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and validation of a machine‑learning model
Huan Wang1†, Qin‑Yu Zhao2†, Jing‑Chao Luo1†, Kai Liu1, Shen‑Ji Yu1, Jie‑Fei Ma1,4, Ming‑Hao Luo3, 
Guang‑Wei Hao1, Ying Su1, Yi‑Jie Zhang1, Guo‑Wei Tu1* and Zhe Luo1,4,5* 

Abstract 

Background:  Noninvasive ventilation (NIV) has been widely used in critically ill patients after extubation. However, 
NIV failure is associated with poor outcomes. This study aimed to determine early predictors of NIV failure and to 
construct an accurate machine-learning model to identify patients at risks of NIV failure after extubation in intensive 
care units (ICUs).

Methods:  Patients who underwent NIV after extubation in the eICU Collaborative Research Database (eICU-CRD) 
were included. NIV failure was defined as need for invasive ventilatory support (reintubation or tracheotomy) or death 
after NIV initiation. A total of 93 clinical and laboratory variables were assessed, and the recursive feature elimination 
algorithm was used to select key features. Hyperparameter optimization was conducted with an automated machine-
learning toolkit called Neural Network Intelligence. A machine-learning model called Categorical Boosting (CatBoost) 
was developed and compared with nine other models. The model was then prospectively validated among patients 
enrolled in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University.

Results:  Of 929 patients included in the eICU-CRD cohort, 248 (26.7%) had NIV failure. The time from extubation to 
NIV, age, Glasgow Coma Scale (GCS) score, heart rate, respiratory rate, mean blood pressure (MBP), saturation of pulse 
oxygen (SpO2), temperature, glucose, pH, pressure of oxygen in blood (PaO2), urine output, input volume, ventilation 
duration, and mean airway pressure were selected. After hyperparameter optimization, our model showed the great‑
est accuracy in predicting NIV failure (AUROC: 0.872 [95% CI 0.82–0.92]) among all predictive methods in an internal 
validation. In the prospective validation cohort, our model was also superior (AUROC: 0.846 [95% CI 0.80–0.89]). The 
sensitivity and specificity in the prediction group is 89% and 75%, while in the validation group they are 90% and 70%. 
MV duration and respiratory rate were the most important features. Additionally, we developed a web-based tool to 
help clinicians use our model.

Conclusions:  This study developed and prospectively validated the CatBoost model, which can be used to iden‑
tify patients who are at risk of NIV failure. Thus, those patients might benefit from early triage and more intensive 
monitoring.
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Background
Noninvasive ventilation (NIV) has been widely used and 
is currently deemed a promising therapy [1]. Its main 
benefits include: (1) providing oxygen and pressure sup-
port for patients with hypoxia and respiratory failure to 
avoid intubation; (2) facilitating ventilator weaning, when 
used sequentially or early after extubation. Compared 
with conventional oxygen therapy, NIV can offer more 
support and reduce the need for endotracheal intuba-
tion. In contrast to invasive mechanical ventilation, NIV 
causes fewer relevant complications, such as pneumonia 
or ventilator-induced lung injury [2].

However, a substantial proportion of patients (5–60%) 
experience NIV failure, owing to miscellaneous factors, 
including acute respiratory failure or congestive heart 
failure and so on. A considerable number of people may 
receive insufficient support or may experience NIV intol-
erance. Other situations in which patient condition may 
deteriorate without obvious signs may also lead to NIV 
failure. It was reported that low pH, low Glasgow coma 
scale score, low oxygenation, high heart rate, high res-
piratory rate, and high tidal volume were associated 
with NIV failure [3–7]. More importantly, NIV failure is 
strongly linked to poor outcomes: the mortality rate of 
patients with NIV failure and reintubation is markedly 
higher than that of patients with successful ventilation 
[8]. In addition, patients with delayed reintubation have 
a higher mortality rate than patients reintubated earlier 
[9, 10].

Accordingly, the assessment of NIV efficacy and timely 
subsequent treatment decisions appear to be particu-
larly crucial. Previous predictive studies have used not 
only single variables, such as the rapid shallow breath-
ing index (RSBI), but also comprehensive parameters to 
predict NIV failure. For instance, Duan et  al. have used 
a combination of variables including heart rate, acido-
sis, consciousness, oxygenation, and respiratory rate to 
develop a risk-scoring system for early prediction of NIV 
failure among patients with COPD [10]. Moreover, Liu 
et al. have developed a simple nomogram for predicting 
failure of noninvasive strategies in adults with COVID-
19 [10, 11]. In the present study, considering post-extu-
bation respiratory failure and congestive heart failure, 
etc. we enrolled all critical patients undergoing NIV 
after extubation, without limiting the types of primary 
illness leading to intubation. Moreover, some prior stud-
ies have explored the ability of machine-learning models 

to accurately predict extubation failure in recent years 
showing remarkable accuracy [12, 13].

Although certain parameters have been demonstrated 
to predict NIV failure after extubation, reports of using 
multiple variables with machine learning based on a large 
database remain scant. To help clinical decision, the pre-
sent study aimed at developing and validating a feasible 
and reliable machine learning model to predict NIV fail-
ure in patients receiving NIV after extubation.

We present the following article in accordance with the 
TRIPOD reporting checklist.1

Methods
Source of data
The eICU-CRD database, a multicenter database com-
prising de-identified health data associated with more 
than 200,000 admissions to ICUs across the United States 
between 2014 and 2015, was used to develop the pre-
dictive model. One author (QZ) obtained access to the 
database and was responsible for data extraction. For 
external validation, a post cardiac surgical NIV dataset 
was extracted form a prospective cohort in our setting 
(PREDICt study, NCT 03704324). The study was con-
ducted in accordance with the Declarations ration of 
Helsinki (as revised in 2013). The study was approved by 
institutional committee board of Zhongshan Hospital, 
Fudan University (NO. B2018-071) and informed consent 
was taken from all the patients. This cohort was approved 
by the relevant institutional ethics committee (approval 
No. B2018-071). The study is reported according to the 
recommendations of the Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) statement [14].

Selection of participants
In the eICU-CRD cohort, patients who underwent extu-
bation during ICU stays were included (Fig.  1). The 
exclusion criteria were: (i) age < 18  years, (ii) unplanned 
extubation, (iii) ICU stay < 12  h, or (iv) reintubation or 
death within 6 h after the initiation of NIV. In the PRE-
DICt cohort, all patients who did not meet the above 
exclusion criteria from April 2019 to January 2021 were 

Trial registration: NCT03704324. Registered 1 September 2018, https://​regis​ter.​clini​caltr​ials.​gov.
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prospectively enrolled. Informed consent was obtained 
from patients’ legally authorized representatives after 
admission to the ICU.

No patients were excluded because of missing values; 
instead, all eligible patients in eICU-CRD were included 
to maximize the statistical power of the predictive model.

Data collection and outcome definition
In the eICU-CRD cohort, clinical and laboratory vari-
ables were extracted within 6  h after the initiation of 
NIV (Additional file  1: Table  S1), including patient 
characteristics (age, sex, and ethnicity), laboratory data 
(arterial blood gas, full blood count, liver function, and 
renal function), and vital signs (respiratory rate, blood 
pressure, heart rate, SpO2, and temperature). For some 
variables with multiple measurements, such as mean 
airway pressure, heart rate, etc., average values were 
assessed. The average amount of input (crystalloid 
bolus or colloid bolus) and that of output (urine out-
put) were calculated within 6  h after the initiation of 
NIV, and were then normalized to patient weight. Glas-
gow Coma Scale assesses the degree of coma in three 
areas: eye opening response, verbal response and body 
movement. And the sum of the three areas is the coma 
index, which was extracted from nursing records. The 
time from extubation to NIV and ventilation dura-
tion is time interval which was also extracted from 
records. Peripheral oxygen saturation (SpO2), assessed 

by bedside vital signs monitor, is an estimation of the 
oxygen saturation level usually measured with a pulse 
oximeter device. Pressure of oxygen in blood (PaO2) 
means the tension created by the oxygen physically dis-
solving in the blood, which is assessed during blood gas 
analysis. Mean airway pressure (Pmean), showed on the 
ventilator, determined by the peak inspiratory pressure 
(PIP), PEEP, and the inspiratory to expiratory time ratio 
[15]. The mean airway pressure was measured for NIV 
within 6  h of initiation. On most ventilators, airway 
pressure is measured directly by a pressure sensor and 
displayed on the ventilator screen. Generally, Pmean 
closely correlates with mean alveolar pressure and may 
represent the stresses applied to the lung parenchyma 
with ventilation [16]. Furthermore, comorbidities were 
also assessed on the basis of the recorded International 
Classification of Diseases (ICD)-9 and ICD-10 codes 
[17], and the Charlson Comorbidity Index was calcu-
lated [18]. In addition, we extracted data on medica-
tions such as heparin, antibiotics, and vasopressors, as 
well as continuous renal replacement therapy. Finally, 
the hospital mortality, reintubation, and initiation of 
NIV after extubation were also assessed.

Generally, the definition of NIV failure was a need 
for endotracheal intubation or death [19]. The primary 
outcome of this study was the need for invasive venti-
latory support (reintubation or tracheotomy) or death 
after NIV initiation [20].

Fig. 1  Flow chart of patient selection. eICU-CRD, eICU Collaborative Research Database; ICU, intensive care unit
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Statistical analysis
Baseline characteristics were compared between the NIV 
success group and the failure group in the eICU-CRD 
and PREDICt cohorts. For continuous variables, values 
are presented as the means (standard deviations) (if nor-
mal) or medians [interquartile ranges] (if non-normal), 
and comparisons were made with the Student’s t-test or 
rank-sum test, as appropriate. For categorical variables, 
values are presented as total numbers [percentages], 
and chi-square tests or Fisher’s exact tests were used, as 
appropriate, to examine differences between groups.

An advanced machine-learning model called CatBoost 
was developed using the catboost Python package (version 
0.24). As shown in Fig. 1, the eICU-CRD dataset was first 
randomly split into a training set (70%) and internal vali-
dation set (30%). Of note, categorical variables or missing 
values were not processed because the CatBoost algorithm 
was able to handle them automatically. Second, the recur-
sive feature elimination (RFE) algorithm based on SHapley 
Additive exPlanations (SHAP) values was used to screen 
out key features, as shown in Fig. 2B. In short, a full Cat-
Boost model was developed on the basis of the training 
set with all available variables to predict NIV failure. Sec-
ond-order variables calculated on the basis of other vari-
ables, such as RSBI, Sequential Organ Failure Assessment 
(SOFA) and Simplified Acute Physiology Score (SAPS)-II, 
were manually excluded. The effects of the remaining fea-
tures on prediction scores were then measured with the 
functions of the SHAP Python package (version 0.32.1), 
which assessed the importance of each feature through a 
game-theory approach [21]. The feature with the smallest 
effect on the prediction was eliminated in each loop, and 
a new CatBoost model was recursively fitted on the basis 
of smaller feature sets until a significant decrease in model 
performance was observed [22]. Finally, the key features 
that had the greatest importance and could be easily col-
lected in clinical settings were selected.

To further improve the model performance, we con-
ducted hyperparameter tuning by using an automated 
machine learning toolkit called Neural Network Intel-
ligence designed by Microsoft Research. We chose the 
Tree-structured Parzen Estimator, a sequential model-
based optimization algorithm, as the tuning algorithm, 
which sequentially constructs models to approximate 
the performance of hyperparameters according to his-
torical measurements, then subsequently chooses new 
hyperparameters to test on the basis of this model 
(Bergstra et  al., 2011). The hyperparameter search 
domain is summarized in Additional file  2: Table  S2. 
A total of 100 trails were examined, and the param-
eters with the greatest area under the receiver operat-
ing characteristic (AUROC) were saved. A compact 
CatBoost model using the saved parameters was then 

trained on the selected features, then validated in the 
validation sets.

AUROCs were also calculated to compare our model 
with other predictive factors commonly used in ICUs, 
such as RSBI and the ratio of pulse oximetry/frac-
tion of inspired oxygen to respiratory rate. Addition-
ally, ten different models were derived on the training 
set and compared with our CatBoost model, including 
K-Nearest Neighbor (KNN), AdaBoost, Multi-Layer 
Perceptron (MLP), Support Vector Machine (SVM), 
Logistic Regression (LR), NaiveBayes, Gradient Boost-
ing Decision Tree (GBDT), random forest, LightGBM, 
and eXtremely Gradient Boosting (XGBoost) [23]. Of 
note most of these models cannot analyze data with 
missing values, and therefore datasets were imputed 
with multiple imputation [24]. Furthermore, categorical 
variables were converted to one-hot encoding, and data 
were centered on zero and scaled before training of the 
KNN, MLP, SVM, LR, and NaiveBayes models. These 
nine models and our CatBoost model were compared in 
both the internal and prospective validation sets (shown 
in Fig. 2D).

All statistical analyses in the present study were per-
formed with Python (version 3.7.6); P < 0.05 was consid-
ered statistically significant.2

Results
Baseline characteristics
A flow chart of patient selection is shown in Fig.  1. In 
this study, 929 and 419 patients who experienced NIV 
within 48  h after extubation were eventually included 
in the eICU-CRD and PREDICt cohorts, respectively. 
The eICU-CRD dataset was divided into a training set 
(n = 650; 70%) and internal validation set (n = 179; 30%). 
During the enrollment period, 419 patients were eligible 
for inclusion in the external validation cohort, and no 
patients were excluded because of missing data.

The comparison of baseline characteristics between 
the NIV success and failure groups in the eICU-CRD 
and PREDICt cohorts is summarized in Table  1. Vari-
ables with missing data are shown in the appendix. The 
ratio of patients who experienced NIV failure was 26.7% 
(n = 248) in the eICU-CRD group and 20.5% (n = 86) in 
the PREDICt cohort. In the eICU-CRD cohort, the NIV 
failure group had higher heart rate, respiratory rate, 
glucose, urine output, input, mean airway pressure and 
longer mechanical ventilation duration (p < 0.05). A sig-
nificantly lower GCS score and PaO2 were observed in 
the failure group. Besides, time from extubation to NIV, 

2  The authors are accountable for all aspects of the work in ensuring that 
questions related to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved.
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GCS score, SpO2, PaO2, mechanical ventilation dura-
tion, and mean airway pressure significantly differed 
between the NIV success and failure groups in the PRE-
DICt cohort. Higher mean airway pressure, and longer 
mechanical ventilation duration were observed in the 
NIV failure group than in the success group.

Moreover, in the PREDICt cohort, a significant differ-
ence was observed in the duration from extubation to 
NIV initiation (≤ 24  h/ > 24  h) (p < 0.05). Reintubation 
rate was 22.6% (n = 210) in the eICU-CRD group while 
it was 17.9% (n = 75) in the PREDICt cohort. Further-
more, 80 patients in the eICU-CRD group died during 
hospitalization, accounting for 32.4% of the patients 
with NIV failure (n = 248). In the PREDICt cohort, the 
hospital mortality was 36% (n = 31).

Development of the CatBoost model
The RFE algorithm was implemented, and 93 NIV-fail-
ure-related indicators were initially screened (shown in 
Fig.  2A). Hyperparameter optimization was then con-
ducted (shown in Fig. 2C). The top 15 key features were 
finally selected, including duration from extubation to 
NIV initiation (≤ 24 h/> 24 h), age, GCS, heart rate, res-
piratory rate, MBP, SpO2, temperature, glucose, pH, 
PaO2, urine output, input volume, mechanical ventila-
tion duration, and mean airway pressure. Every variable 
was measured after NIV initiation within 6 h. After 100 
trails, the CatBoost model with the greatest AUROC was 
obtained (shown in Fig. 3). The final settings of the hyper-
parameter search are listed in Additional file 2: Table S2.

As shown in Fig. 4A, the full CatBoost model with 93 
variables had an AUC of 0.874, whereas the compact 
CatBoost model with 15 key available variables had a 
remarkable AUROC of 0.872. Meanwhile in Fig.  4B–
C, respectively, SHAP values for the two models were 
assessed on the internal validation set. Feature values 
were illustrated on a spectrum with blue representing 
the lowest value. The positive SHAP value indicates 
an increase in the risk of NIV failure and vice versa. 
According to the sum of absolute SHAP values over all 
samples, features were ranked [21]. As shown, respira-
tory rate, urine output, and mean airway pressure were 
also among the top important features. Furthermore, 

the MV duration was the most important variable for 
the prediction of NIV failure in the final model, and a 
longer duration indicated a higher NIV failure risk.

Figure 5A, B depicts the comparison between the Cat-
Boost model and other commonly used predictive factors 
or models. As shown, our CatBoost model significantly 
outperformed other predictive factors or models and 
had the greatest AUROC. Besides, we compared our 
model with HACOR score put forward by Duan et al. In 
view of different types of included patients between two 
studies(Duan’s study is for COPD patients vs ours is for 
extubated patients), we just listed the model results in the 
Additional file 3: Figure S1. For simplicity, only the results 
of CatBoost and LR are shown. The sensitivity and speci-
ficity analyses of these predictive methods on an internal 
validation set are summarized in Table 2. The sensitivity 
and specificity in the prediction group is 89% and 75%, 
while in the validation group they are 90% and 70%. The 
Youden Index for the two groups is 64% and 62% respec-
tively. Decision Curve Analysis (DCA) is also listed in 
the Additional file  4: Figure S2. Although the CatBoost 
model did not have the best performance in all measures, 
it had the greatest Youden Index, which is considered a 
more comprehensive evaluation approach.

Prospective validation and a web‑based tool
We additionally assessed the ability of our final model 
to discriminate patients after extubation who were 
unlikely to benefit from NIV according to the CatBoost 
model. The results of prospective validation are shown 
in Fig.  6A, B. Our model also had a better generaliza-
tion ability (AUROC: 0.846 [95% CI 0.82–0.92]) than the 
other nine models. The sensitivity and specificity analysis 
are also summarized in Table 2.

On the basis of the final machine-learning model, a 
web-based tool was also established to allow clinicians to 
use the compact model: http://​www.​aimed​icall​ab.​com/​
tool/​aiml-​nivfa​ilure.​html. An example of using our tool is 
depicted in Fig. 6C. Users enter the variable values when 
the patient receives NIV within 6 h, leaving missing val-
ues blank, then click the ‘predict’ button. The risk of NIV 
failure is assessed by the CatBoost model, and the top 15 
important features are returned, as shown in Fig. 6B.

Fig. 2  Schematic illustration of the study design. A Patients with NIV initiated within 48 h after extubation in the eICU Collaborative Research 
Database were included in the study, and 93 variables were extracted. The dataset was divided into a training set (70%) and internal validation set 
(30%). B The recursive feature elimination algorithms were performed on the training set, and key features were selected. C Hyperparameters was 
optimized by using an automated machine learning toolkit on the training set. D The developed CatBoost model outperformed other models in 
both the internal validation and prospective validation sets

(See figure on next page.)

http://www.aimedicallab.com/tool/aiml-nivfailure.html
http://www.aimedicallab.com/tool/aiml-nivfailure.html
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Fig. 2  (See legend on previous page.)
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Discussion
In this study, we developed and validated a predic-
tive machine-learning model for extubated critically ill 
patients receiving NIV within 6 h. This model, based on 
15 key parameters (mechanical ventilation duration, RR, 
urine output, GCS, mean airway pressure, temperature, 
age, heart rate, glucose, time from extubation to NIV, 
mean blood pressure, input volume, SpO2, PaO2, and 
pH) in the first 6 h of NIV, had a discriminatory ability of 
0.872 (AUROC value of compact model) and an AUROC 
of 0.846 in the PREDICt cohort. To our knowledge, this is 
the first model constructed on a large-scale public data-
base and then further prospectively validated in a uni-
versity teaching hospital to early predict NIV failure after 
extubation. In addition, it is the first model to predict 
NIV failure with machine learning. Moreover, in contrast 
to previously published models, we provide an open and 
accessible data interface for the public to use and validate 
our model. The extubated patients needing NIV within 
48  h, unlike those with successful extubation, were in 
more serious condition, and had poorer prognosis and 

a higher risk of death. To avoid delayed reintubation, 
timely use of our model and accurately predicting NIV 
failure within 6 h could help clinicians identify high-risk 
patients and adjust further treatment decisions.

The SHAP value chart may reveal the indicators on 
which attention should be focused. SHAP values can 
reveal the importance of each feature through a game-
theory approach. Feature values were indicated by a spec-
trum, with blue representing the lowest value. A positive 
SHAP value represents an increase in the risk of NIV 
failure, whereas a lower value indicates decreased risk. 
Features were ranked according to the sum of absolute 
SHAP values over all samples. By assessing SHAP values, 
we found that MV duration and respiratory rate were the 
most important features for prediction, in agreement 
with prior studies. Furthermore, urine output, GCS, and 
mean airway pressure were also shown to be associated 
with NIV failure. In addition, the NIV failure rate in the 
PREDICt cohort was approximately 26%, thus confirming 
the results of previous reported studies. We further veri-
fied the previous predictive scale reported by Duan et al. 

Fig. 3  Hyperparameter optimization process with an automated machine learning toolkit. A The blue point represents the result of a trail, and the 
dark orange line represents the best area under the receiver operating characteristic curve (AUROC). B Each line represents a trail, and the green to 
red color line represents its AUROC
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for NIV failure in selected patients with COPD (based on 
heart rate, acidosis, consciousness, oxygenation, and res-
piratory rate) with data including the above parameters 
in the eICU-CRD group. Our machine learning model 
Catboost also includes these indicators and we found that 
it has an AUC of 0.872. Our study aims at the prediction 
of NIV failure among a more general population after 
extubation, confirming that these above parameters play 
a significant role.

The timing of initiation of NIV treatment has been 
always a crucial aspect. Among patients whose dura-
tion from extubation to NIV was 24  h or less in the 
PREDICt cohort (n = 876), approximately 26% (n = 229) 
experienced NIV failure. In the validation cohort, it is 
about 17% (n = 59). This result may indicate the poten-
tial positive effect of early initiation of NIV after extu-
bation. It may be consistent with those from previous 
studies showing that early use NIV is associated with a 

Fig. 4  Comparison of the full and compact CatBoost models. The full model was developed on the basis of all available features, whereas the 
compact model was derived on the basis of key features selected by the recursive feature elimination algorithm. Both models had optimized 
hyperparameters. A Receiver operating characteristic curves (ROCs) of the full and the compact models. Distribution of the effects of each feature 
on the output of B the full model or C the compact model, estimated using the SHapley Additive exPlanations (SHAP) values. The plot sorts features 
by the sum of SHAP value magnitudes over all samples. The blue to red color represents the feature value (red high, blue low). The x-axis measures 
the effects on model output (right positive, left negative)

Fig. 5  Comparison of model performance with other predictive tools and in the internal validation set. A Receiver operating characteristic curves 
(ROCs) of CatBoost and other predictive tools/factors. B Receiver operating characteristic curves (ROCs) of different models
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significant reduction of post-extubation respiratory fail-
ure [19, 25]. However, this finding must be validated in 
further prospective studies [14–18, 21].

To make this model easier to apply at bedside, we arti-
ficially removed some of the more complex ratings. Ini-
tially, 93 variables were evaluated, and we eventually 
selected 15 key features that could be easily obtained, 
thus, improving the model’s usability and convenience 
over those in previous studies. As expected, the slight 
decrease in the AUROC of the compact model based on 
selected features (Fig. 4A) demonstrated that other vari-
ables could be excluded without substantially decreasing 
model performance. The efficacy of these features on the 
prediction results were then assessed with SHAP values. 
Although SAPS-II, APACHE-II, and other risk scores 
have been shown to be important for prediction in previ-
ous studies as well as in our study, we still did not incor-
porate these features to ensure relatively high accuracy. 
The main reason for this decision was that those scores 
greatly increase the computational complexity, and would 
make our model inconvenient to use in clinical settings 
[11]. In terms of the GCS, clinicians must assess patient 
consciousness, particularly in patients with conditions 
such as COPD or hypercapnia who receive NIV. This 
score can also be evaluated quickly and completely at the 
bedside, and therefore, remained in the rating scale.

The CatBoost model derived with optimized hyper-
parameters, on the basis of the key features described 
above, outperformed other predictive factors and nine 
models on the eICU-CRD dataset. However, CatBoost, 
as a gradient boosting algorithm, has not yet been widely 
adopted in critical care research, although prior stud-
ies have reported that CatBoost significantly outper-
forms other machine-learning models in various tasks. 
Besides, CatBoost can successfully accommodate cat-
egorical features and some missing values automatically, 
and advantageously handles them during training instead 
of preprocessing time. Therefore, missing values do not 
need to be imputed and categorical features no longer 
need to be encoded. On the other hand, the algorithm 
uses a new schema to calculate leaf values when select-
ing the tree structure. It may help reduce overfitting, the 
major problem constraining the generalization ability of 
machine-learning models [12].

Our model is beneficial for clinical and medical 
resources as well as economic savings. In addition to 
external validation, to prospectively validate our model, 
more than 400 patients were enrolled from the CSICU of 
Zhongshan Hospital, Fudan University. Our model showed 
a greater AUROC (in Fig.  6) than other models, indicat-
ing its remarkable generalization ability and clinical value. 
And we developed a web-based tool to help clinicians use 

Fig. 6  Application of the CatBoost model. A Receiver operating characteristic curves of different models in the prospective validation set. B 
Influence of the SHAP value on model output. C An example of the web-based tool. D The prediction results of CatBoost model and the top ten 
importance features are summarized. A green bar indicates a protective factor, whereas a red bar represents a risk factor. Bar length corresponds to 
the magnitude of protection or risk
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the model, which provides a user-friendly interface [12]. 
After entering the variable values, the tool returns the risk 
of NIV failure as well as the top 15 important features. 
These results should help clinical decision-makers under-
stand patient status and pursue appropriate treatment 
strategies. More importantly, our model is a promising 
tool to improve the prognosis of patients undergoing NIV, 
and may have extremely positive effects medically.

Several important limitations of this study must be con-
sidered. First, some novel parameters or techniques pro-
posed by recent studies were not included in our study, 
such as central venous-to-arterial PCO2 difference [26], 
thenar oxygen saturation [27], and diaphragm dysfunc-
tion [28]. We argue that these parameters or techniques 
require multiple measurements or complex calculations, 
thus hindering application in clinical settings. The vari-
ables selected in our study can be rapidly determined and 
directly measured, thus improving the model’s practical-
ity. Second, the sensitivity and specificity of our model 
were 89% and 75%, respectively; therefore, the false posi-
tive rate may be relatively high. Several patients might be 
incorrectly predicted to have failure and thus unneces-
sarily consume medical resources. Third, the parameter 
monitoring in NIV may not be accurate. For example, the 
included RR and mean airway pressure may lead to errors 
in the parameters due to patient intolerance during NIV, 
patient-ventilator asynchronies and other reasons; there-
fore, close monitoring and observation by medical staff 
are needed. Finally, because the PREDICt cohort was per-
formed in the CS-ICU, the types of patients enrolled in 
the validation study are limited, and consequently, the effi-
cacy of this model might be skewed. In the future, a more 
diverse group of patients and randomized controlled trials 
will be needed to further verify the diagnostic power.

Implications
As shown in previous studies, NIV failure is indepen-
dently associated with higher mortality. Reintubation is 
also accompanied by the occurrence of complications 
such as acute respiratory distress syndrome, sepsis, ven-
tilator-associated pneumonia, prolonged ICU stays, and 
increased medical costs. With this model, if a patient 
is predicted to have a high risk of NIV failure, more 
intensive monitoring could be provided, and/or earlier 
intubation might be considered, thus potentially reduc-
ing mortality. The model’s clinical value will be further 
assessed and reported in future prospective studies.

Conclusions
In conclusion, the present study screened 15 key fea-
tures associated with NIV failure in patients whose 
NIV was initiated within 6  h from extubation, and 
developed a CatBoost model that outperforms existing 

models in predicting NIV failure, particularly early NIV 
failure within 6  h from attempted extubation. Because 
the machine-learning model is based on variables eas-
ily determined at bedside, it can be conveniently used 
to assess the efficacy of NIV in general populations 
after extubation. In higher risk patients, early intubation 
or other promising therapies should be considered by 
clinicians.
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