 

kcal/mol, respectively), and YES1 is a risky target associated with sarcoma. Additionally, 

JJC8-088 strongly interacts with SSTR5, which is related to pituitary adenoma. In contrast, 

Gao et al. Page 10

J Phys Chem Lett. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their hERG side effects are not very obvious with BA values of −8.59, −8.48, −8.03, 

and −8.08 kcal/mol, respectively. Interestingly, these four modafinil analogues were also 

predicted to inhibit D3R (−9.51, −9.07, −9.10, and −9.04 kcal/mol, respectively), which 

suggests they may assuage cocaine addiction via multiple mechanisms.

Benzatropine is a medication for movement disorders, including dystonia and parkinsonism. 

Benzatropine and its analogues are being studied for repurposing against cocaine addiction. 

Although benztropine pretreatment failed to significantly affect responses to acute cocaine 

administration,40 its analogues are still worth investigating. For instance, JHW007, with a 

Ki of 0.0253 μM, shows antagonism of behaviors produced by cocaine or methamphetamine 

across numerous animal models.41 However, serious side effects of JHW007 were predicted 

on targets Sigma1, GRM2, and YES1 with affinities of −9.46, −9.30, and −9.28 kcal/mol, 

respectively. The abnormality of YES1 could lead to sarcoma.

Rimcazole was originally designed as a potential anti-psychotic. However, trials indicate 

rimcazole is not effective in this application. Instead, rimcazole and its analogues can reduce 

the effects of cocaine,42 specifically through binding to DAT. Rimcazole was reported to 

have a Ki of 0.0977 μM to DAT.1 Because it is still a drug candidate under investigation, the 

side effects remain a major concern. Our results indicate potentially serious side effects on 

targets D4R and YES1 with BA values of −9.60 and −9.24 kcal/mol, respectively.

Rimcazole analogue GBR12909 (vanoxerine) is a potent atypical DAT inhibitor with a Ki 

of 0.00177 μM. Therefore, it was advanced to phase I clinical trials. However, a failure was 

reported due to rate-dependent corrected QT (QTc) elongation in healthy subjects.1 This 

heart-related side effect was supported by the BA value for hERG, which was predicted to 

be as low as −9.47 kcal/mol. Another potential side effect is from Sigma1, with a predicted 

BA value of −9.43 kcal/mol.

Dextroamphetamine is an approved drug prescribed for treating ADHD and narcolepsy. 

Because it has potent atypical antagonism of DAT with a Ki of 0.109 μM,43 it is being 

reexamined for the treatment of cocaine addiction. In clinical trials, dextroamphetamine has 

demonstrated significant promise for weakening the effects of cocaine.44 Consistent with 

the fact dextroamphetamine is already approved, the predicted side effects on other targets 

are negligible in our models. For example, the predicted BA value versus hERG is −7.09 

kcal/mol.

The D3R antagonist SB277011A is studied for cocaine addiction. It can reduce cocaine-

enhanced brain-stimulation reward, suppress cocaine-conditioned place preference, and 

attenuate cocaine-primed reinstatement behaviors in rats.45 However, SB277011A is 

ineffective when cocaine is available for self-administration.46 Considering side effects, 

SB277011A has approximately 100-fold selectivity for D3R (Ki = 0.0112 μM) over D2R 

(Ki = 555 μM). We also predicted its other side effects on more dopamine-related targets, 

and high predicted affinities occur on targets YES1, SSTR5, HGF, and LRRK2 (BA values 

of −9.71, −9.39, −9.23, and −9.17 kcal/mol, respectively). Among them, the abnormality of 

YES1 and SStR5 could trigger serious consequences because YES1 and SSTR5 are involved 

in sarcoma and prolactin-secreting pituitary adenoma.
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NGB2904 is another widely investigated D3R antagonist. In rats, NGB2904 reduces 

progressive ratio break points for cocaine, inhibits both cocaine- and cue-primed 

reinstatement of cocaine seeking, and prevents cocaine-enhanced brain-stimulation reward. 

However, its reward-attenuating effects can be overcome with larger doses of cocaine.47 In 

our side-effect prediction, a potential side effect on hERG was detected with a predicted BA 

value of −9.20 kcal/mol, suggesting a risk of causing heart issues. Serious side effects were 

also predicted on multiple targets, including YES1, activin1, SSTR5, CNR1, and Sigma1 

with BA values of −9.64, −9.60, −9.57, −9.53, and −9.47 kcal/mol, respectively, again 

raising serious concerns over sarcoma and prolactin-secreting pituitary adenoma. However, 

interestingly, NGB2904 was also predicted to potently inhibit DAT, suggesting NGB2904 

may interact with multiple targets (D3R and DAT) to affect cocaine addiction behaviors.

PG01037 is derived from NGB2904. Similar to NGB2904, PG01037 reduces progressive 

ratio break points for cocaine, inhibits both cocaine- and cue-primed reinstatement of 

cocaine seeking, and prevents cocaine-enhanced brain-stimulation reward but fails to alter 

cocaine self-administration.48 PG01037 was predicted to have side effects that are weaker 

than those of NGB2904, especially as predicted BA values to hERG and YES1 are increased 

to −8.25 and −9.11 kcal/mol, respectively. Moreover, similar to NGB2904, PG01037 has a 

low predicted BA value versus DAT (−9.56 kcal/mol).

Many D3R partial agonists are also currently under investigation. VK4-40 and VK4-116 are 

D3R partial agonists designed within the past five years. They were developed to improve 

blood–brain barrier (BBB) penetration of previous D3R partial agonists. Compared with 

VK4-40, VK4-116 can reduce the cocaine-enhanced heart rate and blood pressure.49 As for 

side effects, VK4-40 and VK4-116 exhibit high selectivity for D3R (305- and 1735-fold 

more selective for D3R over D2R, respectively). However, our predictions show that they 

have potentially strong side effects on targets YES1 (BA values of −10.07 and −10.27 

kcal/mol, respectively), SSTR5 (BA values of −9.44 and −9.66 kcal/mol, respectively), and 

LRRK2 (BA values of −9.28 and −9.30 kcal/mol, respectively).

The partial D3R agonist CJB090 more effectively attenuated psychostimulant reward than 

PG01037 in rats.50 We predicted its side effects on other targets, revealing the BA for YES1 

(−9.27 kcal/mol) is weaker than those of VK4-40 and VK4-116. However, the potential side 

effect on SSTR5 is still somewhat high (BA value of −9.50 kcal/mol).

Cariprazine is an atypical antipsychotic already on the market. It acts primarily as a D3R 

and D2R partial agonist, with high selectivity for D3R, and it is also being studied for the 

treatment of cocaine addiction. Cariprazine exhibits a reduction of cocaine intake under an 

FR1 schedule and reinstatement of cocaine seeking in rats.51 It is only predicted to have 

a strong side effect (−9.82 kcal/mol) on Sigma1, and Sigma1 is not currently known to be 

related to serious diseases.

Other experimental D3R partial agonists include BP-897, RGH-237, and GSK598809. 

BP-897 reduces conditioned locomotor activity to cocaine but fails when cocaine is self-

administered.53 As for side effects, the Ki assays indicate BP-897 is ~70-fold more selective 

for D3R over D2R. Other side effects were predicted via our proteome-informed models. 
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Potential serious side effects were found for targets SSTR5 and YES1 with predicted BA 

values of −9.73 and −9.38 kcal/mol, respectively. RGH-237 was also predicted to have 

somewhat high affinities for SSTR5 and YES1 (BA values of −9.79 and −9.65 kcal/mol, 

respectively). Notably, our predictions suggest GSK598809 strongly binds to targets YES1 

and CNR1 with BA values of −10.15 and −9.94 kcal/mol, respectively, especially a −10.15 

kcal/mol affinity for YES1 that may represent a danger for serious side effects, because 

YES1 is related to sarcoma.

The reuptake of dopamine from the synaptic cleft into the presynaptic axon terminal relies 

on a conformational cycle of DAT with five steps. The cycle begins with the ion/substrate-

free (apo) state of DAT. This apo state is an outward-facing state in which DAT is open 

to the extracellular environment. In the first step, Na+ binding stabilizes DAT in the fully 

outward-facing state with the extracellular gate entirely open, which is ready for the binding 

of dopamine to the primary S1 site. In the second step, dopamine binding induces closure 

of the extracellular gate, rendering the occluded conformation. In the third step, a second 

dopamine molecule binds to the S2 site in the extracellular vestibule and triggers the 

transition of DAT to the full inward-facing state open to the presynaptic axon terminal. As a 

result, dopamine and ions can be released into the presynaptic axon terminal. In the fourth 

step, after dopamine and ions are released, the apo inward-facing state of DAT is formed. 

In the final rate-limiting step, the DAT reverts to the outward-facing apo state, allowing the 

initiation of another translocation cycle.15

Cocaine and other typical DAT inhibitors prevent dopamine reuptake because the binding 

of typical inhibitors stabilizes the outward-facing state of DAT so that the intracellular 

gate is always closed and dopamine cannot be released into the cytosol, while atypical 

inhibition allows the transition to the inward-facing states of DAT, in which dopamine 

can gain access to the cytosol. The molecular mechanisms leading to typical or atypical 

inhibition can be unveiled via the comparison between the X-ray structure of cocaine bound 

to Drosophila DAT [Protein Data Bank (PDB) entry 4XP4 (see Figure 4a,b)] and that of 

3,4-dichlorophenethylamine (DCP) with Drosophila DAT [PDB entry 4XPA (see Figure 

4c)].52 It suggests that the key to determining typical or atypical inhibition is the orientation 

of Phe319 in Drosophila DAT (corresponding to Phe320 in human DAT). Phe319 is the 

S1-gating residue, which is critical for the conformational transition from the outward-facing 

state to the inward-facing state of DAT. However, hindered by the bulky tropane ring and 

the methyl ester group present in cocaine, the side chain of Phe319 is stuck in the open 

state with the S1 pocket always open (see Phe319 in Figure 4b) so that the occluded and 

inward-facing states of DAT cannot be formed and the dopamine reuptake cycle cannot be 

completed. In contrast, the X-ray structure of DCP bound to Drosophila DAT shows an 

occluded state (Figure 4c). This is because, in this structure, DCP binding allows the side 

chain of Phe319 to rotate, occluding the S1 pocket (see Phe319 in Figure 4c), which is 

required by the following conformational movements in the dopamine reuptake cycle. Other 

research also suggests atypical inhibition accommodates the rotation of Phe320 in human 

DAT to the closed conformation.38

To confirm this atypical binding mechanism, we also performed induced-fit docking 

between the known atypical DAT inhibitor ibogaine and the occluded state of DAT (PDB 
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entry 4XPA). Our induced-fit docking allows Phe319 to rotate freely. The resulting docking 

conformation suggests that ibogaine fits the occluded state of Phe319, which agrees with the 

atypical inhibition of ibogaine.

Here, using our proteome-informed ML models, we mimicked the processes of screening or 

repurposing lead compounds. We applied as many as 38 criteria in our systematic screening 

and repurposing. These criteria include BA for the designated target, six ADMET properties 

in Table 1, synthesizability, and the side effects on hERG and 30 other proteins related to 

cocaine addiction in Figure 2a.

Figure 4e exemplifies a nearly optimal lead from our systematic screening. In this example, 

we screened nearly optimal lead compounds from known DAT inhibitors in the ChEMBL 

database. We only accepted those with experimental DAT BA values of less than −9.54 

kcal/mol (Ki < 0.1 μM), predicted hERG BA values of more than −8.18 kcal/mol (Ki > 1 

μM), predicted BA values with other proteins of more than −9.54 kcal/mol, and excellent 

predicted ADMET properties and synthesizability. As a result, screened compounds have 

high potencies to DAT, low side effects on hERG and other targets, and satisfy standards 

for druggable properties. Also, they are easy to synthesize. Compound CHEMBL558086 in 

Figure 4e was the only optimal lead compound left from our ML-base screening. It binds 

more strongly to DAT than to cocaine (experimental BA value of −11.32 kcal/mol) and has 

weak side effects on all of the other proteins, such as a predicted hERG BA value of −7.02 

kcal/mol. The predicted ADMET properties and synthesizability are also in the excellent 

ranges (Table 1).

Panels f and g of Figure 4 show two example compounds from our systematic ML-based 

repurposing. In this experiment, we hope to repurpose inhibitors of PPI-informed proteins 

from ChEMBL to target DAT. For this purpose, we searched the compounds with weak 

affinity for their designated targets but potent binding to DAT by our ML predictions. At 

the same time, they must have weak side effects on other proteins such as hERG and good 

druggable properties. Our criteria are the same as those for the screening described above, 

but input compounds are from other data sets. As a result, the most potent DAT inhibitors 

from our systematic repurposing are ChEMBL3765422 and ChEMBL3764304 from the 

D2R data set. They are very weak to D2R, but they are predicted to be effective to DAT with 

BA values of −9.81 and −9.70 kcal/mol, respectively. Moreover, their side effects are weak. 

For example, its predicted hERG BA values are only −7.23 and −7.69 kcal/mol, respectively.

We also predict whether these three compounds are atypical or typical inhibitors via 

induced-fit docking. Our docking studies indicate that compound CHEMBL558086 

from our systematic screening could bind to the occluded state of DAT with Phe319 

closed, which suggests CHEMBL558086 is an atypical nearly optimal lead. Nevertheless, 

ChEMBL3765422 and ChEMBL3764304 from systematic repurposing fail to bind to 

the occluded state of DAT, and only the outward-facing state could accommodate them, 

suggesting typical inhibition by ChEMBL3765422 and ChEMBL3764304.

At present, there are no FDA-approved drugs for cocaine dependence. This work addresses 

the urgent need for effective drugs to treat this disease. We propose a proteome-informed 
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machine learning platform, which results in 141 drug targets for cocaine dependence. Using 

our autoencoder trained from more than 104 million molecules, we build 32 machine 

learning models for the targets with enough existing training data. Using these models, 

we perform cross-target analysis of more than 60,000 drug candidates or experimental 

drugs to predict their side effects and repurposing potentials for treating cocaine addiction. 

We further screen the ADMET properties of these candidates and experimental drugs. 

Our platform reveals that essentially all existing drug candidates, including dozens of 

experimental drugs, fail to pass our cross-target and ADMET screenings, which explains 

why no FDA-approved anti-cocaine addiction drugs have yet to be uncovered despite 

decades of effort. Nonetheless, we have identified several nearly optimal leads for further 

optimization. Our induced-fit docking also suggests one atypical DAT inhibitor from them. 

Our work opens a novel, proteome-informed machine learning direction for drug discovery.

In this work, our PPI networks related to cocaine addiction were obtained from the String 

Web site (https://string-db.org/). The network analysis and visualization were implemented 

via Cytoscape 3.8.2.54 In the network analysis, we considered three indices: degree, between 

centrality, and closeness centrality. The degree of a node is the number of edges. A node 

with a high degree represents a hub node having many neighbors. The between centrality of 

a node is defined as the proportion of the number of the shortest paths via it to the number 

of all of the shortest paths in the network, which quantifies the frequency at which a node 

forms the shortest paths between two other nodes. A node with a high between centrality is 

always a bottleneck of the network and dramatically influences the pathways among other 

nodes. Additionally, the closeness centrality of a node, which is defined as the average 

length of the shortest paths between the node and all other nodes, measures its centrality in 

the network. A node with a higher closeness centrality is closer to the center of the network.

Molecular fingerprints are the property profiles of a molecule, usually in the form of vectors 

with each vector element indicating the existence, degree, or frequency of one particular 

structure characteristic. They can be used as features for ML/DL models. In this work, the 

latent-vector fingerprint (LV-FP) and traditional 2D fingerprints (2D-FPs) were applied.

The seq2seq model is a DL autoencoder architecture that originated from natural language 

processing. It has already been demonstrated as a breakthrough success in English–French 

translation and conversational modeling. The basic scheme of the seq2seq model is to map 

an input sequence to a fixed-sized latent vector in the latent space using a gated recurrent 

unit (GRU)55 or a long short-term memory (LSTM) network56 and then to map the vector to 

a target sequence with another GRU or LSTM network.

In our study, input and output sequences are both SMILES strings, a one-dimensional 

“language” of chemical structures. Using nearly 104 million molecules, our autoencoder 

model is trained to have a high reconstruction ratio between input and output SMILES 

strings so that the latent vectors contain faithful information about the chemical structures. 

Thus, we adopted these latent vectors as LV-FP to represent compounds.

Gao et al. Page 15

J Phys Chem Lett. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://string-db.org/


The seq2seq model and LV-FPs were realized by our in-house source code. We applied 

bidirectional LSTMs as the encoder. The generated LV-FP has a dimension of 512. The 

structure of our seq2seq model is illustrated in Figure S7.

In addition to LV-FP, 2D-FP-based predictors were also adopted in our work. The 

predictions from 2D-FPs were combined with those from LV-FP by consensus (averages of 

their prediction values) to further enhance the predictive power. According to our previous 

tests,25 ECFP4,57 Estate1,58 and Estate258 fingerprints perform best on BA prediction tasks. 

Thus, these three 2D fingerprints were considered in this work. We employed the RDKit 

software (version 2018.09.3)59 to generate 2D-FPs from SMILES strings.

To achieve fast and robust BA predictions, we performed gradient boosting 

decision tree (GBDT) regressors and classifiers using GradientBoostingRegressor and 

GradientBoostingClassifier modules in scikit-learn (version 0.20.1).60 The hyperparameters 

were tuned according to 10-fold cross-validation tested on different data sets.

For regression tasks, the evaluation criteria are the square of the Pearson correlation 

coefficient (R2) and the root-mean-square error (RMSE). For classification tasks, the 

evaluation criteria are accuracy, F score, sensitivity, and specificity.

ADMET properties and synthesizability are also critical factors for drug design and 

lead optimization. In this work, we focused on seven different indices of ADMET and 

synthesizability: FDA maximum recommended daily dose (FDAMDD), log P, log S, 

half-life (T1/2), Caco-2 permeability (Caco-2), human oral bioavailability 20% (F20%), 

and synthetic accessibility score (SAS). Among them, FDAMDD estimates the toxic 

dose threshold of a compound in humans. Log P is the logarithm of the n-octanol/water 

distribution coefficient. Log S is the logarithm of the aqueous solubility value. Log P and 

log S relate to the distribution of chemicals in human bodies.61 The half-life of a drug 

indicates the length of time that the drug effect could persist in an individual. The value 

of T1/2 here represents the probability of a half-life of <3 h. Caco-2 estimates in vivo 
drug permeability. F20% measures the fraction of the initial dose of a drug that successfully 

reaches either the site of action or the bodily fluid domain from which the drug-intended 

targets have unimpeded access. Last but not least, SAS represents synthesizability, the 

ease of synthesizing a compound, based on a combination of fragment contributions and 

a complexity penalty. The score ranges from 1 (the easiest) to 10 (the hardest), which 

is calculated as a combination of two components: SAS = fragment score – complexity 

penalty.62 We adopted ADMETlab 2.0 (https://admetmesh.scbdd.com/)63 to predict these 

seven properties. Its document also provides optimal ranges for these ADMET properties, as 

shown in Table 1.

The induced-fit docking in our work was implemented via AutoDock Vina.64

This work studied 36 data sets for 32 different protein targets. The data were collected from 

refs 65 and 66 and the ChEMBL database.29 These data sets are summarized in Table S1.

For each data set, we included all of the compounds with Ki or IC50 values but removed 

redundant ones. As suggested by Kalliokoski et al.,67 the IC50 values were approximately 
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converted to Ki by the equation Ki = IC50/2. The label we used for training and testing is the 

binding affinity (1.3633 × log10 Ki).

In the benchmark classification tasks, the authors dropped the compounds between active 

and inactive to define a distinct boundary: for the DAT and hERG data sets, the compounds 

with pKi or pIC50 values between 5 and 6 were excluded65; for the D2R data set, the 

compounds with pKi or pIC50 values between 6 and 7 were removed.66 Therefore, to fairly 

compare our results to theirs, we also followed the same preprocessing strategies so that the 

data sets can be directly compared.

Some benchmark data sets related to cocaine addiction were already studied in terms 

of regression or classification tasks.65,66 On these benchmark data sets, our predictors, 

especially consensus ones, exhibit high prediction power (see Figure 5). On regression 

tasks, we can achieve R values of >0.8 (R2 > 0.64) on all of the data sets except extended 

hERG. The R on the extended hERG data set is close to 0.8 (R = 0.77; R2 = 0.59). These 

performances are better than that in the existing report.65 More detailed comparisons are 

shown in Tables S2–S13.
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Figure 1. 
DAT-centered global and core PPI networks and proteome-informed ML workflow for 

anti-cocaine addiction drug discovery. (a) DAT-centered global and core PPI networks. 

(b) Our proteome-informed ML workflow for anti-cocaine addiction drug discovery. First, 

the data sets inferred by the PPI networks are collected, represented by a latent-vector 

fingerprint via an autoencoder, and used to construct binding affinity predictors. Second, 

the hits obtained from potency predictors, including those repurposing hits, are screened for 

potential side effects. Finally, the resulting promising candidates are further evaluated for 

ADMET properties to discover nearly optimal anti-cocaine addiction leads. Abbreviations: 

DAT, dopamine transporter; D1R, dopamine receptor D1; D2R, dopamine receptor D2; D3R, 

dopamine receptor D3; D4R, dopamine receptor D4; STX1A, syntaxin-1A; TH, tyrosine 

hydroxylase; VMAT2, vesicular monoamine transporter 2.

Gao et al. Page 22

J Phys Chem Lett. Author manuscript; available in PMC 2022 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Cross-target BA prediction systematically suggesting side effects and repurposing potential. 

(a) Heat map of cross-target BA prediction indicating the inhibitor specificity on each data 

set. In each row, the diagonal element shows the Pearson correlation coefficients of 10-fold 

cross-validation (R of 10-fold CV) on the machine learning-predicted BAs (ML-BAs) of 

each data set. Other elements represent the highest ML-BAs among the inhibitors in each 

data set to other targets. (b) Two examples of positive cross-target BA correlation revealing 

binding-site similarity of MMP3 with MMP9 and MET with SPC. In each example, the 

ML-BA correlation plot of one data set to the target pair, the three-dimensional alignment of 

the two target proteins, and the two-dimensional sequence alignment of their binding sites 

are given. The Protein Data Bank entries of the protein structures are 1B3D, 1GKC, 1R0P, 

and 1KSW for MMP3, MMP9, MET, and SPC, respectively. In each ML-BA correlation 

plot, the title is the name of the data set. The colors of points represent the experimental 
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BA for the designated target. The x- and y-axes indicate the ML-BA for two other proteins. 

(c) Nine typical examples of cross-target BA predictions of potential side effects. The first, 

second, and third rows exhibit the examples with substantial side effects of potent inhibitors 

on zero, one, and two targets, respectively. The green frames outline the optimal ranges 

without side effects on both targets (x > −9.57 kcal/mol, and y > −9.57 kcal/mol). (d) Six 

typical examples of cross-target BA prediction suggesting repurposing potential. In these 

examples, some weak inhibitors of their designated targets are predicted to have high BAs 

(i.e., low BA values) to other proteins. The two green frames in each subplot outline the BA 

domains with repurposing potential, which represent compounds that have the potency to 

one target (BA values of <−9.57 kcal/mol) and do not show strong side effects on the other 

target (BA values of >−9.57 kcal/mol).
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Figure 3. 
Druggable property screening based on ADMET properties, synthesizability, and hERG side 

effects on compounds from five critical protein data sets: DAT, D3R, CDK1, HDAC, and 

Sigma1. The colors of the points represent the experimental BAs for these targets. The x- 

and y-axes show predicted ADMET properties, synthesizability, or hERG side effects. Green 

frames outline the optimal ranges of these properties and side effects.
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Figure 4. 
Experimental or docking structures of cocaine, DCP, ibogaine, and our nearly optimal lead 

compounds bound to Drosophila DAT revealing the molecular mechanism of typical or 

atypical inhibition. (a) Illustration of DAT inhibited by cocaine. (b and c) Modes of binding 

of cocaine and DCP, respectively, to Drosophila DAT from the experimental structures 

(Protein Data Bank entries 4XP4 and 4XPA,52 respectively) revealing the molecular 

mechanism of typical or atypical inhibition. Because the orientation of Phe319 in Drosophila 
DAT (corresponding to Phe320 in human DAT) is the key to determining typical or atypical 

inhibition, Phe319 is enlarged and also colored blue. The comparison between panels b 

and c suggests, for typical inhibition in panel b, the side chain of Phe319 is stuck in the 

open state with the S1 pocket always open so that the occluded and inward-facing states of 

DAT cannot be formed. In contrast, Phe319 in panel c rotates to an occluded state, leading 

to atypical inhibition. (d) Docking pose of existing experimental medication ibogaine with 

DAT confirming its atypical inhibition. (e–g) Docking poses of our nearly optimal lead 

compounds suggesting their atypical or typical inhibition.
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Figure 5. 
Performances of our predictive models using different fingerprints and their consensuses on 

some benchmark data sets relating to cocaine addiction. (a) Regression performances of our 

predictive models in terms of R2. (b) Classification performance of our predictive models in 

terms of accuracy. (c) Comparison of our predicted binding affinities (BAs) from the LV-FP 

and ECFP consensus with the corresponding experimental BAs.
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Table 1.

Optimal Ranges of the ADMET Properties and Synthesizability Considered in This Work

property optimal range

FDAMDD excellent, 0–0.3; medium, 0.3–0.7; poor, 0.7–1.0

F 20% excellent, 0–0.3; medium, 0.3–0.7; poor, 0.7–1.0

log P proper range, 0–3 log mol/L

log S proper range, −4– 0.5 log mol/L

T 1/2 excellent, 0–0.3; medium, 0.3–0.7; poor, 0.7–1.0

Caco-2 proper range, >−5.15

SAS proper range, <6
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