Table 5.
Logistic regression | XGBoost | Bayesian networks | Random forest | SVM | |
---|---|---|---|---|---|
Accuracy | 0.6728 ± 0.02 | 0.6445 ± 0.02 | 0.648 ± 0.03 | 0.6529 ± 0.03 | 0.6190 ± 0.03 |
Sensitivity | 0.4694 ± 0.04 | 0.3939 ± 0.04 | 0.4489 ± 0.05 | 0.3762 ± 0.06 | 0.2852 ± 0.05 |
Specificity | 0.8761 ± 0.03 | 0.8951 ± 0.02 | 0.8470 ± 0.02 | 0.9296 ± 0.02 | 0.9529 ± 0.02 |
AU-ROC | 0.7669 ± 0.03 | 0.7328 ± 0.03 | 0.7477 ± 0.03 | 0.7683 ± 0.03 | 0.7187 ± 0.03 |