Table 3.
Logistic regression | XGBoost | Bayesian networks | Random forest | SVM | |
---|---|---|---|---|---|
Accuracy | 0.7402 ± 0.01 | 0.73583 ± 0.01 | 0.6967 ± 0.01 | 0.7301 ± 0.01 | 0.7095 ± 0.01 |
Sensitivity | 0.6077 ± 0.02 | 0.5370 ± 0.02 | 0.4440 ± 0.03 | 0.5020 ± 0.03 | 0.4487 ± 0.02 |
Specificity | 0.8726 ± 0.01 | 0.9346 ± 0.01 | 0.9490 ± 0.01 | 0.9579 ± 0.01 | 0.9702 ± 0.01 |
AU-ROC | 0.8073 ± 0.01 | 0.8295 ± 0.01 | 0.7530 ± 0.01 | 0.8355 ± 0.02 | 0.8075 ± 0.01 |