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Abstract

Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel disease biomarkers 

and in combination with nervous tissue modeling, provides access to microstructural parameters. 

Recently, DKI and subsequent estimation of microstructural model parameters has been used 

for assessment of tissue changes in neurodegenerative diseases and associated animal models. 

In this study, mouse spinal cords from the experimental autoimmune encephalomyelitis (EAE) 

model of multiple sclerosis (MS) were investigated for the first time using DKI in combination 

with biophysical modeling to study the relationship between microstructural metrics and degree 

of animal dysfunction. Thirteen spinal cords were extracted from animals with varied grades of 

disability and scanned in a high-field MRI scanner along with five control specimen. Diffusion 

weighted data were acquired together with high resolution T2* images. Diffusion data were fit 

to estimate diffusion and kurtosis tensors and white matter modeling parameters, which were all 

used for subsequent statistical analysis using a linear mixed effects model. T2* images were 

used to delineate focal demyelination/inflammation. Our results reveal a strong relationship 

between disability and measured microstructural parameters in normal appearing white matter 

and gray matter. Relationships between disability and mean of the kurtosis tensor, radial kurtosis, 

radial diffusivity were similar to what has been found in other hypomyelinating MS models, 

and in patients. However, the changes in biophysical modeling parameters and in particular in 

extra-axonal axial diffusivity were clearly different from previous studies employing other animal 
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models of MS. In conclusion, our data suggest that DKI and microstructural modeling can provide 

a unique contrast capable of detecting EAE-specific changes correlating with clinical disability.
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1. Introduction

Multiple sclerosis (MS) is a demyelinating, inflammatory, neurodegenerative disease of 

the human central nervous system (CNS) affecting millions of people worldwide. The 

pathophysiology of MS is often complex, and involves, among other factors, myelin 

loss, axonal damage, appearance of transient or permanent lesions, and brain atrophy. 

Effective treatment of MS is still lacking (Compston and Coles, 2002), although a range 

of disease-modifying therapies have been introduced (Berger, 2011; Noyes and Weinstock-

Guttman, 2013). These therapies are based on immunomodulatory, anti-inflammatory, and 

immunosuppressive drugs. The success of such treatments depends on early diagnosis and 

careful monitoring of the patient.

A range of MS animal models characterized by different mechanisms of induction and 

pathology (Lassmann and Bradl, 2016) have been developed to overcome the limitations of 

clinical tissue assessment. Experimental autoimmune encephalomyelitis (EAE) is a group 

of the most compelling and commonly used animal MS models (Baker and Amor, 2014; 

Kipp et al., 2016; Lassmann and Bradl, 2016). Unlike other animal models, in addition to 

inflammatory lesions and demyelination, EAE includes axonal damage (Bergers et al., 2002; 

Kipp et al., 2016) which is one of the hallmarks of MS. Therefore, using EAE to assess MS 

biomarkers can provide unique insights into the MS pathology.

Due to its noninvasiveness and ability to contrast soft tissues, Magnetic Resonance Imaging 

(MRI) is extensively used for diagnosis and monitoring of MS (Bakshi et al., 2008; Polman 

et al., 2011). Standard T1- or T2-weighted MRI images are capable of revealing brain 

atrophy and lesions, which are heterogeneous areas harboring demyelination, inflammation, 

gliosis and axonal injury (Filippi et al., 2012; Inglese and Bester, 2010). However, diffuse 

microstructural changes outside the T1 or T2 intensity lesions in gray matter (GM) and 

so-called normal appearing white matter (NAWM) (Allen et al., 2001) have been observed 

with histology. Studies (De Stefano et al., 2006; Kipp et al., 2016; Miller et al., 2003) 

showed that the diffuse damage in NAWM and GM contributes to disability accumulation 

and chronic disease progression.

Diffusion weighted imaging (DWI) can provide quantitative microstructural information 

by sensitizing MRI signals to the displacement of water molecules. The underlying signal 

attenuation is often approximated by a Gaussian distribution, which forms the basis of 

diffusion tensor imaging (DTI) (Basser and Pierpaoli, 1996). While DTI metrics are widely 

used, the mentioned Gaussian approximation is valid only in a limited regime of low 

diffusion weighting. At higher gradient strengths (or b-values), tissue microstructure and 

compartmentalization cause deviations from Gaussianity. These deviations are utilized by 
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a framework known as diffusion kurtosis imaging (DKI) (Jensen et al., 2005; Jensen and 

Helpern, 2010). Combined with tissue modeling, DKI provides access to microstructural 

parameters and yields novel disease biomarkers.

DKI based biomarkers have been shown to improve the diagnostic assessment in a range 

of neurological disorders (Delgado y Palacios et al., 2014; Grossman et al., 2011; Khan, 

2016; Surova et al., 2016; Tietze et al., 2015; Wang et al., 2011). In MS, they improved 

characterization of GM and NAWM damage (Raz et al., 2013; Yoshida et al., 2013) and 

correlated with cognitive impairment (Bester et al., 2015). In MS animal models, DKI 

biomarkers were associated with chronic injury (Falangola et al., 2014; Guglielmetti et al., 

2016; Jelescu et al., 2016) and neurite myelin content (Kelm et al., 2016). However, even 

though (Wu and Cheung, 2010) employed EAE to show that DKI is able to enhance lesion 

detection and other DWI methods revealed pathological changes in EAE (Biton et al., 2005; 

Budde et al., 2009), DKI and white matter (WM) models have never been used to investigate 

EAE-induced disability.

In this study, we hypothesized that novel metrics obtained using DKI could predict the 

EAE disability. If this hypothesis is found to be true, and provided our methods are 

successfully translated to clinic setting, the results of this study can support usage of 

DKI-derived biomarkers as a diagnostic tool for MS. A detailed description of the chosen 

DKI-derived metrics is provided in the next chapter following the definition of the metrics 

and a description of their relationship to the pathology.

The ability of DKI to provide quantitative biomarkers of dysfunction in EAE model of MS 

was investigated by testing the correlation between the biomarkers and behavioral markers 

of disease severity. Inside lesions no biomarkers showed correlation to disability. In NAWM, 

the DKI parameters showed better correlation to disability than DTI, suggesting that changes 

in kurtosis parameters may precede lesion formation. Standard DKI and DTI parameters 

produced results similar to those shown previously in other MS models. The estimated 

parameters of the WM model, however, yielded new microstructural information that could 

provide a key for improved understanding of EAE mechanisms.

2. Methods

2.1. Theory. Diffusion Kurtosis Imaging

DKI (Jensen et al., 2005) improves the approximation of the diffusion weighted signal in 

vivo (Filli et al., 2014; Raz et al., 2013; Rosenkrantz et al., 2015) and ex vivo (Veraart et al., 

2011) by including the next term in the cumulant expansion (Kiselev, 2010; van Kampen, 

2007) of the DWI signal S

logS b, n = − b ∑
i, j = 1

3
Di, jninj + b2D2

6 ∑
i, j, k, l = 1

3
W i, j, k, lninjnknl (1)

where Di,j is the i,j element of the rank 2 symmetric diffusion tensor D and Wi,j,k,l is the 

i,j,k,l element of the symmetric rank 4 kurtosis tensor W, b is the diffusion weighting 

(b-value), D = Tr D /3 and ni denotes the i-th component of measurement direction n. In 
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analogy to diffusion tensor based fractional anisotropy (FA), mean (MD), axial (Dǁ) and 

radial (D┴) diffusivity, the kurtosis tensor (W) provides additional biomarkers: kurtosis 

fractional anisotropy (KFA) (Hansen and Jespersen, 2016), mean of the kurtosis tensor 

(MKT) (Hansen et al., 2014, 2013) MKT = Tr W /5 , axial (Kǁ) and radial 5 kurtosis (K┴) 

(Jensen and Helpern, 2010).

The choice of the DTI parameters assessed in this study was based on previous works. In 

particular, FA, MD, Dǁ and D┴ have been shown to be affected by MS pathology (Ceccarelli 

et al., 2007; de Kouchkovsky et al., 2016; Falangola et al., 2014; Guglielmetti et al., 2016; 

Inglese and Bester, 2010; Jelescu et al., 2016; Kelm et al., 2016; Mesaros et al., 2009). In 

DKI, a choice of MKT was motivated by a decrease in mean kurtosis that was shown in 

human GM and NAWM (Raz et al., 2013; Yoshida et al., 2013) and linked with cognitive 

impairment in MS (Bester et al., 2015). A decrease in axial kurtosis Kǁ and radial kurtosis 

K┴ was detected in an animal model of chronic MS (Falangola et al., 2014; Guglielmetti et 

al., 2016), K┴ was found to be related to the myelin content (Kelm et al., 2016).

In this work, we used a variant of the ‘standard’ WM model (WMM) that has been 

extensively explored recently (Fieremans et al., 2011; Jelescu et al., 2015a; Jespersen et 

al., 2007; Novikov et al., 2018b; Zhang et al., 2012). The model is designed to approximate 

diffusion inside and outside WM fascicles. It consists of two non-exchanging Gaussian 

compartments representing extra-axonal and intra-axonal space. Here, the diffusion in the 

extra-axonal space is described by an anisotropic cylindrically symmetric tensor which is 

defined by extra-axonal radial and axial diffusivities (De,┴ and De,ǁ). Axons, having radii 

much smaller than the diffusion distance, are assumed to appear as one-dimensional sticks 

and thus only the intra-axonal axial diffusivity Da is non-vanishing. Taking f to be the 

volume fraction of the axonal compartment, and P u  to be the fiber-orientation distribution 

function (fODF), the diffusion signal S measured in the direction can be written as:

S b, n = ∫ duP u fexp −bDa u ⋅ n 2 + 1 − f exp(

− bDe, ⊥ − b De, ∥ − De, ⊥ u ⋅ n 2
(2)

In this study fiber bundles are not assumed to be parallel (as in (Fieremans et al., 

2011)) but rotationally symmetric. Therefore, fODF follows the Watson distribution 

P u ∝ exp κ u ⋅ c 2 , where κ is the concentration parameter and c is the symmetry axis. 

This model was chosen due to the fact that its axial symmetry assumption is valid for 

majority of spinal cord (SC) WM. In addition, it has a high range of validity, and is 

analytically related to DKI parameters (Jespersen et al., 2017; Novikov et al., 2018b).

For this study, the WMM parameters chosen to be assessed were those sensitive to neural 

damage (Falangola et al., 2014; Kelm et al., 2016); in particular, f, a biomarker for axonal 

loss (Fieremans et al., 2012) linked to myelin content and axon density (Kelm et al., 2016), 

Da, which is associated with intra-axonal injury (Hui et al., 2012), De,┴ which through 

tortuosity is related to the g-ratio (Jelescu et al., 2016) and De,ǁ which is a marker of 
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demyelination (Fieremans et al., 2012). In addition, a measure (Grussu et al., 2017) of fiber 

dispersion κ was studied.

For this study, DKI data was used as a starting point for WMM parameters estimation. 

This approach is commonly used in different models of tissue microstructure (Fieremans 

et al., 2011; Hansen et al., 2017; Hui et al., 2015; Jespersen et al., 2012; Novikov et al., 

2018b; Novikov and Kiselev, 2010; Szczepankiewicz et al., 2016). Fitting DKI instead of 

straightforward fit of WMM parameters, enables usage of linear least squares algorithms 

that yield stable estimates (Chuhutin et al., 2017) decreasing the chances to end up in a local 

minimum. WMM fit at order b2 yields two solutions that fit data equally well (Novikov 

et al., 2018b). Using DKI fit and consequently estimating the WMM parameters allows to 

choose a particular solution branch (Jelescu et al., 2015b) explicitly.

2.2. Animal treatment

Female C57BL/6j bom (B6) mice aged 6–8 weeks obtained from Taconic Europe A/S, (Lille 

Skensved, Denmark) were maintained in the Biomedical Laboratory, University of Southern 

Denmark (Odense).

Mice were immunized at age of 8–10 weeks by injecting subcutaneously 100µl of 

an emulsion containing 100µg myelin oligodendrocyte glycoprotein (MOG)p35–55 (TAG 

Copenhagen A/S, Frederiksberg, Denmark) in incomplete Freund’s adjuvant (DIFCO, 

Alberstslund, Denmark) supplemented with 400 µg H37Ra Mycobacterium tuberculosis 
(DIFCO). Bordetella pertussis toxin (300 ng; Sigma-Aldrich, Brøndby, Denmark) in 200 

µl of phosphate buffered saline (PBS) was injected intraperitoneally at day 0 and day 2. 

Animals were monitored daily from day 5 and scored as follows: 1, loss of tonus of up 

to half of the tail; 1.5, loss of tonus of more than half of the tail; 2, complete loss of tail 

tonus; 2.5, difficulty in walking (one leg); 3, Difficulty walking (both legs); 3.5, paresis in 

one hind leg; 4, paresis both hind legs; 4.5, paralysis of one hind leg; 5, paralysis of both 

hind legs. About 75% of the mice showed symptoms of EAE. All the scoring was performed 

by the same person (AW) with previous experience of EAE animal assessment (Wlodarczyk 

et al., 2014). Severe EAE usually developed 14–18 days after immunization. Based on the 

provided EAE-scale, the animals were divided into roughly equisized groups of samples: 

low-grade (EAE score 1.5–2, 5 samples), intermediate (2.5–4, 3 samples), high (4.5–5, 5 

samples). If not stated otherwise, the control group (non-manipulated age matched animals) 

is henceforth referred to as zero-grade for convenience (5 samples).

Animal experiments were approved by Danish Animal Experiments Inspectorate (approval 

number 2014–15-0201–00369).

2.3. Sample preparation

Mice were euthanized by pentobarbytol overdose and transcardially perfused with PBS 

followed by 4% buffered paraformaldehyde (PFA) (pH 7.4). The spinal column was 

extracted and stored in 4% PFA for 7 days. On day 8, now fully fixed cords were manually 

dissected out of spinal column, and stored in 4% PFA with the meninges removed until 

MRI. 24 hours prior to the experiment, the samples were washed in PBS to remove PFA 

and to minimize associated T2*-related signal attenuation (Shepherd et al., 2009, 2005). The 
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SC was cut into 3 parts and segments from T8 up to L6 were selected for imaging. We 

differentiate between three segments of mouse SC as follows: mid-thoracic (MTO):T8-T11, 

lower thoracic (LTO):T12-LU1, lumbar (LU):L2-L6.

2.4. MR imaging

Imaging was performed on a 16.4 T vertical bore Bruker Biospin (Ettlingen, Germany) Aeon 

Ascend magnet equipped with a Micro5 probe and a gradient unit capable of delivering 

up to 3000 mT/m in all directions. The samples were placed in a 5 mm NMR tube filled 

with Fluorinert© 3M and held parallel to the direction of the main magnetic field using a 

polypropylene straw. The temperature was monitored and maintained at 23.6°C using air 

flow.

In order to increase the prospective impact of the study we used a variant of standard 

Stejskal-Tanner pulse sequence that is commonly implemented in human scanners. Thus, 

diffusion kurtosis data were acquired using a 2D diffusion weighted fast spin echo sequence 

with echo train length (ETL=8), first echo time (effective echo time (TE) = 15 ms), echo 

spacing (ESP=4.23 ms), total repetition time (TR=2000ms)(Beaulieu et al., 1993; Kelm 

et al., 2016; West et al., 2018). Receiver bandwidth (BW) for signal acquisition = 83 

kHz. For each SC, between 16 and 22 0.5mm-thick slices were scanned. For each slice, 

a matrix of size 120 × 120 voxels with field of view (FOV) (FOV=4.2 mm × 4.2 mm) 

(resolution of 0.035 mm × 0.035 mm) was acquired. Diffusion weighting was performed 

with short gradient pulses of duration (δ=1.5ms) and separation (diffusion time) Δ = 10ms. 

Diffusion weighting with b-values of 0.2,0.3,0.5,0.6,0.9,1,1.2,1.5,1.8,2.1,2.5 ms/µm2 was 

applied along 30 directions, with 1 average (NA) for b < 1.2 ms/µm2 and 2 averages for b > 
1.2 ms/µm2. Sixty b = 0 ms/µm2 images were collected for normalization. The total scanning 

time per spinal cord was about 10 h. Examples of images acquired with b = 0.2ms/µm2 are 

provided in Fig. 1 (A,B). SNR (amplitude ratio) of the acquired raw data was estimated to be 

~30–40 (in WM, b = 0), ~50 (in GM, b = 0), ~30 (in WM, b = bmax), ~20 (in GM, b = bmax).

High resolution T2*-weighted images for lesion delineation were acquired using fast low 

angle shot (FLASH) pulse sequence with twice the in-plane resolution (0.018 mm × 0.018 

mm) and the same slice thickness (0.5 mm), NA = 2 and TE = 5ms.

2.5. Image segmentation

Image segmentation of white and gray matter was performed manually based on the mouse 

spinal cord atlas (Watson, 2009).

Lesions were manually outlined on T2*-weighted slices as described in (Steinbrecher et al., 

2005) and thereafter lesion contours were downsampled to the resolution of DWI maps. 

On each slice, potential abnormalities were inspected and compared to the atlas. Voxels 

with abnormal hyperintensity that could not be explained by the anatomical features of SC, 

were manually marked using an in-house developed software tool. Delineation followed 

a conservative definition of the lesion. As such, whenever there was a suspicion that the 

increase in WM intensity could be explained by anatomical features, the voxels were not 

delineated as lesion. The slices and spinal cords were presented in randomized order and the 

examiner (AC) was blinded to the grade. An example of this segmentation is shown in Fig. 
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2. NAWM was defined after the segmentation as a non-lesion WM. Lesion load was defined 

as fraction of volume taken by abnormal hyperintensity in T2*-weighted images.

2.6. Parameter estimation

The raw images were denoised using the Marchenko-Pastur PCA method (Veraart et al., 

2015) and subsequently corrected for Gibbs ringing artefacts (Kellner et al., 2015) before 

further analyses. Standard single diffusion encoding technique that was used in this study is 

capable of accessing only fully symmetric diffusion and kurtosis tensors. Therefore, twenty-

two independent components of fully symmetric diffusion and kurtosis tensors (Jensen et 

al., 2005) were fit to the data using interior-point weighted linear least squares algorithm 

(Veraart et al., 2013) implemented in Matlab. Based on (Chuhutin et al., 2017), WM voxels 

were fit up to a maximum b-value of bmax = 2.5 ms/µm2, and GM voxels were fit up to 

bmax = 1.2 ms/µm2. The fit quality was inspected for each sample. An example of data 

fit for a representative voxel in WM lesion, NAWM and GM is shown in Fig. 1 (C,D). 

Diffusion and kurtosis tensor parameters were calculated according to (Hansen et al., 2014, 

2013; Jensen et al., 2005; Jensen and Helpern, 2010). The exact analytical derivations of 

WMM parameters from the elements of diffusion and kurtosis tensors used in this study 

are provided in (Jespersen et al., 2017) (assuming a Watson distribution of neurites). The 

general case is presented in (Novikov et al., 2018b). Different sets of WMM parameters 

can yield the same DKI signal, an effect known as parameter degeneracy, and a subject 

of current interest (Jelescu et al., 2015a, 2015b). However, in this work, only parameters 

corresponding to the so-called ‘plus’ branch (Hansen and Jespersen, 2017; Jespersen et al., 

2017; Novikov et al., 2016), typically having Da > De,ǁ were considered. This choice was 

guided by the recent publications (Kunz et al., 2018), that suggest ‘plus’ branch solution 

to be biologically plausible. Less than 10% of voxels in any slice displayed non-physical 

values, such as a negative diffusivity. These voxels were excluded from further statistical 

analysis of WMM parameters. In total, for all spinal cords, 245851 GM voxels and 246393 

WM voxels were analyzed for DTI/DKI parameter estimation, while WMM parameters 

were estimated in 232274 voxels.

In WM, the estimated parameters were: axial diffusivity (Dǁ), radial diffusivity (D┴), 

fractional anisotropy (FA), axial kurtosis (Kǁ), radial kurtosis (K┴), which were included 

for a model independent assessment and the previously mentioned WMM parameters (extra-

axonal radial De,┴ and axial De,ǁ diffusivities, intra-axonal diffusivity Da, volume fraction 

of axonal compartment f, and concentration parameter of the Watson distribution, κ). In 

GM the low tissue anisotropy causes the estimated direction of primary eigenvector to be 

unstable/poorly defined, and thus, the values of axial and radial diffusivity and kurtosis 

are less reliable/meaningful. Due to that and in order to restrict the number of compared 

parameters to avoid unnecessary multiple comparisons, it was decided to limit the scope of 

estimated parameters in GM to MD and MKT.

2.7. Statistical Analysis

The voxels from all spinal cords were input to a linear mixed effects model (LME) (Gelman 

and Hill, 2007; Goldstein, 2011).
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The choice of model was guided by current recommendations in (Barr et al., 2013; Bolker et 

al., 2009) and iterative maximization of Akaike information coefficient (Akaike, 1998).

The choice of LME to estimate and study the effects of EAE on kurtosis tensor parameters 

was guided by the observations that pathological changes both inside lesions, in NAWM 

and in GM contribute to clinical disability in both human MS and in animal models of 

neurodegeneration (de Kouchkovsky et al., 2016; Evangelou et al., 2000; Filippi et al., 2012; 

Filippi and Rocca, 2011; Inglese and Bester, 2010; Kipp et al., 2016; Lassmann and Bradl, 

2016). The specific form of the LME designed to take into account random contributions 

of sample to sample variability. Our assessment of LME fitting quality (in Table 2) was in 

line with up-to-date recommendations for LME (Baayen et al., 2008; Edwards et al., 2008; 

Nakagawa et al., 2013).

Each of 12 examined parameters pi was thus fit to

pi g ⋅ s + l + g ⋅ s a + l a (3)

using Wilkinson notation (Wilkinson and Rogers, 1973), where g is grade, s is slice, lesion 

is l, a is sample (animal)1. The ‘fixed’ effects part of the model was designed to allow the 

parameters to depend on grade, while the size of the effect was permitted to be different 

in various SC segments (first term). The second term encodes the expected difference in 

parameter values inside (l = 0) and outside (l = 1) the T2* hyperintense lesions. Sample-to-

sample variations were allowed by including ‘random’ effects for segment, grade and lesion, 

each grouped sample-wise.

To avoid a small number of data points having an undue influence on the regression, outliers 

2.5 standard deviations above and below the model residual means were removed after the 

initial fit, and the model was refitted. This procedure is in agreement with literature (Baayen, 

2008; Baayen et al., 2008; Tremblay and Tucker, 2011). By verifying that predictors are 

significant before and after the outlier removal we verified that the extreme values do not 

substantially influence the regression. The removed outliers constitute less than 4% of data. 

The comparison of in outliers and the rest of the data in terms of quality of fit (χ2) is given 

in Supplementary material.

For each of the ‘fixed’ effects, analysis of variance (ANOVA) p-values were calculated. 

These p-values represent the significance of individual fixed effects as well as the combined 

effect of segment and grade on parameter. The p-values describing the significance of the 

linear relationship between the measured parameter and the grade of disability of the EAE 

animal were finally reevaluated using the false discovery rate (FDR) procedure (Benjamini 

and Hochberg, 1995).

The quality of the fit of LME was estimated using Rβ
2 (Edwards et al., 2008), so that

1The notation (l|a) stands for a random effect of lesion (l) being grouped by sample (a). The notation g·s stands for an effect of grade 
(g), slice (s) and a combination of these two (g·s = g + s + g:s).
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Rβ
2 =

q − 1 ν−1F β , Σ
1 + q − 1 ν−1F β , Σ

(4)

where F β , Σ  is a statistic corresponding to the null hypothesis H0: β1 = β2 = … = βq−1 = 

0 for q – 1 fixed effects, βi, ν is Satterthwaithe’s estimate of effective degrees of freedom. 

Partial Rβ
2 Rβ, p

2  were calculated to obtain the relative measure for each of the ‘fixed’ effects 

that corresponds to the null hypothesis H0 : βj = 0 for j ϵ {1,…, q – 1}.

While the LME analysis was performed primarily to discern which DKI/WMM parameters 

correlate with disability and which tissues are affected, a following post-hoc analysis aimed 

to check the sensitivity of the chosen parameters. The parameter means were calculated for 

each sample, for each SC segment, and for the SC as a whole, in GM and WM separately. 

The parameters surviving FDR correction of LME p-values were checked and the grades 

with significantly different means were identified using two sample tests (one-way ANOVA, 

followed by FDR correction). For the post-hoc analysis, no outlier removal was performed.

A further post-hoc comparison of individual parameters inside lesions supported the initial 

LME model assumption of independence between the grade and lesion LME model 

parameters (data not provided). Thus, we based the post-hoc lesion analysis on the premise 

that the distribution of parameters inside lesions does not depend on segment or EAE grade.

Quantitative results (mean and standard deviation along the disability group, no outlier 

removal) for all the measured parameters are provided in Table 1. The most distinct changes 

are observed in GM MKT and NAWM K┴ (decrease) and an increase in De,ǁ in NAWM. Of 

all the measured parameters De,ǁ has the highest variance.

3. Results

3.1. Diffusion MRI: Parameter estimation

A one-way-ANOVA of sample-wise mean of relative lesion load showed that controls 

were significantly different from the diseased (EAE) animals in all segments (provided 

in Supplementary material). However, despite apparent increase in the mean values of 

lesion load, the variance of lesion load increases in SC slices of high grade animals. 

Subsequently, the lesion load is unable to statistically significantly discriminate between 

grades of disability.

Figure 3 shows maps of all the investigated parameters for a representative animal in each of 

the grades (control, low, intermediate, and high grade) in the medium thoracic (T9) segment. 

WMM parameters are restricted to the manually delineated WM to approximately fulfill the 

assumptions of the model. Qualitatively, the maps show an increase in asymmetry in animals 

with higher disability grade. The Watson concentration parameter κ displays the biggest 

variation in the maps. Parameters that are accessible with DTI (apart from MD) show better 

contrast between WM and GM. However, parameters derived from DKI and WMM show 

more variability inside WM.
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3.2. Diffusion MRI: validating metrics with LME

Table 2 shows the estimators of the LME fit quality and values that quantify the capability of 

LME model parameters to explain each of the parameters.

All parameters demonstrated relatively good quality of fit Rβ
2. MD and De,ǁ attained the 

lowest values of ~0.91.

P-values shown in Table 2 quantify the extent to which each of the 12 studied parameters 

can be explained by the parameters of the linear mixed effects model. Grade had a 

significant effect on 7 out of 12 parameters after FDR: MKT in GM, and K┴, D┴, De,ǁ, 

De,┴, κ and f in WM. All parameters except MD and MKT in GM and f in WM were found 

to depend significantly on the segment. Likewise, the interaction between grade and segment 

was statistically significant in all but five parameters, i.e. the two GM parameters MD and 

MKT, three WM parameters De,ǁ, Da and Dǁ. All parameters but Da were significantly 

different between lesion and normal appearing brain tissue.

The results of the calculation of partial Rβ, p
2  (Edwards et al., 2008) for each fixed 

effect variable are also provided in Table 2. Rβ
2 revealed high association between the 

kurtosis/WMM parameters and the disability grade of EAE (~0.9) for all the parameters that 

were found significant in FDR procedure. The comparison of Rβ, p
2  values showed that the 

disability grade accounted for most of the variation in 4 out of 12 parameters D┴, De,ǁ, De,┴ 
in WM and MKT in GM.

Additional characteristics of the LME fit are provided as Supplementary material. These 

include a different measure of fit quality (Johnson, 2014; Nakagawa et al., 2013) and 

estimates and confidence intervals of fixed effects of LME-model. These estimates show 

that among the parameters which are significantly correlated with the grade, MKT, K┴, f, 
De,┴ and κ decrease with the increase in disability grade, while D┴ and De,ǁ increase with 

increasing grade. The LME results have the same direction and magnitude of decrease or 

increase as overall means in Table 1.

3.3. Diffusion MRI: Post-hoc statistical analysis

From the LME analysis, we found that the variation of several GM and WM parameters 

can be explained by EAE-grade and by lesion status, i.e. whether or not the voxel is located 

inside a lesion. A follow-up post-hoc analysis intended to investigate group-wise behavior of 

the segment-wise means in parameters with a significant grade. In particular, Table 3 shows 

the results of the post-hoc analysis of sample means outside the lesions, in GM and NAWM.

In GM, MKT showed significant difference between the grades only in the slices located 

in mid-thoracic segment of the spinal cord, specifically between low and intermediate and 

between low and high grades.

In NAWM, 5 out of the 6 biomarkers surviving FDR correction demonstrated significant 

differences between the control and diseased animals, mainly in the lumbar SC. Two DKI 

parameters (K┴, D┴), and two WMM parameters (f, De,ǁ) depended significantly on EAE 
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grade. K┴ and f were found to survive pooling all segments together, demonstrating an 

overall significant difference between high and low grade.

As an illustration, a representative part of the data and the associated post-hoc analysis is 

given in Fig. 4. In this figure, the distributions over voxels of MKT in GM (Fig. 4 (A)) 

and K┴ in NAWM (Fig. 4 (B)) are visualized using box plots for each of the grades and 

segments. The means of each of the spinal cords, which were used in the post-hoc analysis 

(Table 3), are superimposed on the boxplots as blue circles. The significantly different 

grades are marked by asterisks. Note that the seemingly large number of outliers apparent in 

the box-plots of Fig. 4 constitute a small fraction of the more than 10000 voxels sampled for 

each spinal cord.

The same type of post-hoc analysis that was used to study the voxels outside of the lesions, 

was used to investigate voxels inside the lesions. The analysis revealed that the vast majority 

of segment-wise means inside the hyperintensity lesions did not show any significant 

differences between EAE-grades, with only Kǁ in lower thoracic segment showing difference 

between the grades at the level of significance p < 0.05 (results of this analysis are provided 

as Supplementary material).

The results of an additional post-hoc analysis adapted to test for difference in parameter 

means between lesions and NAWM, revealed that the difference is significant for all 10 WM 

parameters are provided in Supplementary material.

3.4. Combining T2*-weighted images and diffusion MRI

Based on the presented results, that report lesion load to be insignificantly related to 

disability grade, we next consider a “hybrid” way of addressing the lesion load and DKI 

parameters. It can be done e.g. using a compound variable that reflects both lesion load and 

NAWM health to provide a way of distinguishing different grades of EAE. In particular, an 

animal-wise LME fit of the model

g = p0 + p1 ⋅ l + p2 ⋅ K⊥ + p3 ⋅ De, ∥ (5)

where g is the grade and l is lesion load, De, ∥  and K⊥ are animal-wise mean values of 

De,ǁ and K┴ in NAWM, yielded coefficient values p0 = 2.9, p1 = 12.7, p2 = −2.3, p3 = 10.4 

ms/µm2. A “hybrid” metric that uses these parameters is able to distinguish not just between 

control and high, control and intermediate groups but also between low and high, low and 

intermediate EAE-grades. The results of using such metric are shown in Fig. 5. However, a 

follow up study that will test this hybrid metric with an independent data is needed.

4. Discussion

Mapping quantitative biomarkers in MS – as well as in other neurological disorders – is 

essential for early diagnosis, follow up of treatments, and testing novel avenues for treating 

disease. Lesion load is a biomarker that is easily and commonly imaged both in humans 

and in preclinical studies. However, even though it has been historically associated with 

motor deficits in MS and EAE (Bjartmar et al., 2001; Sathornsumetee et al., 2000), its 
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correlation with disability is poor (Barkhof, 2002; Bergers et al., 2002; Robinson et al., 

2010; Wuerfel et al., 2007), a disparity known as the clinico-radiological paradox (Cohen 

et al., 2016; Nathoo et al., 2014). Confirming the clinico-radiological paradox in MS and 

previously published results in EAE (Wuerfel et al., 2007), we did not find correlations 

between the EAE-grades and lesion load. In addition, using DKI provided no obvious 

advantages for structural segmentation. We therefore turned to LME fitting of the metrics 

that map microstructural aspects of the tissue. Instead of trying to improve on lesion load 

detection, the study aimed to test additional quantitative metrics obtained from DKI against 

disease severity in an animal model of MS.

In GM, MKT depended significantly on disability grade (Tables 2 and 3; Fig. 4). This is in 

line with human studies (Agosta et al., 2007; Bester et al., 2015; Raz et al., 2013; Zackowski 

et al., 2009) reporting similar changes in GM. Such changes are likely indications of GM 

pathology, possibly associated with neuronal degeneration and myelin loss (Guglielmetti 

et al., 2016). Interestingly, while the biggest burden of lesions and most of the changes 

in NAWM (Table 3; Fig. 4) were associated with the lumbar section of the spinal cord, 

most of the changes detected in GM were observed in mid-thoracic sections. Given that the 

EAE-induced disability progresses from hind- to forelimbs, one might hypothesize that the 

damaged GM tissue in mid thoracic SC is connected to the damaged fascicles in lumbar 

WM. Thus, in EAE, correlated pathological mechanisms may be responsible for damage 

in NAWM and GM. This may be similar to human MS, where the spatial and temporal 

relationships between the damage in GM and NAWM are still not fully resolved and might 

depend on disease phenotype (Bodini et al., 2009; Pirko et al., 2007; Steenwijk et al., 2015; 

Tewarie et al., 2018).

In NAWM, K┴ and D┴ showed the strongest and most robust results among tissue 

biomarkers derived from kurtosis and diffusion tensors. Radial kurtosis showed the strongest 

inverse relationship with EAE grade (i.e. it decreased with increasing disease severity). Such 

changes have also been observed previously in preclinical models of MS (Falangola et al., 

2014; Jelescu et al., 2016; Kelm et al., 2016), while the opposite effect was observed in 

(Guglielmetti et al., 2016). This agreement might suggest closer similarities of the EAE 

to cuprizone or genetically induced chronic demyelination than to the acute inflammatory 

demyelination used in (Guglielmetti et al., 2016). An increase in D┴ was also found to be 

significantly correlated with EAE grade. Again, this behavior agrees with previous chronic 

demyelination studies (Falangola et al., 2014; Jelescu et al., 2016; Kelm et al., 2016) 

and with results of a previous DTI EAE study (Budde et al., 2009). Early human studies 

demonstrated similar behavior of D┴ and associated it with demyelination (Klawiter et al., 

2011) and possible axonal loss (Naismith et al., 2010).

Among WM model parameters, De,ǁ was the one affected the most by EAE grade, while 

De,┴ was affected in a much weaker manner and with no significant effects in post-hoc 

analysis (Tables 2 and 3). Counter-intuitively, an increase in De,ǁ with grade was found. This 

fact could potentially be explained by axonal damage, changes in the structure of glial cells, 

and myelin loss, causing the extra-axonal space to have higher diffusivity. This result is in 

contrast with cuprizone models (Falangola et al., 2014; Guglielmetti et al., 2016; Jelescu et 

al., 2015b). The disparity can stem from differences between the mechanisms underlying 
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tissue degeneration but also from other microstructural differences between the neural tissue 

in cerebrum and in spinal cord. Alternatively, it may also be a result of choosing a different 

solution ‘branch’ when finding parameters of WMM model (Hansen et al., 2017; Jelescu et 

al., 2015b; Jespersen et al., 2017).

The axonal water fraction (previously suggested to be a biomarker of axonal loss (Fieremans 

et al., 2011)) was also significantly affected by the differences in EAE grade. We found f to 

decrease with an increase in EAE-grade, therefore an axonal loss in NAWM could be one 

driver of the disability.

The ratio λ = De,ǁ/De,┴ (tortuosity) has been proposed as a biomarker of demyelination 

(Fieremans et al., 2012). In our data (see Results and Supplementary material), De,ǁ 
increased strongly and De,┴ decreased, thus overall tortuosity increased with increase in 

grade (the effect of grade on tortuosity variation was found to be significant in post-hoc 

LME fit, data available upon request). This finding is in contrast to (de Kouchkovsky et al., 

2016; Falangola et al., 2014) and may provide evidence of pathological processes in EAE.

Our data shows that the Watson concentration parameter κ significantly decreased in a way 

that could be explained by EAE grade. This might be a result of axonal damage that could 

cause the breaking of fascicles and fanning out of individual axons. According to post-hoc 

analysis, this behavior was present in the lumbar segment of the spinal cord. Our result is 

in line with (Schneider et al., 2017), where increased fiber dispersion in NAWM of MS SC 

was reported. However, in our study increased fiber dispersion is present inside the lesions in 

mouse SC as well. This is in contrast with (Grussu et al., 2017), where a decrease in neurite 

orientation dispersion was measured in lesions of MS using neurite orientation dispersion 

and density imaging (NODDI) and histology. One possible reason for the disparity is 

different species (animal and human), where different pathological mechanisms could be at 

play. Another reason could be related to focal lesions being not as well defined in rodent 

models, and in EAE in particular, as in humans. Therefore, even though lesion detection was 

performed in a consistent and ‘blind’ way, a systematic error may have been introduced, e.g. 

if too big portions of NAWM are segmented as lesions. Third, differences in the employed 

diffusion models could be responsible for the disparity. This discrepancy may be addressed 

by validation of fiber dispersion in EAE and MS lesions using microscopy.

Dǁ has previously been shown to decrease significantly with EAE score and with axonal 

injury (Budde et al., 2009). Both Kǁ and Dǁ were significantly affected in some cuprizone 

studies (Falangola et al., 2014; Guglielmetti et al., 2016) but not in (Jelescu et al., 2016; 

Kelm et al., 2016). Our study found no evidence of any correlation between EAE grade and 

Dǁ or Kǁ. Consequently, our work provides an indication that in EAE, tissue changes due 

to demyelination and axonal loss are insufficient to change diffusivity or kurtosis parallel to 

fiber bundles.

In our study, FA showed no significant dependence on grade. This observation is in line 

with (Guglielmetti et al., 2016) where FA was not able to differentiate between the treatment 

groups and control.
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Both the results of LME model fitting and post-hoc analysis demonstrated that all 

parameters but one (Da) were able to distinguish lesions from NAWM. Together with that, 

in a more intriguing finding of this work the vast majority of the biomarkers measured 

within lesions did not differ across grades. A probable explanation of that is that there is 

no detectable differences in lesion microstructure between the grades. This may be evidence 

that CNS tissue that makes up WM lesions does not contribute to disability in EAE.

Recent studies (By et al., 2018, 2017; Grussu et al., 2015; Schneider et al., 2017) have 

applied NODDI and spherical means (SMT) techniques to spinal cord tissue WM in healthy 

controls and in MS patients and demonstrated promising diagnostic results. However, our 

findings suggest that the basic assumptions of these studies may not be fulfilled in all cases. 

In particular, since Da was found not to be driven by EAE grade while De,ǁ increased with 

grade, those two parameters cannot be constant as assumed in NODDI (Da = De,ǁ = 1.7µm2/

ms). The constant tortuosity assumption (imposed in both NODDI and SMT) was also not 

valid in our dataset. Thus, assuming that our results are valid in human MS, the values 

estimated with those two techniques would be unable to reveal the true microstructural 

changes associated with disease progression and disability. Thus, it may prove necessary to 

allow all the parameters of the so-called ‘standard’ model (Novikov et al., 2018b; Jelescu et 

al., 2015a; Jespersen et al., 2007) to be determined by the fit.

5. Limitations

In this work, fixed tissue was used, which allowed longer scanning and better data quality 

(e.g due to motion and susceptibility effects of vertebrae) in comparison with in vivo 

protocols. This choice was justified by the assumption that despite known impact of fixation 

on tissue properties (Shepherd et al., 2009, 2005; Sun et al., 2005) the pathological effect 

on damaged tissue will be strong enough to be detectable in the present exploration study. 

Nonetheless, the results of this study are influenced by differences between ex-vivo and 

in-vivo tissues, which have not been fully accounted for yet (Horowitz et al., 2015).

Manual lesion segmentation, even though it was performed ‘blindly’, can potentially result 

in a systematic bias in contrast between estimated NAWM and lesion values, as well as 

increased variability.

Concerns have been expressed (Lampinen et al., 2018) about applicability of modeling 

constraints required for multi-compartmental modeling of diffusion in neural tissue. The 

compartment models for diffusion used in this work have not been fully validated across 

different tissue types, in vivo and ex vivo datasets, etc. However, in this study the modeling 

efforts were restricted to ex-vivo mouse spinal cord, where, according to histology (Ong 

et al., 2008) the axonal size is around 1µm and in the chosen regime of gradient strengths 

and waveforms the attenuation due to diffusion along the diameter is negligible (Dyrby et 

al., 2013; Nilsson et al., 2017). Chosen diffusion times are short enough (10ms), so that the 

exchange has only a minimal effect (Nilsson et al., 2013, 2009). Therefore, there is good 

reason to believe that in this case, the approximation of axons as sticks is approximately 

valid. Further investigation of the validity of the attained results e.g. the role of myelin water 
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and related compartment-dependent T2-relaxation of diffusion weighted signal is necessary 

before translating the results of this study to the clinic.

6. Clinical implications

This work shows that the disability in EAE and therefore probably also disability in MS is 

correlated with and maybe is even driven by the neural matter outside the lesions.

In line with other works, this study also suggests the prominent role of SC GM (Agosta 

et al., 2007; Bester et al., 2015; Guglielmetti et al., 2016; Raz et al., 2013; Zackowski et 

al., 2009) and NAWM (Falangola et al., 2014; Jelescu et al., 2016; Kelm et al., 2016) in 

the development of disability. All these results support the fact that the search for disability 

biomarkers in human SC should concentrate on the neural matter outside the WM lesions. 

Future longitudinal studies could elucidate whether GM damage is a precursor of damage in 

NAWM.

This study was performed with 11 b-values and 30 directions, yielding approximately 

350 images. However, such a big number of b-values was primarily needed to estimate 

parameters in different tissues. If a similar approach would be used but focussed e.g. only 

on the WM, the same type of analysis can be performed with 5 b-values and 30 directions, 

which can be achieved within a clinically feasible scan time of around 15 minutes. At 

the same time, due to relatively low b-values, this protocol is more accessible for clinical 

systems than two compartment models such as CHARMED (Assaf et al., 2004; Assaf and 

Basser, 2005; Barazany et al., 2009; De Santis et al., 2016) developed to attempt axonal 

diameter mapping.

This study points on the perspective of using WMM, where extracellular parallel diffusivity 

and axonal water fraction are recommended for assessment of human MS disability using 

SC MRI. Parameters of the full WMM in human MS spinal cord can be estimated and 

compared to our results along with other animal models (e.g. progressive model as in 

(Al-Izki et al., 2012)). Comparing between the biomarkers in different models can help to 

reassess models of spinal cord pathology in MS. Since the damage in spinal cord is better 

correlated with accrual of long-term disability (Inglese and Bester, 2010; Lin et al., 2006) 

than damage in cerebrum, the results of such an assessment can improve the understanding 

of mechanisms of MS progression.

There are some barriers in translation of the results of this work to a clinical setting. In 

addition to human MS pathology being distinct from the EAE animal model in terms of 

illness onset and its progression, human scanners feature multiple technical differences 

compared to the system used here. Such differences pose some challenges in the adaptation 

of the described methods.

In particular, this study has been performed with an ultra-high magnetic field strength. 

On clinical systems with much lower magnetic field, the relaxation times are different. 

Since myelination and compartmental relaxation significantly influence the parameters of 

microstructural model (Lampinen et al., 2019), the magnitude of the effect of disability on 

WMM parameters may be altered. In addition, robust determination of model parameters, is 

Chuhutin et al. Page 15

Neuroimage. Author manuscript; available in PMC 2022 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not straightforward on clinical scanners in vivo, mainly due to gradient strength limitations, 

and this is an active area of research. Current promising paths involve acquisition of 

“orthogonal information” that constrains parameter estimation. Such information can be 

provided by unconventional diffusion sequences e.g. Double Diffusion Encoding (Coelho et 

al., 2019; Reisert et al., 2019). Until the effect size of disability on our white matter model 

has been investigated on clinical systems, we recommend to use the DKI-parameters: K┴, 

D┴ in NAWM and MKT in GM.

An additional obstacle in translation of the presented results to clinical setting is due 

to motion artefacts and susceptibility effects of vertebrae. The state-of-the-art method 

(Wheeler-Kingshott et al., 2014) to mitigate these is using cardiac triggering and careful 

shimming by e.g dedicated spinal cord shimming coils (Topfer et al., 2016). Recent studies 

(By et al., 2018, 2017; Hori et al., 2014; Li and Wang, 2017; Raz et al., 2013), which were 

designed based on these recommendations, succeeded to estimate DKI biomarkers in human 

cervical spinal cord. In addition to that, dedicated acquisition methods (Hansen et al., 2016) 

can speed up the acquisition of DKI metrics (such as MKT in GM and K┴ in NAWM) that 

were found sensitive in this study.

Overall the DKI data as acquired in human scanners has lower SNR and is more artefact-

prone than in preclinical ex vivo setup, and therefore there are still considerable issues to be 

solved before applying these methods on the MS patients. However, the high significance of 

changes presented in this study suggests that with adoption of new methods, these results 

will be relevant for clinical use.

7. Conclusions

• In NAWM and GM the relationship between the disability and DKI and DTI 

metrics was found to be similar to other hypomyelinating MS models and to 

ex-vivo MS tissue.

• In NAWM, changes in WM-modeling parameters (strong increase in De,ǁ, weak 

effect in Da, De,┴) were clearly different to what has been observed in other 

animal models of MS.

• The statistical analysis based on linear mixed effect models disentangled NAWM 

and lesion effects. Neither accumulated lesion load, nor DWI biomarkers in the 

tissue restricted by T2*-weighted lesion show any significant effect of lesions on 

EAE-grades.

• A strong increase in De,ǁ of NAWM is an effect that has not been previously 

observed in other models of MS.

8. Summary

Overall, this study detects significant alterations in NAWM and GM (but not in WM lesions) 

in SC of EAE animals that correlate with dysfunction. These alterations are best detected 

with DKI and WMM biomarkers.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Da intra-axonal diffusivity

D ┴ radial diffusivity

D ǁ axial diffusivity

K ┴ radial kurtosis

D e,ǁ extra-axonal axial diffusivity

κ concentration parameter of the Watson distribution

K ǁ axial kurtosis

D e,┴ extra-axonal radial diffusivity

f volume fraction of axonal compartment

ANOVA analysis of variance

BW receiver bandwidth

CNS central nervous system

DKI diffusion kurtosis imaging

DTI diffusion tensor imaging

DWI diffusion weighted imaging

EAE experimental autoimmune encephalomyelitis

ESP echo spacing
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FA fractional anisotropy

FDR false discovery rate

fODF fiber orientation distribution function

FOV field of view

GM gray matter

LME linear mixed effects modeling

LTO lower thoracic segment

LU lumbar segment

MD mean diffusivity

MKT mean of the kurtosis tensor

MRI magnetic resonance imaging

MS multiple sclerosis

MTO mid thoracic segment

NA number of averages

NAWM normal appearing white matter

NODDI neurite orientation dispersion and density imaging

PBS phosphate buffered saline

PFA paraformaldehyde

SC spinal cord

SMT spherical means technique

TE echo time

TR repetition time

WM white matter

WMM white matter model
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Fig. 1. 
Example of acquired raw data and a corresponding data fit. Subfigures (A) and (B) show 

an example of a raw signal image acquired for low diffusion weighting (b=0.2 ms/µm2) in 

mid thoracic and low thoracic segments of a control sample. Subfigure (C) shows a high 

grade sample, with a visible lesion acquired with the same low diffusion weighting (b=0.2 

ms/µm2). Data and data fit that correspond to three different voxels in the slice denoted in 

(C) are shown in subplot (D). Lesion voxel location is marked in red, NAWM voxel in green 

and GM voxel in magenta in subplot (C). Multiple data points plotted under each b-value on 

the x-axis correspond to different directions. The inset shows the enlarged part of the graph 

corresponding to b=0.5 ms/µm2.
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Fig. 2. 
Example outcome of lesion identification in four spinal cords in a lumbar segment. From left 

to right the grades are control, low grade, intermediate grade and high grade of EAE. For 

each of two subplots, the upper image represents a raw T2*-weighted image, while the lower 

image shows the same map with the manual lesion delineation superimposed in yellow.
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Fig. 3. 
A: Examples of parameter maps for each of the measured parameters in mid-thoracic 

segments of spinal cord. Each column (from left to right) corresponds to different grades of 

EAE disability: control animal, low grade, intermediate grade and high grade of EAE. Rows 

correspond to different measured parameters (from top to bottom): mean diffusivity, MKT, 

FA, axial diffusivity, radial diffusivity, radial kurtosis, parallel kurtosis

B Examples of parameter maps for each of the measured parameters in mid-thoracic 

segments of spinal cord. Each column (from left to right) corresponds to different grades 

of EAE disability: control animal, low grade, intermediate grade and high grade of EAE. 

Rows correspond to different measured parameters: axonal water fraction, axonal diffusivity, 

axial extra-axonal diffusivity, radial extra-axonal diffusivity and concentration parameter of 

Watson distribution, the upper row depicts the delineation of spinal cord on the background 

of FA map.
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Fig. 4. 
Examples of parameter distributions in the post-hoc parameter analysis for MKT in GM 

(A) and K┴ in NAWM (B) illustrated with box-plots. Each of 4 subplots corresponds to 

one of the spinal cord segments (mid-thoracic, low-thoracic and lumbar and a graph for 

all voxels pooled across segments). In each one of the subfigures a box-plot represents the 

distribution of values inside and outside the hyperintensity lesions. The outliers (voxels) 

are plotted individually as red crosses. Blue dots correspond to the parameter means within 

each spinal cord. Asterisk denotes significant group-wise difference between the spinal cord 

means. In all three plots the central mark indicates the data median, the bottom and top 

edges indicate the 25th and 75th percentiles. The whiskers extend to the most extreme data 

points excluding outliers.
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Fig. 5. 
Application of a “hybrid” biomarker (Eq. 6) on animal-wise data. From left to right the 

values are group-wise means of described control, low-grade, intermediate and high grade 

EAE. Error bars depict standard deviation of animal-wise estimates of the biomarker. 

Asterisk denotes statistical significance measured with 1-way ANOVA.
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Table 3:

Post-hoc analysis of parameters in GM and NAWM. Average value for all the NAWM or GM in the particular 

segment in each sample. (A) For each of the disability groups comparisons low-grade vs intermediate grade, 

low-grade vs high grade and intermediate grade vs high grade parameters that were found significant (p<0.05) 

after ANOVA of per-sample mean in each one of the segments is provided in the corresponding cell. An FDR 

correction of multiple comparisons has been taken into account. GM parameters are underlined. (B) Each 

of disability groups (low, intermediate, high) compared with the control group. Parameters that were found 

significant (p<0.05) after ANOVA of per-sample mean in each of the segments are listed in corresponding 

cells. An FDR correction has been performed. GM parameters are underlined.

A

Low grade Intermediate grade High grade

Low grade MTO: MKT MTO:
MKTK┴
f De,║
LTO:
K┴
f
LU:
K┴
D┴
f
All:
K┴
f

Intermediate grade MTO: K┴

B

Low grade Intermediate grade High grade

Control MTO: MTO: MTO: MKTK┴ f De,║

LTO: LTO: LTO: K┴ f De,║

LU: LU: FA K┴ D┴ f LU: FA K┴ D┴ f De,║ κ

All: All: De,║ All: K┴ D┴ f De,║
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