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Abstract

Background.—Machine learning (ML) models are beginning to proliferate in psychiatry, 

however machine learning models in psychiatric genetics have not always accounted for ancestry. 

Using an empirical example of a proposed genetic test for OUD, and exploring a similar test for 
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tobacco dependence and a simulated binary phenotype, we show that genetic prediction using ML 

is vulnerable to ancestral confounding.

Methods.—We utilize five ML algorithms trained with 16 brain reward-derived “candidate” 

SNPs proposed for commercial use and examine their ability to predict OUD vs. ancestry in an 

out-of-sample test set (N=1000, stratified into equal groups of n=250 cases and controls each 

of European and African ancestry). We rerun analyses with 8 random sets of allele-frequency 

matched SNPs. We contrast findings with 11 genome-wide significant variants for tobacco 

smoking. To document generalizability, we generate and test a random phenotype.

Results.—None of the 5 ML algorithms predict OUD better than chance when ancestry 

was balanced but were confounded with ancestry in an out-of-sample test. In addition, the 

algorithms preferentially predicted admixed subpopulations. Random sets of variants matched 

to the candidate SNPs by allele frequency produced similar bias. Genome-wide significant tobacco 

smoking variants were also confounded by ancestry. Finally, random SNPs predicting a random 

simulated phenotype show that the bias attributable to ancestral confounding could impact any 

ML-based genetic prediction.

Conclusions.—Researchers and clinicians are encouraged to be skeptical of claims of high 

prediction accuracy from ML-derived genetic algorithms for polygenic traits like addiction, 

particularly when using candidate variants.
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1. Introduction.

Machine learning (ML) applications are increasingly used to leverage big data from 

electronic health records to classify patient populations (Ellis et al., 2019). In the realm 

of direct to consumer (DTC) and physician-guided genetic testing, ML approaches are 

gathering momentum, especially for psychiatric disorders. Currently, several commercial 

entities offer genetic testing for psychiatric disorders, and some have begun to offer 

controversial and scientifically disproven proposals for genetic embryo selection for 

behavioral and psychiatric traits (Karavani et al., 2019). While most genetic tests 

within psychiatry are aimed at medication efficacy in patients (e.g., pharmacogenetic or 

pharmacokinetic testing), a few recent tests target prediction of future psychiatric disorders. 

Alongside the potential ethical challenges of such predictions (Hooker, 2021) lie the 

scientific limitations. The genetic “inputs” that are used by these tests typically comprise of 

“candidate gene variants” that are scored using pattern recognition software, powered with 

“artificial intelligence” frameworks, such as machine learning (ML). Most candidate variants 

have not borne out in unbiased genome-wide association studies (GWASs) (Border et al., 

2019; Johnson et al., 2017). Yet, they tend to be popular as genetic markers of disease risk 

in commercial assays (e.g., Keri Donaldson, et al. 2017). Exacerbating the problem of false 

positive candidate variant findings, past work on ML algorithms in psychiatric genetics has 

shown that these models may not systematically account for genetic ancestry (Bracher-Smith 
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et al., 2020). As a consequence, patients and physicians are now confronted with products 

that may be unrelated to disease, but rather serve as panels of ancestry informative markers.

One psychiatric illness that is being targeted by ML-based genetic algorithms is opioid use 

disorder (OUD), a complex trait associated with high disease burden, and estimated to affect 

2% of the adult population (Saha et al., 2016). Predictive tools that aim to identify at-risk 

individuals for prevention and early intervention are being developed (Ellis et al., 2019), and 

because OUDs are moderately heritable (h2 = 30–70%; Sun et al., 2012), incorporating 

genetic variation into a predictive tool has great appeal. In addition, because opioids 

comprise front-line pain management drugs, biomarkers that index risk of OUD in this 

setting are of potential interest. Industry-selected candidate variants (e.g., in dopamine and 

serotonin candidate genes) are routinely favored by those developing purported prediction 

tools for addiction, despite the scientific consensus regarding the weaknesses inherent to 

selection of candidate genes (Border et al., 2019; Duncan and Keller, 2011; Johnson et 

al., 2017). However, OUD is highly polygenic with a large number of variants of small 

effect contributing to its heritability. The largest genome-wide association study (GWAS) 

of OUD to date (15,756 OUD cases and 99,039 controls) identified only one genome-wide 

significant variant, rs1799971, in the gene encoding the mu opioid receptor (OPRM1) (Zhou 

et al., 2020); the effect size associated with this variant was small (β = −0.066 [SE = 0.012]). 

Current estimates of the total single nucleotide polymorphism (SNP)-based heritability 

of OUD is 11% (SE = 1.8%)(Zhou et al., 2020), putting a limit on overall predictive 

ability using common variants. Thus, we hypothesized that when ML algorithms utilize 

unsubstantiated candidate variants and do not properly account for population stratification, 

they produce predictions of disease outcome that are spurious and can cause mis-diagnosis.

In contrast to OUD, loci for tobacco phenotypes are numerous (Liu et al., 2019). Similar 

to OUD, the top genome-wide significant variants for tobacco smoking were in candidate 

genes (e.g., variants in CHRNA5, CYP2A6). These GWAS-validated candidate variants may 

have measurable impact on smoking cessation (Chen et al., 2020). Whether the selection of 

GWAS-validated candidate variants ameliorates challenges of ancestrally confounded ML 

prediction remains unevaluated. To investigate whether genome-wide significant variants 

that may also have been candidate variants would overcome limitations of the OUD genetic 

test, we selected the 11 lead SNPs from the largest GWAS of cigarettes smoked per day 

for a comparison analysis (Liu et al., 2019). To further demonstrate the generalizability of 

ancestral confounding in ML, we simulated random genotypes and phenotypes to document 

that ancestral confounding produces seemingly accurate prediction even when the phenotype 

is random noise and the variants are selected randomly from the genome.

OUD and tobacco smoking are leading contributors to mortality – precision medicine 

efforts to preempt progression to drug misuse or intervene with tailored treatments will 

likely continue to incorporate genetic data. While a good predictor could aid physicians 

by providing them with additional information on which to base personalized treatment 

options, inaccurate predictive tests pose substantial hazards. For OUD in particular, 

the possible harms attributable to a false positive result include both the withholding 

of beneficial medication and discrimination (e.g., employer bias). Such tests must be 

rigorously evaluated. Here, we examine two critical considerations in genetic prediction 
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tools, particularly those developed using ML: population stratification and variant (feature) 

selection. First, we test the prediction accuracy of ML models with candidate variants that 

comprise a commercial genetic test (previously Life Kit Predict from Prescient Medicine, 

now available from Solvd Health: https://solvdhealth.com/oud/). We examine accuracy as 

genetic ancestry is progressively accounted for. We also test the impact of mismatched 

ancestry as a predictor of degree of admixture in African Americans. Next, to test if a 

better choice of genetic variants ameliorates the problem, we select 11 variants implicated 

by the largest GWAS of cigarettes per day and use the same ML models to predict 

tobacco dependence, as assessed with the Fagerström Test for Nicotine Dependence. We 

also use random sets of genetic variants (that have been matched by allele frequency to the 

original variants) to see how these randomly selected SNPs compare to the candidate SNPs 

across different subsamples for a simulated trait. We hypothesize that ML algorithms will 

preferentially identify ancestral confounding over traits of interest, regardless of the quality 

of the genetic variants.

2. Methods

2.1 Selection of direct-to-consumer test methodology for comparison

We identified current consumer/physician-oriented genetic tests by conducting a web search 

within Google for “Genetic Testing for Psychiatry” and “Genetic Testing for Addiction” and 

selecting all tests from the first five pages. Supplemental Table 1 shows a list of the 12 tests 

that were found, and known mechanisms for evaluation. The methodology presented in the 

current study was based on those used by Solvd Health (previously Life Kit Predict®), a 

physician guided genetic testing kit for OUD. This test was selected because (a) it purports 

to predict, with 97% accuracy, risk for OUD, a complex trait that has been shown to be 

highly polygenic and influenced by environment, (b) is accompanied by a training procedure 

that was published and therefore, can be recapitulated. While not completely transparent, 

this was the only test with enough information to allow us to evaluate the test, as described 

below.

The genetic component of Solvd Health’s prediction algorithm relies on 15 or 16 candidate 

single nucleotide polymorphisms (SNPs) depending on the version of the test (Donaldson, 

et al. 2017), most of which are used in other DTC tests (see Supplemental Table 1) and 

have often been labeled in the psychiatric genetics literature as “candidate genes” (Border 

et al., 2019; Johnson et al., 2017). Only one of these SNPs (OPRM1*rs1799971) has 

been shown by GWAS to affect OUD risk; the very small effect size of this variant 

(beta= −0.066, p=1.51e-10) is unlikely to predict OUD risk to a great degree. With the 

exception of rs1799971, none of these candidate SNPs have been associated at genome-wide 

significant levels (p<5E-8) (Supplemental Table 2) with any complex trait in the GWAS 

Atlas (Watanabe et al., 2019) (Supplemental Table 3). However, the MAFs of many of 

the candidate SNPs vary greatly across ancestral populations (Figure 1). That is, taken 

individually, they tend to be associated with one’s ancestral population, but not to a trait. 
Accordingly, it was our expectation that sets of these markers would also necessarily be 

associated to population rather than trait, regardless of the sophistication of the interposed 

statistical methodology.
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2.2 Sample description

We tested the approach using data from subjects recruited at five sites across the eastern 

United States as part of the Yale-Penn study of the genetics of substance dependence 

and comorbid psychiatric and behavioral phenotypes (McCarthy et al., 2016). All 

participants were interviewed with the Semi-Structured Assessment for Drug Dependence 

and Alcoholism (Consortium et al., 2016) and provided written informed consent through a 

protocol approved by the institutional review board at each participating site – Yale Human 

Research Protection Program (protocols 9809010515, 0102012183, and 9010005841), 

University of Pennsylvania Institutional Review Board, University of Connecticut Health 

Center Institutional Review Board, Medical University of South Carolina Institutional 

Review Board for Human Research, and the McLean Hospital Institutional Review Board. 

Funding agencies did not play any role in the study.

2.3 Genotyping and quality control

The Yale-Penn phase 1 sample was genotyped using the Illumina HumanOmni1-Quad array. 

Individuals with mismatched sex or genotype call rate < 98% were removed; SNPs with 

genotype call rate < 98% or minor allele frequency < 0.01 were removed before imputation. 

Imputation was performed using Minimac3 (McCarthy et al., 2016) and the Haplotype 

Reference Consortium reference panel implemented in the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html). More details on the Yale-Penn sample 

can be found elsewhere (Zhou et al., 2017).

Genetic ancestral group was defined by principal component (PC) analysis on genotyped 

SNPs (pruning by linkage disequilibrium of r2 > 0.2) and the 1000 Genome phase 3 

reference panels (Auton et al., 2015) using EIGENSOFT (Patterson et al., 2006; Price et al., 

2006a). The first 10 PCs were used to cluster the participants into African-American and 

European-American groups and to remove outliers from the 2 groups.

European-ancestry proportions in African-American samples were estimated using 

ADMIXTURE (Alexander et al., 2009). SNPs were included in ancestry prediction 

following the developer’s recommended independent SNP selection procedures. 

ADMIXTURE’s cross-validation (CV) procedure was used to determine the most 

appropriate K – the most sensible number of component ancestries with which to model 

unknown sample ancestries. Based on lowest CV error and failure to substantially reduce 

CV error with additional K, we chose K=2 as appropriate for these data. The mean European 

ancestry for the African-Americans included in this study was 23.2%.

2.4 Selection of random sets of 16 variants.

We calculated, in the Yale-Penn sample, the minor allele frequency (MAF) of the SNPs in 

Donaldson et al. (2017) using PLINKv1.90 over a total sample of 5,057 individuals (3286 

African American and 1768 European American). For comparison, in addition to the SNPs 

used by Donaldson et al. (2017) we identified 8 lists of random SNPs - each SNP from 

Donaldson et al. was replaced by a random SNP with matched MAF in the 2 populations; all 

random SNPs were unique.
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2.5 Machine learning training procedure

Each of the 16 alleles was dummy coded for homozygosity or heterozygosity status to allow 

for interactions among different levels of dosage of each minor allele from each SNP with 

minor allele dosages of other SNPs (i.e., to measure epistasis, if present). Each supervised 

ML algorithm was trained separately in the same training set, which varied from 500 to 

1000 individuals based on k iterations of the learning curve (see Figure 2). The training and 

test sets were initially analyzed in a way that assured that they were completely confounded 

by population differences, with all cases of European ancestry and all controls of African 

ancestry. At each iteration of the learning curve, we added 10 individuals of African descent 

to the cases and 10 individuals of European descent to the controls, through 26 steps, to 

reach completely balanced samples (see Figure 2).

For our analysis, we chose 5 broad algorithm-generating methods as a survey of supervised 

ML, because they have been used by academic and commercial entities to attempt to predict 

OUD. All were implemented in the Caret package in R version 3.6.110: (1) (extreme) 

Gradient Boosted Machines (GBM), which incorporate population stochastic gradient 

descent procedures that are ubiquitous in industry; (2) Linear and (3) nonlinear (radial basis 

function) Support Vector Machines (SVM) to compare predictive accuracy from different 

kernels; (4) Random Forests (RF) to represent more complex tree structures; and (5) Elastic 

Nets (EN) for representation of (flexible) linear regression models. All models were trained 

with 10-fold cross validation and a hyperparameter grid-search in the training set. All Area 

Under the Curve (AUC) and pseudo r2 were extracted from the non-overlapping test set. 

Learning curves were plotted at all iterations.

2.6 Generalizability of confounding tested using Tobacco Dependence and a random 
binary phenotype

To examine the generalizability of this confounding beyond the test case of OUD prediction, 

we examined prediction of tobacco dependence, measured by the Fagerstrom Test of 

Nicotine Dependence (FTND). Cases were defined as scores ≥4 and controls with scores 

<4 (Heatherton, et al., 1991). Eleven genome-wide significant lead variants for cigarettes per 

day were selected from the Liu et al. (2019) cigarettes per day GWAS and the Quach et al. 

(2020) GWAS of FTND. We used both the cigarettes per day and the FTND GWAS because 

they are genetically correlated at .95 and share some of the same lead SNPs (Quach et al., 

2020): rs3743078, rs16969968, rs56113850, rs58379124, rs215600, rs3025383, rs2072659, 

rs7951365, rs7431710, rs11725618, rs45568238. We limited our learning curves to 140 

subjects in each ancestral group and case/control group (instead of 250), as this sample size 

allowed for ancestral balance needed for the learning curve approach (as there are only 140 

control of European ancestry available). We also trained the models within the European 

American (EA) and African American (AA) subsamples. Data on 658 cases (AA = 302, 

EA = 356) and 342 controls (AA = 198, EA = 142) were used in training and testing sets, 

respectively.

To explore the problem further, we generated a random binary phenotype by drawing from a 

binomial distribution. That is, the phenotype was essentially random noise and therefore not 

truly predictable. We matched the number of cases and controls for our random variable by 
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genetic ancestry, such that we ended with the same split in cases and controls by ancestry 

as was used in our OUD demonstration. We then took the 8 random SNP set permutations 

and used them to predict the random noise. Because we used random SNPs with random 

outcomes, the effects provide an empirical NULL hypothesis: what the data look like when 

the result is by definition meaningless. We hypothesized that this empirical null will still 

show high effect sizes at high confounding, i.e., even random noise can seemingly be 

“accurately” predicted when the sample is confounded.

3. Results

3.1 Evaluation of a modern OUD prediction kit in the presence of confounding by 
ancestry.

For our empirical test, all models were trained using the panel of 16 SNPs referenced 

in Donaldson et al. (Donaldson, et al. 2017), the basis for Solvd Health’s OUD test kit, 

and were trained to predict OUD in the Yale-Penn sample. These 16 variants demonstrate 

substantial allele frequency differences across ancestries (Figure 1). As shown in Figure 3A 

for all 5 ML methods, prediction of OUD case status was apparently high (AUC > 0.8) when 

the sample was fully confounded (that is, when predictions were essentially predictions of 

genetic ancestry), and case-status prediction decreased as samples were better ancestrally 

balanced, until the prediction was no better than expected by chance alone in a balanced 

sample (AUC approached 0.5). At every iteration of every ML approach, the 16 variants 

predicted genomic ancestry much better than they predicted OUD.

3.2 Random SNPs predict OUD as well as biologically plausible SNPs due to 
confounding.

All iterations with 8 permutations of random SNPs matched on minor allele frequency 

to those in Donaldson et al. (2017) performed similarly to the published candidate SNPs 

(Figure 3B shows 1 permutation, the other 7 are shown as Supplemental Figure 1). Across 

all iterations of all permutations the ML models using random SNPs were apparently 

predictive of OUD when confounded by ancestry, with decreasing prediction as ancestral 

balance improved. They were better predictors of ancestry than OUD. Therefore, the 

candidate variants perform no better than randomly selected variants with the same ancestral 

allele frequencies.

3.3 Confounded models are better at detecting subpopulation within minority 
populations than diagnosis.

As African Americans include substantial European admixture (Jordan et al., 2019) we 

examined whether the 16 OUD variants used by Solvd Health predict the extent of European 

(genetic) admixture within the African American cases and controls. We chose the 15th 

iteration (Figure 3) of the learning curve as it had the greatest balance of ancestry that still 

offered some prediction of OUD that was greater than chance. Across all approaches, ML 

models designed to predict OUD were up to 5 times better predictors of the percent of 

European admixture in African-American individuals than of OUD (i.e., case status) (Figure 

4).
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3.4 Genome-wide significant variants for Nicotine Dependence show similar bias.

Using variants discovered in a large, un-biased GWAS of tobacco smoking (Liu et al., 2019; 

Quach et al., 2020) showed the same pattern: when models were confounded by ancestry, 

genetic prediction of nicotine dependence appeared to be accurate but the apparent accuracy 

fell to zero as we balanced ancestral groups within cases and controls (Supplemental Figure 

2). At all iterations, the model was better at predicting ancestry than nicotine dependence, 

even with SNPs that were genome-wide significant. Finally, we trained the prediction model 

within each ancestral population and found that AUC values did not exceed .504 in the 

European sample (Supplemental Table 4), suggesting no prediction even when training 

within the discovery ancestral population.

3.5 Ancestral confounding leads to random genotypes making apparently accurate 
predictions of random phenotypes, mirroring results for OUD.

We next took the 8 random sets of SNPs (above) and used them to predict a randomly 

generated phenotype. For a randomly generated phenotype, at perfect confounding by major 

geographic ancestral group, we get high apparent predictive accuracy of random noise, but 

as we balanced the training and test sets by ancestry, our model performs as expected, 

with prediction no better than a coin flip (Figure 3C). Across all iterations (Supplemental 

Figure 3), all models trained to predict random noise were stronger predictors of ancestry 

than random noise, suggesting that even if the outcome is meaningless, we can gain the 

appearance of meaningful results in the presence of ancestral confounding.

4. Discussion

ML models trained either on a handful of selected candidate variants or across the whole 

genome are strongly sensitive to confounding by genetic ancestry (Polimanti et al., 2015). 

We demonstrate these underlying problems for a specific genetic test for OUD, but our 

simulations demonstrate that the confound is generalizable – once ancestry is accounted for, 

these ML models offer no evidence of predictive ability greater than chance. Our findings 

argue for great caution when evaluating results of other ML-based genomic analyses that do 

not explicitly and fully account for ancestral confounding.

In the field of ML, our results fall under the study of “algorithmic bias” (Hooker, 

2021). Examples in healthcare research outside genetics (Obermeyer et al., 2019) show 

that pattern recognition with little understanding of underlying phenomena (e.g., social 

population stratification) may produce biased results. Here, we demonstrated that in the 

context of genomic data, this algorithmic bias was generated by population stratification, a 

well-characterized phenomenon in statistical genetics (Price et al., 2006b) that is yet to be 

widely dealt with by ML in psychiatric genetics (Bracher-Smith et al., 2020).

As human genetics has shown, this challenge is surmountable. Most ML algorithms allow 

for some form of de-confounding, typically as a multi-step or multi-model procedures. 

While typical ML pipelines employ multiple algorithms and simply select the best, more 

extensive individual attention to the choice of algorithm is needed to evaluate confounding 

in the face of known covariates. Several avenues may be pursued based on the choice of 
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a model. For example, in this paper (and in those models used by industry professionals) 

gradient boosted machines were used, which can (but have yet to) include sample weights 

in the model training procedure. Corrections for support vector machines also exist, and 

remove statistical dependence in the model training procedure (Li et al., 2011). Extensive 

work with each algorithm will best determine future routes for de-confounding, and needs 

to be an essential part of model training beyond just predictive accuracy. To cut across 

algorithms here, we show stratified analysis with learning curves. In particular, learning 

curves should be purposefully developed with ancestral stratification in mind to ensure that 

lingering cryptic admixture does not confound predictions. Finally, statistical procedures 

will only take us so far, and careful considerations of samples and confounding, as is 

standard in GWAS literature, is critical to reduce confounding in genetic testing practices. 

However, restricting analyses to one continental ancestry (e.g., Europeans only) is not the 

solution to ancestrally confounded analyses. While that may attenuate gross confounding, 

we show that cryptic admixture remains an issue. Instead, larger training and testing samples 

of diverse ancestral populations are needed to accelerate genomic discovery and ensure that 

when aggregated effect sizes are large enough, precision medicine will benefit all global 

communities (Martin et al., 2017).

Even with appropriate adjustment for admixture, it is unlikely that candidate variants that 

are not substantiated by well-powered GWAS will produce any meaningful prediction of 

OUD. Recent meta-analyses of depression (Border et al., 2019), schizophrenia (Johnson 

et al., 2017), and executive function (Hatoum et al., 2019) overwhelmingly show that the 

vast majority of candidate variants in psychiatry do not rise to levels of genome-wide 

significance. An exception is addiction, where GWAS have recapitulated candidate gene 

findings. Unfortunately, as shown by our analyses of nicotine dependence, even these 

genome-wide significant variants fail to circumvent the issue of ancestral confounding 

within ML models. An alternative might involve incorporating information across the 

genome. For instance, polygenic risk scores (PRS) for tobacco smoking have produced 

promising findings, including in clinical settings (Chen et al., 2018). However, even PRS 

with appropriate control for ancestry in the largest samples to date offer limited clinical 

utility (Liu et al., 2019).

Several limitations are noteworthy. First, the original publication by Donaldson et al. 

(2017), did not provide detailed characteristics of the samples in which the algorithms 

were developed and tested, nor the specific procedures used. This is not atypical for 

“proprietary” commercial products, but made it challenging to fully approximate their 

analytic pipeline; hence we tested 5 different ML approaches. Standards for reporting 

such product development, such as the Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD)(Collins et al., 2015), would allow 

researchers to better evaluate claims of genetic prediction, particularly using methods such 

as machine learning. Second, we focused on one existing product and did not evaluate all 

possible methods for genetic prediction, for example, polygenic risk scores (PRS). As noted 

above, PRS offer an opportunity to study aggregated genome-wide genetic susceptibility, 

but have their own caveats (e.g., additivity; see: Bogdan et al., 2018; Dudbridge, 2013; 

Martin et al., 2017). This work focuses squarely on one approach for genetic prediction as 

it increasingly gains momentum in allied health fields – use of candidate genes and ML. 
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Limitations notwithstanding, this work shows that using a handful of candidate variants in 

a ML framework that is naïve to genetic confounders is likely to produce biased prediction 

that misclassifies individuals, especially in ancestrally mixed samples.

5. Conclusions

Opioids are useful for pain management, but are also highly addictive. Against the backdrop 

of the opioid epidemic, the desire for tests that can provide insight into the likelihood of 

patients developing OUD is understandable, and DTC or physician-guided testing seems 

appealing. However, to avoid problems of under-treatment, that might disproportionately 

affect people of admixed ancestry, it is critical that any proposed test be fully vetted 

to ensure that it properly accounts for potential confounding by ancestry and accurately 

predicts the trait of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Role of Funding Source:

This research is supported by MH109532. ASH acknowledges support from DA007261; AA acknowledges 
support from K02DA032573; FRW acknowledges support from F32 MH122058. Yale-Penn (phs000425.v1.p1; 
phs000952.v1.p1) was supported by National Institutes of Health Grants RC2 DA028909, R01 DA12690, 
R01 DA12849, R01 DA18432, R01 AA11330, and R01 AA017535 and the Veterans Affairs Connecticut and 
Philadelphia Veterans Affairs Mental Illness Research, Education and Clinical Centers.Funding sources were not 
involved in any aspect of this study.

Conflict of Interest:

HRK is an advisory board member for Dicerna and a member of the American Society of Clinical 
Psychopharmacology’s Alcohol Clinical Trials Initiative, which was supported in the last three years by Alkermes, 
Amygdala Neurosciences, Arbor, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, Otsuka, Arbor, and 
Amygdala Neurosciences. HRK and JG are named as inventors on PCT patent application #15/878,640 entitled: 
“Genotype-guided dosing of opioid agonists,” filed January 24, 2018. Other authors have no disclosures.

Reference Cited

Alexander DH, Novembre J, Lange K, 2009. Fast model-based estimation of ancestry in unrelated 
individuals. Genome Res 19, 1655–1664. 10.1101/gr.094052.109 [PubMed: 19648217] 

Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, Clark AG, Donnelly 
P, Eichler EE, Flicek P, Gabriel SB, Gibbs RA, Green ED, Hurles ME, Knoppers BM, Korbel JO, 
Lander ES, Lee C, Lehrach H, Mardis ER, Marth GT, McVean GA, Nickerson DA, Schmidt JP, 
Sherry ST, Wang J, Wilson RK, Boerwinkle E, Doddapaneni H, Han Y, Korchina V, Kovar C, Lee 
S, Muzny D, Reid JG, Zhu Y, Chang Y, Feng Q, Fang X, Guo X, Jian M, Jiang H, Jin X, Lan T, 
Li G, Li J, Li Yingrui, Liu S, Liu Xiao, Lu Y, Ma X, Tang M, Wang B, Wang G, Wu H, Wu R, 
Xu X, Yin Y, Zhang D, Zhang W, Zhao J, Zhao M, Zheng X, Gupta N, Gharani N, Toji LH, Gerry 
NP, Resch AM, Barker J, Clarke L, Gil L, Hunt SE, Kelman G, Kulesha E, Leinonen R, McLaren 
WM, Radhakrishnan R, Roa A, Smirnov D, Smith RE, Streeter I, Thormann A, Toneva I, Vaughan 
B, Zheng-Bradley X, Grocock R, Humphray S, James T, Kingsbury Z, Sudbrak R, Albrecht MW, 
Amstislavskiy VS, Borodina TA, Lienhard M, Mertes F, Sultan M, Timmermann B, Yaspo ML, 
Fulton L, Ananiev V, Belaia Z, Beloslyudtsev D, Bouk N, Chen C, Church D, Cohen R, Cook C, 
Garner J, Hefferon T, Kimelman M, Liu C, Lopez J, Meric P, O’Sullivan C, Ostapchuk Y, Phan 
L, Ponomarov S, Schneider V, Shekhtman E, Sirotkin K, Slotta D, Zhang H, Balasubramaniam S, 
Burton J, Danecek P, Keane TM, Kolb-Kokocinski A, McCarthy S, Stalker J, Quail M, Davies CJ, 
Gollub J, Webster T, Wong B, Zhan Y, Campbell CL, Kong Y, Marcketta A, Yu F, Antunes L, 

Hatoum et al. Page 10

Drug Alcohol Depend. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bainbridge M, Sabo A, Huang Z, Coin LJM, Fang L, Li Q, Li Z, Lin H, Liu B, Luo R, Shao H, 
Xie Y, Ye C, Yu C, Zhang F, Zheng H, Zhu H, Alkan C, Dal E, Kahveci F, Garrison EP, Kural D, 
Lee WP, Leong WF, Stromberg M, Ward AN, Wu J, Zhang M, Daly MJ, DePristo MA, Handsaker 
RE, Banks E, Bhatia G, Del Angel G, Genovese G, Li H, Kashin S, McCarroll SA, Nemesh JC, 
Poplin RE, Yoon SC, Lihm J, Makarov V, Gottipati S, Keinan A, Rodriguez-Flores JL, Rausch T, 
Fritz MH, Stütz AM, Beal K, Datta A, Herrero J, Ritchie GRS, Zerbino D, Sabeti PC, Shlyakhter 
I, Schaffner SF, Vitti J, Cooper DN, Ball EV, Stenson PD, Barnes B, Bauer M, Cheetham RK, Cox 
A, Eberle M, Kahn S, Murray L, Peden J, Shaw R, Kenny EE, Batzer MA, Konkel MK, Walker 
JA, MacArthur DG, Lek M, Herwig R, Ding L, Koboldt DC, Larson D, Ye Kai, Gravel S, Swaroop 
A, Chew E, Lappalainen T, Erlich Y, Gymrek M, Willems TF, Simpson JT, Shriver MD, Rosenfeld 
JA, Bustamante CD, Montgomery SB, De La Vega FM, Byrnes JK, Carroll AW, DeGorter MK, 
Lacroute P, Maples BK, Martin AR, Moreno-Estrada A, Shringarpure SS, Zakharia F, Halperin E, 
Baran Y, Cerveira E, Hwang J, Malhotra A, Plewczynski D, Radew K, Romanovitch M, Zhang C, 
Hyland FCL, Craig DW, Christoforides A, Homer N, Izatt T, Kurdoglu AA, Sinari SA, Squire K, 
Xiao C, Sebat J, Antaki D, Gujral M, Noor A, Ye Kenny, Burchard EG, Hernandez RD, Gignoux 
CR, Haussler D, Katzman SJ, Kent WJ, Howie B, Ruiz-Linares A, Dermitzakis ET, Devine SE, 
Kang HM, Kidd JM, Blackwell T, Caron S, Chen W, Emery S, Fritsche L, Fuchsberger C, Jun G, 
Li B, Lyons R, Scheller C, Sidore C, Song S, Sliwerska E, Taliun D, Tan A, Welch R, Wing MK, 
Zhan X, Awadalla P, Hodgkinson A, Li Yun, Shi X, Quitadamo A, Lunter G, Marchini JL, Myers 
S, Churchhouse C, Delaneau O, Gupta-Hinch A, Kretzschmar W, Iqbal Z, Mathieson I, Menelaou 
A, Rimmer A, Xifara DK, Oleksyk TK, Fu Yunxin, Liu Xiaoming, Xiong M, Jorde L, Witherspoon 
D, Xing J, Browning BL, Browning SR, Hormozdiari F, Sudmant PH, Khurana E, Tyler-Smith C, 
Albers CA, Ayub Q, Chen Y, Colonna V, Jostins L, Walter K, Xue Y, Gerstein MB, Abyzov A, 
Balasubramanian S, Chen J, Clarke D, Fu Yao, Harmanci AO, Jin M, Lee D, Liu J, Mu XJ, Zhang 
J, Zhang Yan, Hartl C, Shakir K, Degenhardt J, Meiers S, Raeder B, Casale FP, Stegle O, Lameijer 
EW, Hall I, Bafna V, Michaelson J, Gardner EJ, Mills RE, Dayama G, Chen K, Fan X, Chong 
Z, Chen T, Chaisson MJ, Huddleston J, Malig M, Nelson BJ, Parrish NF, Blackburne B, Lindsay 
SJ, Ning Z, Zhang Yujun, Lam H, Sisu C, Challis D, Evani US, Lu J, Nagaswamy U, Yu J, Li 
W, Habegger L, Yu H, Cunningham F, Dunham I, Lage K, Jespersen JB, Horn H, Kim D, Desalle 
R, Narechania A, Sayres MAW, Mendez FL, Poznik GD, Underhill PA, Mittelman D, Banerjee R, 
Cerezo M, Fitzgerald TW, Louzada S, Massaia A, Yang F, Kalra D, Hale W, Dan X, Barnes KC, 
Beiswanger C, Cai H, Cao H, Henn B, Jones D, Kaye JS, Kent A, Kerasidou A, Mathias R, Ossorio 
PN, Parker M, Rotimi CN, Royal CD, Sandoval K, Su Y, Tian Z, Tishkoff S, Via M, Wang Y, Yang 
H, Yang L, Zhu J, Bodmer W, Bedoya G, Cai Z, Gao Y, Chu J, Peltonen L, Garcia-Montero A, 
Orfao A, Dutil J, Martinez-Cruzado JC, Mathias RA, Hennis A, Watson H, McKenzie C, Qadri F, 
LaRocque R, Deng X, Asogun D, Folarin O, Happi C, Omoniwa O, Stremlau M, Tariyal R, Jallow 
M, Joof FS, Corrah T, Rockett K, Kwiatkowski D, Kooner J, Hien TT, Dunstan SJ, ThuyHang N, 
Fonnie R, Garry R, Kanneh L, Moses L, Schieffelin J, Grant DS, Gallo C, Poletti G, Saleheen 
D, Rasheed A, Brooks LD, Felsenfeld AL, McEwen JE, Vaydylevich Y, Duncanson A, Dunn M, 
Schloss JA, 2015. A global reference for human genetic variation. Nature 10.1038/nature15393

Bogdan R, Baranger DAA, Agrawal A, 2018. Polygenic Risk Scores in Clinical Psychology: 
Bridging Genomic Risk to Individual Differences. Annu. Rev. Clin. Psychol 14. 10.1146/annurev-
clinpsy-050817-084847

Border R, Johnson EC, Evans LM, Smolen A, Berley N, Sullivan PF, Keller MC, 2019. No Support 
for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression 
Across Multiple Large Samples. Am. J. Psychiatry 176, 376–387. 10.1176/appi.ajp.2018.18070881 
[PubMed: 30845820] 

Bracher-Smith M, Crawford K, Escott-Price V, 2020. Machine learning for genetic prediction of 
psychiatric disorders: a systematic review. Mol. Psychiatry 10.1038/s41380-020-0825-2

Chen L-S, Baker TB, Miller JP, Bray M, Smock N, Chen J, Stoneking F, Culverhouse RC, 
Saccone NL, Amos CI, Carney RM, Jorenby DE, Bierut LJ, 2020. Genetic Variant in CHRNA5 
and Response to Varenicline and Combination Nicotine Replacement in a Randomized Placebo-
Controlled Trial. Clin. Pharmacol. Ther 108, 1315–1325. 10.1002/CPT.1971 [PubMed: 32602170] 

Chen L-S, Hartz SM, Baker TB, Ma Y, Saccone NL, Bierut LJ, 2018. Use of polygenic risk scores 
of nicotine metabolism in predicting smoking behaviors 10.2217/pgs-2018-0081 19, 1383–1394. 
10.2217/PGS-2018-0081

Hatoum et al. Page 11

Drug Alcohol Depend. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Collins GS, Reitsma JB, Altman DG, Moons KGM, 2015. Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement. Br. J. 
Surg 102, 148–158. 10.1002/BJS.9736 [PubMed: 25627261] 

Consortium, the H.R., McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang 
HM, Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen S, 
Vrieze S, Scott LJ, Zhang H, Mahajan A, Veldink J, Peters U, Pato C, van Duijn CM, Gillies 
CE, Gandin I, Mezzavilla M, Gilly A, Cocca M, Traglia M, Angius A, Barrett JC, Boomsma D, 
Branham K, Breen G, Brummett CM, Busonero F, Campbell H, Chan A, Chen S, Chew E, Collins 
FS, Corbin LJ, Smith GD, Dedoussis G, Dorr M, Farmaki A-E, Ferrucci L, Forer L, Fraser RM, 
Gabriel S, Levy S, Groop L, Harrison T, Hattersley A, Holmen OL, Hveem K, Kretzler M, Lee 
JC, McGue M, Meitinger T, Melzer D, Min JL, Mohlke KL, Vincent JB, Nauck M, Nickerson 
D, Palotie A, Pato M, Pirastu N, McInnis M, Richards JB, Sala C, Salomaa V, Schlessinger D, 
Schoenherr S, Slagboom PE, Small K, Spector T, Stambolian D, Tuke M, Tuomilehto J, Van den 
Berg LH, Van Rheenen W, Volker U, Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson 
MG, Wilson JF, Frayling T, de Bakker PIW, Swertz MA, McCarroll S, Kooperberg C, Dekker A, 
Altshuler D, Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop A, Cucca F, Anderson 
CA, Myers RM, Boehnke M, McCarthy MI, Durbin R, Abecasis G, Marchini J, 2016. A reference 
panel of 64,976 haplotypes for genotype imputation. Nat. Genet 48, 1279–1283. 10.1038/ng.3643 
[PubMed: 27548312] 

Donaldson K, Laurence D, Taylor K, Lopez J and Chang S 2017. Multi-variant Genetic Panel for 
Genetic Risk of Opioid Addiction. Ann. Clin. Lab. Sci 47, 452–456. [PubMed: 28801372] 

Dudbridge F, 2013. Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet 9, 
e1003348. 10.1371/journal.pgen.1003348 [PubMed: 23555274] 

Duncan LE, Keller MC, 2011. A Critical Review of the First 10 Years of Candidate Gene-by-
Environment Interaction Research in Psychiatry. Am. J. Psychiatry 168, 1041–1049. 10.1176/
appi.ajp.2011.11020191 [PubMed: 21890791] 

Ellis RJ, Wang Z, Genes N, Ma’ayan A, 2019. Predicting opioid dependence from electronic 
health records with machine learning. BioData Min 12, 3. 10.1186/s13040-019-0193-0 [PubMed: 
30728857] 

Hatoum A, Mitchell E, Morrison CL, Evans L, Keller M, Friedman N, 2019. GWAS of Over 427,000 
Individuals Establishes GABAergic and Synaptic Molecular Pathways as Key for Cognitive 
Executive Functions. GWAS Over 427,000 Individ. Establ. GABAergic Synaptic Mol. Pathways as 
Key Cogn. Exec. Funct 674515. 10.1101/674515

Hooker S, 2021. Moving beyond “algorithmic bias is a data problem”. Patterns 2, 100241. 10.1016/
J.PATTER.2021.100241 [PubMed: 33982031] 

Johnson EC, Border R, Melroy-Greif WE, de Leeuw CA, Ehringer MA, Keller MC, 2017. No 
Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than 
Noncandidate Genes. Biol. Psychiatry 82, 702–708. 10.1016/J.BIOPSYCH.2017.06.033 [PubMed: 
28823710] 

Jordan IK, Rishishwar L, Conley AB, 2019. Native American admixture recapitulates population-
specific migration and settlement of the continental United States. PLOS Genet 15, e1008225. 
10.1371/journal.pgen.1008225 [PubMed: 31545791] 

Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A, Smyrnis N, Avramopoulos 
D, Kruglyak L, Atzmon G, Lam M, Lencz T, Carmi S, 2019. Screening Human Embryos 
for Polygenic Traits Has Limited Utility. Cell 179, 1424–1435.e8. 10.1016/j.cell.2019.10.033 
[PubMed: 31761530] 

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia 
KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, 
Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks 
E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, 
O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson 
L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta 
N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio 
V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Aguilar 
Salinas CA, Ahmad T, Albert CM, Ardissino D, Atzmon G, Barnard J, Beaugerie L, Benjamin 

Hatoum et al. Page 12

Drug Alcohol Depend. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EJ, Boehnke M, Bonnycastle LL, Bottinger EP, Bowden DW, Bown MJ, Chambers JC, Chan JC, 
Chasman D, Cho J, Chung MK, Cohen B, Correa A, Dabelea D, Daly MJ, Darbar D, Duggirala 
R, Dupuis J, Ellinor PT, Elosua R, Erdmann J, Esko T, Färkkilä M, Florez J, Franke A, Getz G, 
Glaser B, Glatt SJ, Goldstein D, Gonzalez C, Groop L, Haiman C, Hanis C, Harms M, Hiltunen 
M, Holi MM, Hultman CM, Kallela M, Kaprio J, Kathiresan S, Kim BJ, Kim YJ, Kirov G, Kooner 
J, Koskinen S, Krumholz HM, Kugathasan S, Kwak SH, Laakso M, Lehtimäki T, Loos RJF, Lubitz 
SA, Ma RCW, MacArthur DG, Marrugat J, Mattila KM, McCarroll S, McCarthy MI, McGovern 
D, McPherson R, Meigs JB, Melander O, Metspalu A, Neale BM, Nilsson PM, O’Donovan MC, 
Ongur D, Orozco L, Owen MJ, Palmer CNA, Palotie A, Park KS, Pato C, Pulver AE, Rahman 
N, Remes AM, Rioux JD, Ripatti S, Roden DM, Saleheen D, Salomaa V, Samani NJ, Scharf J, 
Schunkert H, Shoemaker MB, Sklar P, Soininen H, Sokol H, Spector T, Sullivan PF, Suvisaari J, 
Tai ES, Teo YY, Tiinamaija T, Tsuang M, Turner D, Tusie-Luna T, Vartiainen E, Ware JS, Watkins 
H, Weersma RK, Wessman M, Wilson JG, Xavier RJ, Neale BM, Daly MJ, MacArthur DG, 2020. 
The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 
434–443. 10.1038/s41586-020-2308-7 [PubMed: 32461654] 

Li L, Rakitsch B, Borgwardt K, 2011. ccSVM: Correcting Support Vector Machines for confounding 
factors in biological data classification. Bioinformatics 27, i342. 10.1093/bioinformatics/btr204 
[PubMed: 21685091] 

Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, 
Tian C, Zhan X, Agee M, Alipanahi B, Auton A, Bell RK, Bryc K, Elson SL, Fontanillas P, 
Furlotte NA, Hinds DA, Hromatka BS, Huber KE, Kleinman A, Litterman NK, McIntyre MH, 
Mountain JL, Northover CAM, Sathirapongsasuti JF, Sazonova OV, Shelton JF, Shringarpure S, 
Tung JY, Vacic V, Wilson CH, Pitts SJ, Mitchell A, Skogholt AH, Winsvold BS, Sivertsen B, 
Stordal E, Morken G, Kallestad H, Heuch I, Zwart JA, Fjukstad KK, Pedersen LM, Gabrielsen 
ME, Johnsen MB, Skrove M, Indredavik MS, Drange OK, Bjerkeset O, Børte S, Stensland SØ, 
Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gordon SD, Haessler J, Hottenga 
JJ, Huang H, Jang SK, Jansen PR, Ling Y, Mägi R, Matoba N, McMahon G, Mulas A, Orrù 
V, Palviainen T, Pandit A, Reginsson GW, Smith JA, Taylor AE, Turman C, Willemsen G, 
Young H, Young KA, Zajac GJM, Zhao W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke 
M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, 
Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson 
JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis 
M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, 
Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada 
Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarsdottir 
V, Stallings MC, Stančáková A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, 
Weir DR, Weisner C, Whitfield JB, Yin J, Zuccolo L, Bierut LJ, Hveem K, Lee JJ, Munafò MR, 
Saccone NL, Willer CJ, Cornelis MC, David SP, Jorgenson E, Kaprio J, Stitzel JA, Stefansson K, 
Thorgeirsson TE, Abecasis G, Liu DJ, Vrieze S, 2019. Association studies of up to 1.2 million 
individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet 
10.1038/s41588-018-0307-5

Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, 
Kenny EE, 2017. Human Demographic History Impacts Genetic Risk Prediction across Diverse 
Populations. Am. J. Hum. Genet 100, 635–649. 10.1016/j.ajhg.2017.03.004 [PubMed: 28366442] 

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger 
C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen S, Vrieze S, Scott 
LJ, Zhang H, Mahajan A, Veldink J, Peters U, Pato C, Van Duijn CM, Gillies CE, Gandin I, 
Mezzavilla M, Gilly A, Cocca M, Traglia M, Angius A, Barrett JC, Boomsma D, Branham K, 
Breen G, Brummett CM, Busonero F, Campbell H, Chan A, Chen S, Chew E, Collins FS, Corbin 
LJ, Smith GD, Dedoussis G, Dorr M, Farmaki AE, Ferrucci L, Forer L, Fraser RM, Gabriel S, 
Levy S, Groop L, Harrison T, Hattersley A, Holmen OL, Hveem K, Kretzler M, Lee JC, McGue 
M, Meitinger T, Melzer D, Min JL, Mohlke KL, Vincent JB, Nauck M, Nickerson D, Palotie A, 
Pato M, Pirastu N, McInnis M, Richards JB, Sala C, Salomaa V, Schlessinger D, Schoenherr S, 
Slagboom PE, Small K, Spector T, Stambolian D, Tuke M, Tuomilehto J, Van Den Berg LH, Van 
Rheenen W, Volker U, Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson MG, Wilson 
JF, Frayling T, De Bakker PIW, Swertz MA, McCarroll S, Kooperberg C, Dekker A, Altshuler 
D, Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop A, Cucca F, Anderson CA, 

Hatoum et al. Page 13

Drug Alcohol Depend. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Myers RM, Boehnke M, McCarthy MI, Durbin R, Abecasis G, Marchini J, 2016. A reference 
panel of 64,976 haplotypes for genotype imputation. Nat. Genet 48, 1279–1283. 10.1038/ng.3643 
[PubMed: 27548312] 

Obermeyer Z, Powers B, Vogeli C, Mullainathan S, 2019. Dissecting racial bias in an algorithm used 
to manage the health of populations. Science (80-.) 366, 447–453. 10.1126/science.aax2342

Patterson N, Price AL, Reich D, 2006. Population structure and eigenanalysis. PLoS Genet 2, 2074–
2093. 10.1371/journal.pgen.0020190

Polimanti R, Yang C, Zhao H, Gelernter J, 2015. Dissecting ancestry genomic background in 
substance dependence genome-wide association studies. Pharmacogenomics 16, 1487–1498. 
10.2217/pgs.15.91 [PubMed: 26267224] 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D, 2006a. Principal 
components analysis corrects for stratification in genome-wide association studies. Nat. Genet 
38, 904–909. 10.1038/ng1847 [PubMed: 16862161] 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D, 2006b. Principal 
components analysis corrects for stratification in genome-wide association studies. Nat. Genet 
38, 904–909. 10.1038/ng1847 [PubMed: 16862161] 

Quach BC, Bray MJ, Gaddis NC, Liu M, Palviainen T, Minica CC, Zellers S, Sherva R, Aliev F, 
Nothnagel M, Young KA, Marks JA, Young H, Carnes MU, Guo Y, Waldrop A, Sey NYA, Landi 
MT, McNeil DW, Drichel D, Farrer LA, Markunas CA, Vink JM, Hottenga JJ, Iacono WG, 
Kranzler HR, Saccone NL, Neale MC, Madden P, Rietschel M, Marazita ML, McGue M, Won 
H, Winterer G, Grucza R, Dick DM, Gelernter J, Caporaso NE, Baker TB, Boomsma DI, Kaprio 
J, Hokanson JE, Vrieze S, Bierut LJ, Johnson EO, Hancock DB, 2020. Expanding the genetic 
architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun 11, 
1–13. 10.1038/s41467-020-19265-z [PubMed: 31911652] 

Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H, Jung J, Pickering RP, Ruan WJ, Smith SM, 
Huang B, Hasin DS, Grant BF, 2016. Nonmedical prescription opioid use and DSM-5 nonmedical 
prescription opioid use disorder in the United States. J. Clin. Psychiatry 77, 772–780. 10.4088/
JCP.15m10386 [PubMed: 27337416] 

Sun J, Bi J, Chan G, Oslin D, Farrer L, Gelernter J, Kranzler HR, 2012. Improved methods to 
identify stable, highly heritable subtypes of opioid use and related behaviors. Addict. Behav 37, 
1138–1144. 10.1016/j.addbeh.2012.05.010 [PubMed: 22694982] 

TF H, LT K, RC F, KO F, 1991. The Fagerström Test for Nicotine Dependence: a 
revision of the Fagerström Tolerance Questionnaire. Br. J. Addict 86, 1119–1127. 10.1111/
J.1360-0443.1991.TB01879.X [PubMed: 1932883] 

Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, Polderman TJC, van der Sluis 
S, Andreassen OA, Neale BM, Posthuma D, 2019. A global overview of pleiotropy and genetic 
architecture in complex traits. Nat. Genet 10.1038/s41588-019-0481-0

Zhou H, Polimanti R, Yang BZ, Wang Q, Han S, Sherva R, Nunez YZ, Zhao H, Farrer LA, Kranzler 
HR, Gelernter J, 2017. Genetic risk variants associated with comorbid alcohol dependence and 
major depression. JAMA Psychiatry 74, 1234–1241. 10.1001/jamapsychiatry.2017.3275 [PubMed: 
29071344] 

Zhou H, Zhou H, Rentsch CT, Rentsch CT, Rentsch CT, Cheng Z, Cheng Z, Kember RL, Kember 
RL, Nunez YZ, Nunez YZ, Sherva RM, Tate JP, Tate JP, Dao C, Dao C, Xu K, Xu K, Polimanti 
R, Polimanti R, Farrer LA, Farrer LA, Farrer LA, Farrer LA, Farrer LA, Justice AC, Justice AC, 
Justice AC, Kranzler HR, Kranzler HR, Gelernter J, Gelernter J, Gelernter J, Gelernter J, 2020. 
Association of OPRM1 Functional Coding Variant with Opioid Use Disorder: A Genome-Wide 
Association Study. JAMA Psychiatry 10.1001/jamapsychiatry.2020.1206

Hatoum et al. Page 14

Drug Alcohol Depend. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Machine learning (ML) algorithms that utilize genomic data for disease 

prediction are becoming increasingly common.

• ML algorithms trained on candidate variants did not predict opioid use 

disorder.

• ML algorithms were more likely to identify genomic ancestry regardless of 

the variants specified or the phenotype under study.

• Machine learning analyses of genomic data are susceptible to confounds that 

misclassify admixed individuals.
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Figure 1. 
Population allele frequencies (from GNomad (Karczewski et al., 2020)) for the 

candidate alleles in Donaldson et al.(Donaldson et al., 2017) Solvd Health® (https://

solvdhealth.com/oud/; accessed July 12th, 2021) across different major geographic ethnic 

groups showing substantial variation in frequency across global populations.
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Figure 2. 
Learning curve procedure for all analyses. We had a complete and non-overlapping training 

and test set, each of 1000 subjects with 250 cases and controls of European and African 

descent. (A) For the first iteration we started with 250 subjects of European descent (tan) 

that were OUD cases, and 250 subjects of African descent (blue) that were controls. (B) At 

each iteration, we added 10 OUD individuals of African descent to the cases and 10 controls 

of European descent to the controls. We estimated the model in the training data and used 

it to predict OUD status in the non-overlapping test set. (C) By the final iteration, we had a 

training and test set that was balanced by major geographic ancestry and OUD status.
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Figure 3. 
Learning curves from models trained to predict opioid dependence from 16 “reward-related” 

SNPs (Donaldson et al., 2017). The curves are plotted by AUC based on their prediction 

of opioid dependence (orange) and geographic ancestry (blue) as the samples start from 

complete population confounding become more balanced by major geographic ancestry 

(European American or African American) until completely balanced. Each data point 

represents a larger and more balanced sample size by adding 20 individuals, 10 African 

American cases and 10 European American controls (as measured on the x-axis). (A) A 
priori Candidate SNPs predicting Opioid Use Disorder. (B) Set 1 of randomly selected 

(MAF matched) SNPs predicting Opioid Use Disorder. (C) Set 1 of Random (MAF 

match) SNPs predicting a random phenotype binary phenotype. Across all perspectives, 

the prediction is entirely driven by major geographic ancestry.
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Figure 4. 
Bar plots of the pseudo r2 from a logistic regression comparing the predictions of opioid 

dependence and percentage of European ancestry in a sample of 250 African American 

individuals from the Yale-Penn Test set. Pseudo r2 was used instead of AUC because the 

percentage of European descent is a continuous variable and this put both predictions on the 

same scale.
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