Skip to main content
. 2022 Jul 20;8(8):e10002. doi: 10.1016/j.heliyon.2022.e10002

Table 1.

The results of the created neural networks to determine the metal quantitative characteristics.

Standard and metal parameters The neural network structure Classifying error Optimal number of the learning epochs Total amount of the analyzed metallographic images A number of correctly classifying metallographic images
GOST 5639-82 Grain amount 550-150-10 0.0149 820 280 274
GOST 8233-56 Ratio Ferrite/Perlite 400-110-10 0.0285 930 140 139
Size of carbide network 210-70-6 0.0319 900 210 202
GOST 1778-70 Grade of line nitrides 210-70-5 0.0119 780 153 144
Grade of sulphides 210-70-5 0.0098 890 186 173
ASTME 1382 Size of ferrite grain 480-140-19 0.0463 1320 289 277