Table 1.
The results of the created neural networks to determine the metal quantitative characteristics.
Standard and metal parameters | The neural network structure | Classifying error | Optimal number of the learning epochs | Total amount of the analyzed metallographic images | A number of correctly classifying metallographic images | |
---|---|---|---|---|---|---|
GOST 5639-82 | Grain amount | 550-150-10 | 0.0149 | 820 | 280 | 274 |
GOST 8233-56 | Ratio Ferrite/Perlite | 400-110-10 | 0.0285 | 930 | 140 | 139 |
Size of carbide network | 210-70-6 | 0.0319 | 900 | 210 | 202 | |
GOST 1778-70 | Grade of line nitrides | 210-70-5 | 0.0119 | 780 | 153 | 144 |
Grade of sulphides | 210-70-5 | 0.0098 | 890 | 186 | 173 | |
ASTME 1382 | Size of ferrite grain | 480-140-19 | 0.0463 | 1320 | 289 | 277 |