
Role of prostaglandin E2 in the progression of gastrointestinal 
cancer

David Jay Wilson1, Raymond N. DuBois2,*

1College of Medicine, Medical University of South Carolina, Charleston, SC 29403

2Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 
Charleston, SC 29425

Abstract

Chronic inflammation is a well-established risk factor for several diseases, including cancer. 

It influences tumor cell biology and the type and density of immune cells in the tumor 

microenvironment (TME), promoting cancer development. While pro-inflammatory cytokines 

and chemokines modulate cancer development, emerging evidence has shown that prostaglandin 

E2 (PGE2) is a known mediator connecting chronic inflammation to cancerization. This review 

highlights recent advances in our understanding of how the elevation of PGE2 production 

promotes gastrointestinal cancer initiation, progression, invasion, metastasis, and recurrence, 

including modulation of immune checkpoint signaling and the type and density of immune cells in 

the tumor/tissue microenvironment.
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Introduction:

Inflammation is a complex process triggered by physical or chemical injury or an infectious 

or autoimmune disease involving numerous types of immune cells, cytokines, bioactive 

lipids, and chemokines. The inflammatory response is a defense mechanism needed to 

protect the organism from infection and injury and can be divided into at least two stages, 

acute and chronic. During acute inflammation, pathogens are eliminated from the host, 

resulting in tissue healing and repair of the affected site. In most cases, the outcome of this 

acute inflammation is self-limiting and resolves. However, the inability to achieve resolution 

leads to a continued, persistent, abnormal inflammatory state, which causes chronic 
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inflammation. Chronic inflammatory processes are more indolent and prominent in auto-

immune, neurodegenerative, vascular, and arthritic diseases. During chronic inflammation, 

the resident immune cells such as lymphocytes and macrophages continuously secrete 

proinflammatory cytokines and chemokines that chronically recruit, attract, and activate 

other immune cells (1). In the tumor microenvironment (TME), tumor cell biology is 

significantly influenced by surrounding fibroblasts, endothelial cells, immune cells, and 

mediators that they produce.

The immune system in the surrounding TME exhibits a critical influence in creating 

either a pro-tumorigenic or anti-tumorigenic niche, depending on the mix of cytokines, 

bioactive lipids, and chemokines present (2). Currently, terms such as “hot” tumors are 

used to describe TME with increased levels of T-cell infiltration and other components 

necessary for anti-tumor immunity. In contrast, “cold” tumors are described TMEs with 

less T-cell infiltration and with massive infiltration of immunosuppressive cells such as 

myeloid-derived suppressor cells (MDSC) and T regulatory cells (Tregs). While these terms 

are helpful for tumor characterization, they do little to explain the pro-tumorigenic immune 

response in cancers, which plays a critical role in the clinical outcome and has been termed 

“cancer-promoting inflammation”—distinct from acute and chronic forms of inflammation 

(3). Chronic or tumor-elicited inflammation can affect the TME resulting in tumor evasion, 

providing tumor-promoting signals that stimulate further tumor growth, progression, and 

metastatic spread (4).

Cyclooxygenase-1 (COX-1), officially named prostaglandin-endoperoxide synthase 1 

(PTGS1), and cyclooxygenase-2 (COX-2), formally known as prostaglandin-endoperoxide 

synthase 2 (PTGS2), are enzymes that convert arachidonic acid into endoperoxide 

intermediates that are ultimately metabolized to prostaglandins, including PGD2, PGE2, 

PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2) (1,5) (Figure 1). COX-1 

is constitutively expressed in most tissues and is thought to provide basal levels of 

prostaglandins and thromboxanes for tissue homeostasis and platelet activation. By contrast, 

COX-2 is rarely expressed in healthy tissues but is highly induced in inflammatory sites and 

is overexpressed in certain cancers, particularly in over 85% of sporadic colorectal cancers 

(CRC) and 50% of colorectal adenomas (6–8). Elevated levels of COX-2 were also found 

in gastric cancer (GC) and esophageal cancer (EC) (9,10). The biological role of COX-2 

in inflammation and cancer depends on which prostaglandins are produced in the affected 

tissue compartment. For example, PGE2 is partly responsible for the cardinal signs of 

inflammation (1,5), and both PGE2 and PGI2 play critical roles in arthritis and inflammatory 

bowel diseases (IBD) (11). In addition, PGE2 is the most abundant prostaglandin produced 

in CRC and GC (11). PGE2 and PGI2 were the main two prostanoids significantly increased 

in CRC (12). PGE2 exerts cellular effects by binding to cell surface G-protein coupled 

receptors designated as PGE2 receptors (EP1-EP4).

Elevation of PGE2 in tumor tissues results from COX-2 and PGE2 synthase induction and 

marked reduction of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) levels. 15-PGDH 

converts PGE2 to an “inactive” 15-keto PGE2 which is further metabolized to a stable end 

urinary PGE2 metabolite (PGE-M). As 15-PGDH levels decrease substantially in GC, CRC, 

and EC (13–16), PGE-M may serve as a valuable biomarker for predicting cancer risk 
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and prognosis. Several studies have revealed that urinary PGE-M levels are significantly 

increased in CRC and GC and are associated with worse patient outcomes (17–19). The 

daily use of aspirin results in lower urinary PGE-M levels in healthy and cancer patients 

(20). Similarly, low-dose daily aspirin (100 mg per day for seven days) also led to a 46% 

decrease in PGE2 levels in human colorectal mucosa (21).

In this review, we highlight the role of the COX-2-PGE2 pathway in gastrointestinal 

(GI) cancers. We also explain why this pathway may serve as valuable targets for cancer 

prevention and treatment.

COX-2 and PGE2 in gastrointestinal cancers:

Chronic inflammation is a well-known predisposing factor for various GI cancers. For 

instance, chronic viral infections such as hepatitis B or C viruses are strongly associated 

with hepatocellular carcinoma (HCC), and human papillomaviruses (HPV) are associated 

with a three-fold higher risk of esophageal squamous cell carcinoma (22,23). Importantly, 

it is well established that all cervical cancer and 70% of oropharyngeal cancers are caused 

by HPV. In addition, chronic bacterial infections such as Helicobacter pylori in the gastric 

fundus and pylorus result in increased risk and rates of GC (24). Interestingly, some changes 

in the gut microbiome leading to dysbiosis have been shown to increase the risk of CRC as 

well (25).

Furthermore, IBD caused by immune system dysfunction increases the risk for CRC (26). 

The observation that nonsteroidal anti-inflammatory drugs (NSAIDs) have beneficial effects 

on reducing the incidence, metastasis, and mortality of various solid tumors (11), including 

GI cancer, supports the concept that COX-2 derived prostaglandins promote cancer 

development because the anti-tumor effects of these agents are due, in part, to inhibition of 

cyclooxygenase (COX) activity. Indeed, COX-2 levels are associated with shortened survival 

in patients with CRC, GC, and EC (27–30). In addition, high COX-2 expression in HCC was 

strongly associated with decreased survival rates, enhanced lymphatic/vascular invasion, and 

advanced TNM stages (31).

Colorectal cancer

The effect of NSAIDs, including COX-2 selective inhibitors, on clinical outcomes has been 

extensively investigated in patients with CRC. In a prospective cohort study of 82,911 

women over 20 years, sporadic CRC rates were shown to decrease significantly with regular, 

long-term NSAID use (32). A randomized controlled trial (RCT) supported the effect of 

sulindac on adenoma regression in FAP patients (33). In addition, an RCT revealed that 

treatment of a COX-2 selective inhibitor, celecoxib, significantly reduced polyp burden in 

FAP patients (34). In addition, three double-blind RCTs, including the Adenoma Prevention 

with celecoxib (APC), the Adenomatous polyp Prevention on Vioxx (APPROVe) trial, and 

the Prevention of Colorectal Sporadic Adenomatous Polyps (PreSAP) trials, demonstrated 

significant reductions in adenoma recurrence following treatment with selective COX-2 

inhibitors in patients with a history of sporadic CRC (35–37). Furthermore, several clinical 

trials revealed that short-term aspirin treatment minimized adenoma recurrence in patients 
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with a history of CRC (38–40). Another RCT showed a 24% decrease in CRC incidence and 

a 35% decrease in CRC mortality after 20 years of daily aspirin use (41).

Although the molecular mechanisms underlying the anti-tumor effects of NSAIDs, 

especially aspirin, have not been fully understood, compelling evidence demonstrates that 

these agents’ inhibitory effects are partly due to the reduction of PGE2 production by 

inhibiting COX-1 and COX-2. Indeed, cohort studies showed that regular aspirin use 

significantly reduced tumor recurrence in patients whose sporadic CRC expressed elevated 

levels of COX-2 (42), and its use after the diagnosis of CRC at stages I, II, and III 

improved overall survival, especially among individuals whose tumors overexpress COX-2 

(43). However, a 2018 ASPREE trial showed that cancer-related mortality was 3.1% in 

the aspirin group compared to 2.3% in the placebo group (44) in a 5-year study. Since 

participants in the ASPREE had only been followed for a median of approximately five 

years, it has been noted that they will need to be studied for a more extended period to 

understand better the potential effect of aspirin on cancer diagnoses and deaths. Further 

studies are required to determine whether aspirin’s impact on cancer in older adults is quite 

different from other-age adults.

Crohn’s disease and ulcerative colitis predispose affected individuals to higher risk for 

CRC. Prolonged use of aminosalicylate in patients with ulcerative colitis has been shown to 

reduce CRC risk (45,46) significantly. Likewise, the use of etoricoxib in a double-blinded 

RCT study showed protection against CRC in IBD patients (45). Furthermore, a recent 

case-control study showed that long-term use of 5-aminosalicylate resulted in a dramatic 

reduction in CRC rates in IBD patients (46). However, there is ongoing concern about 

the chronic use of NSAIDs in patients with IBD, as this can cause disease flares that are 

sometimes quite severe.

Obesity is a risk factor for several comorbidities and cancer, and its association with 

CRC has been widely studied. Unlike IBD-associated CRC studies, obesity-associated CRC 

studies have been less conclusive regarding NSAID effects. An epidemiologic study recently 

demonstrated that long-term aspirin use resulted in lower colorectal adenoma recurrence 

rates in overweight individuals compared to normal-weight individuals (47). However, two 

prospective cohort studies demonstrated that the effect of aspirin on CRC risk is independent 

of the body mass index (48). Further studies are needed to determine whether aspirin 

reduces CRC risk in obese individuals.

Evidence of colorectal tumor promotion by PGE2 was initially demonstrated in mouse 

models of sporadic CRC and FAP. PGE2 treatment dramatically increased both small and 

large intestinal adenoma burden in ApcMin/+ mice and significantly enhanced azoxymethane 

(AOM)-induced colon tumor incidence and multiplicity (49,50). PGE2 also reverses the 

anti-tumor effects of NSAIDs in the ApcMin/+ mouse model (51). Likewise, the elevation 

of endogenous PGE2 by genetically deleting 15-PGDH increased tumor burden in ApcMin/+ 

and AOM treated mice (52). In contrast, genetic deletion of microsomal PGE2 synthase 1 

(mPGES-1) in ApcMin/+ and AOM mice decreased tumor formation in the small and large 

intestines (53). Moreover, one study revealed that loss of EP2 in ApcΔ716 mice resulted 

in reduced intestinal tumor burden, while lack of EP1 and EP3 did not (54). Similarly, 
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deletion of EP1 or EP4, but not EP3, attenuates AOM-induced aberrant crypt foci (55,56). 

Interestingly, one report indicated that loss of EP3 promoted colon tumor development in 

AOM-treated mice (57). In addition, loss of EP2 in a colitis-associated CRC mouse model 

resulted in a decrease in colonic tumor formation, while loss of EP1 and EP3 increased 

tumor numbers (58). These studies concluded that the pro-tumorigenic effects of PGE2 are 

mainly mediated through its activation of the EP2 and EP4 receptors and probably not EP1 

or EP3.

PGE2 binds to its receptors initiating intracellular signaling pathways that cause tumor-

associated immunosuppression, angiogenesis, cell proliferation, migration, invasion, and 

survival (59,60) (Figure 2). For example, PGE2 promotes intestinal adenoma formation 

and growth by silencing tumor suppressor genes via induction of DNA methyltransferases 

DNMT1/DNMT3B expression (61). In addition, PGE2 promotes colonic cancer stem cell 

(CSC) formation and expansion by activation of NF-κB via the EP4-PI3K/MEK/MAPK 

pathway (62,63). A recent report showed that treatment of ApcMin/+ mice with celecoxib 

reduces PD-L1 expression in premalignant adenomas accompanied by an influx of CD8+ T 

cells (64). Moreover, another study showed that aspirin reduced tumor growth accompanied 

by reduction of PD-1 in CD8+ T cells and macrophages via increasing pro-resolving 

mediators in a mouse model of colitis-associated tumorigenesis (65). An in vitro study 

revealed that the COX-2-PGE2 pathway mediated the effect of bladder tumor cells on 

induction of PD-L1 in bone marrow-derived macrophages and MDSCs in a co-culture 

system (66). These PD-L1 positive cells were immunosuppressive (66). Moreover, PGE2 

also inhibited alveolar macrophage phagocytosis against bacteria (67). In addition, recent 

studies revealed that combined inhibition of PGE2 signaling and PD-1 increased CTL 

proliferation in vitro (68), and EP4 antagonists enhanced antitumor efficacy of PD-1 in a 

syngeneic mouse model of CRC (69) and a mouse model of colitis-associated tumorigenesis 

(70).

Gastric cancer

Like CRC, population-based case-control and cohort have illustrated that regular and long-

term use of NSAIDs, including aspirin, significantly decreased GC malignancy incidence 

and mortality (71,72). In vivo studies showed that simultaneous overexpression of both 

COX-2 and mPGES-1 in gastric cells was sufficient to induce hyperplastic gastric lesions 

(73), which progressed to tumors with simultaneous activation of Wnt signaling (74). The 

cooperative activation of Wnt and COX-2-PGE2 pathways could induce CD44+ slow-cycling 

tumor growth and expansion in vivo (75), indicating that PGE2 enhances gastric CSC 

expansion. PGE2 also promoted gastric tumor formation and growth by silencing tumor 

suppressor genes (i.e., MGMT and CNR1) via induction of DNMT3B expression in vivo 
(76). In addition, activation of the COX-2/PGE2 pathway may induce IL-11, CXCL1, 

CXCL2, and CXCL5 expression in human and mouse gastric tumors (77) and modulate 

the type and density of immune cells in the tumor microenvironment.

Esophageal cancer

Esophageal cancer (EC) in the upper two-thirds of the esophagus is most commonly 

characterized by the presence of squamous cell carcinomas (SCC) that are usually due 
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to long-term alcohol and smoke exposure. In contrast, esophageal adenocarcinomas (EAC) 

in the lower one-third are generally associated with the metaplastic changes of Barrett’s 

esophagus after prolonged gastroesophageal reflux disease (GERD) (78). These risk factors 

usually correlate with COX-2 elevation in these cancers (79). One meta-analysis study found 

that a particular COX-2 polymorphism is associated with the esophageal SCC and EAC 

formation in Asian populations, whereas another COX-2 polymorphism is only associated 

with EAC formation in Caucasian populations (80). Another recent meta-analysis revealed 

that aspirin use reduced incidence rates of both SCC and EAC (81). Two other studies 

showed that the use of aspirin and other COX-2 selective inhibitors reduced the risk of 

EAC (82,83). COX-2 is thought to drive Barret’s esophagus (BE) and EAC formation 

by increasing TXA2 (84). Interestingly, one study demonstrated that esophageal SCC 

patients with higher COX-2 levels in tumor tissues had lower response rates to neoadjuvant 

chemoradiotherapy (85).

An in vivo study revealed that treatment with a COX-2 inhibitor (JTE-522) significantly 

inhibited NMBA-induced esophageal SCC tumorigenesis (86). In addition, a selective 

COX-2 inhibitor attenuated GERD-induced esophagitis and BE and inhibited EAC 

formation accompanied by reduction of PGE2 levels in vivo (87). In studies of a surgical 

mouse model of esophagoduodenostomy, aspirin has been shown to inhibit BE and EAC 

development (84). An in vitro study demonstrated that a novel quinoline derivative, 83b1, 

has anti-cancer effects on esophageal SCC cells accompanied by downregulation of COX-2 

mRNA and PGE2 (88).

Hepatocellular carcinoma

The influence of the COX-2-PGE2 pathway on hepatocellular cancer (HCC) has become a 

topic of interest. COX-2 expression was elevated in HCC compared to normal tissues, and 

patients with high COX-2 expression in HCC tissues experienced a worse 5-year overall 

survival (31). Observational studies revealed that aspirin use significantly reduced the risk 

of HCC (89–91). One of these meta-analyses further showed that aspirin use improved 

liver-related mortality (91). Another that used aspirin or non-aspirin NSAIDs also reduced 

the risk of HCC recurrence (91). One randomized controlled trial showed that a COX-2 

inhibitor significantly improved disease-free survival in liver patients without viral hepatitis 

after initial curative treatment (92), indicating that COX-2 inhibitors may prevent liver 

cancer recurrence.

Knockdown of COX-2 using RNAi reduced tumorigenicity in a xenograft model of HCCs 

accompanied by reduced PGE2 levels and inhibited HCC cell proliferation in vitro (93). 

Multiple in vitro studies have demonstrated that the COX-2/PGE2 axis regulates HCC cell 

proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transitions (EMTs) 

via various signaling pathways. For example, celecoxib was shown to inhibit HCC cell 

proliferation and induce HCC apoptosis (31). In the same study, celecoxib also suppressed 

HCC migration and invasion by inducing E-cadherin via targeting the COX-2-PGE2-EP2-

Akt/ERK pathways (31). Another in vitro study revealed that a selective COX-2 inhibitor, 

meloxicam, inhibited HCC cell proliferation and migration, whereas PGE2 reversed the 

effect of meloxicam on HCC cells via the β-catenin signaling pathway (94). Another in 
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vitro study indicated that TGFβ induced EMT in HCC via COX-2 and Akt pathways (95). 

Under hypoxic conditions, COX-2/PGE2 induced HIF2α expression in vitro and in vivo 
(96). These pathways need to be evaluated further in spontaneous mouse models of liver 

cancer.

Summary:

The role of the COX-2-PGE2 pathway in GI cancers, including CRC, GC, EC, and HCC, 

has been extensively investigated. Mounting evidence reveals that this pathway promotes 

GI tumor initiation, growth, progression, metastases by multiple signal pathways (Figure 

3). Although long-term daily use of NSAIDs, including aspirin and COX-2 selective 

inhibitors, reduces the incidence and development of GI cancers, cardiovascular (except 

aspirin) and gastrointestinal side effects of NSAIDs have dampened enthusiasm for their use 

as chemopreventive agents. Targeting PGE2 signaling at the EP receptor level alone may 

be efficacious in CRC prevention and treatment and avoid NSAIDs’ unwanted side effects. 

Further studies are being undertaken to evaluate the efficacy of EP2 and EP4 antagonists 

in GI cancers, along with their long-term toxicities and impact on the immune system’s 

ability to attack tumor cells directly. For example, one report showed that an EP4 antagonist 

(E7046) was safe in patients with advanced solid tumors, including GI cancers, in a phase 

I trial (97). Other clinical trials of EP antagonists are currently recruiting cancer patients 

(NCT04344795 and NCT03658772), and it will be essential to examine the safety profile 

once these studies have been completed. There is great interest in understanding the role of 

PGE2 in modulating immune checkpoint signaling and the type and density of immune cells 

that reside in the tumor microenvironment. It has not escaped our attention that inhibitors of 

the PGE2 signaling pathway, when combined with checkpoint inhibition, could help revert 

tumor cell immune evasion, enhance responsiveness to treatment, and possibly overcome 

resistance to therapy.
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Figure 1. Prostanoid Synthesis Overview.
Free cellular AA is released after PLA2-mediated conversion of membrane phospholipids. 

AA can be converted into PGH2 via COX-1 and −2. COX-2 is upregulated only in inflamed 

tissues. Both COX-1 and −2 are inhibited by non-specific NSAIDs, whereas COXIB 

compounds may selectively target COX-2. PGH2 may be converted into all five prostanoids 

via tissue-specific isomerases: TXA2 by TBXAS1; PGD2 by PTGDS; PGE2 by PGES; PGI2 

by PTGIS; and PGF2α by PTGFS. Each prostanoid may bind to its respective GPCR on 

the tumor epithelial cell to exert intracellular effects. Most notably, PGE2 promotes cancer 
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development and progression through numerous mechanisms, as outlined by the text and 

figures 2 and 3.
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Figure 2. Regulation of tumor formation by PGE2.
Acting through EP1–4, PGE2 promotes tumor-associated immunosuppression, angiogenesis, 

and cell proliferation, as well as migration, invasion, and survival. In addition, it activates 

DNA methyltransferases (i.e., DNMT1/DNMT3B) to methylate and silence transcription 

tumor suppressor genes. Acting through EP4, PGE2 promotes CSC formation, stimulation, 

and expansion via activation of NFκB through the MEK/MAPK and PI3K/AKT pathways. 

Overall, these processes enhance tumor formation, progression, transformation, and 

metastasis.

Wilson and DuBois Page 15

Cancer Prev Res (Phila). Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. General effects of PGE2 on four different gastrointestinal cancers.
PGE2 can promote tumor initiation, progression, angiogenesis, transformation, metastasis, 

and recurrence in EC, GC, HCC, and CRC by activating numerous intracellular 

signaling pathways, as described in detail herein. In addition to blunting responsiveness 

to neoadjuvant chemoradiotherapy and NSAID/COXIB treatments, PGE2 upregulation 

substantially worsens the overall prognosis. It also enhances epigenetic dysfunction due 

to DNA methylation of various tumor suppressor genes, as shown in Figure 2.
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