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Abstract

BACKGROUND: The 15q13.3 microdeletion is associated with several neuropsychiatric
disorders, including autism and schizophrenia. Previous association and functional studies have
investigated the potential role of several genes within the deletion in neuronal dysfunction, but the
molecular effects of the deletion as a whole remain largely unknown.

METHODS: Induced pluripotent stem cells, from 3 patients with the 15q13.3 microdeletion and
3 control subjects, were generated and converted into induced neurons. We analyzed the effects
of the 15g13.3 microdeletion on genome-wide gene expression, DNA methylation, chromatin
accessibility, and sensitivity to cisplatin-induced DNA damage. Furthermore, we measured gene
expression changes in induced neurons with CRISPR (clustered regularly interspaced short
palindromic repeats) knockouts of individual 15g13.3 microdeletion genes.

RESULTS: In both induced pluripotent stem cells and induced neurons, gene copy number
change within the 15g13.3 microdeletion was accompanied by significantly decreased gene
expression and no compensatory changes in DNA methylation or chromatin accessibility,
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supporting the model that haploinsufficiency of genes within the deleted region drives the
disorder. Furthermore, we observed global effects of the microdeletion on the transcriptome and
epigenome, with disruptions in several neuropsychiatric disorder—associated pathways and gene
families, including Wnt signaling, ribosome function, DNA binding, and clustered protocadherins.
Individual gene knockouts mirrored many of the observed changes in an overlapping fashion
between knockouts.

CONCLUSIONS: Our multiomics analysis of the 15q13.3 microdeletion revealed downstream
effects in pathways previously associated with neuropsychiatric disorders and indications of
interactions between genes within the deletion. This molecular systems analysis can be applied
to other chromosomal aberrations to further our etiological understanding of neuropsychiatric
disorders.
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The 15g13.3 microdeletion (OMIM 612001) is a 1.5- to 2.0- Mbp deletion on chromosome
15 (1). This copy number variant (CNV) was first reported in 2008 in 9 individuals

with intellectual disability, seizures, and mild facial dysmorphism (2). Since then, many
other phenotypes have been associated with the CNV, including autism spectrum disorder
(ASD), schizophrenia, attention-deficit/hyperactivity disorder, and hypotonia (1,3,4). The
most common form of the 15913.3 microdeletion results in the loss of 8 genes:

CHRNA?7, FAN1, TRPM1, KLF13, OTUD7A, MTMRI10, ARHGAP11B, and MIR211
(3). Based on association studies and functional neuronal studies, several of these genes,
including CHRNAY (5-8), OTUD7A (9,10), FANI (11,12), and ARHGAP11B (13), have
been suggested as candidates for playing a role in the associated clinical phenotypes.
However, little is known about which downstream molecular mechanisms are affected

by individual candidate genes or by the CNV as a whole. To date, only one study

has characterized the transcriptome-wide effects of the CNV in human tissue, using non-
neuronal (lymphoblastoid) cells (14). Current knowledge is even more limited concerning
any associated changes in epigenetic processes, which are dysregulated in a number of
neuropsychiatric disorders associated with this CNV (15).

In the current study, we analyzed the changes in gene expression, DNA methylation,

and chromatin accessibility in induced pluripotent stem cells (iPSCs) with heterozygous
15913.3 microdeletions as well as in iPSC-derived early-stage induced neurons (iNs) that
can mature to resemble excitatory projection neurons. We observed genome-wide changes
in all three analyses affecting genes and pathways linked to neuronal dysfunction, including
Whnt signaling, cell adhesion, DNA binding and repair, and protein synthesis. Many of
these pathways were also found to be disrupted in our gene expression analysis of isogenic
cell lines with individual knockouts of 15¢q13.3 microdeletion genes, where different gene
knockouts sometimes converged on similar pathways, indicating synergistic interactions
between genes within the CNV.
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METHODS AND MATERIALS

Cell Line Characterization

Fibroblasts from 3 patients with heterozygous 15g13.3 microdeletions and neurocognitive
symptoms and 3 control subjects (Figure 1A and Table S1 in Supplement 2) were
reprogrammed into iPSCs and differentiated into iNs using the neurogenin-2 induction
method (16), with downstream analysis at day 6 (Figure 1B). Cell type identity was verified
with immunohistochemical staining. See Supplement 1 for details.

CRISPR/Cas9 Knockout of 15g13.3 Microdeletion Genes

Homozygous knockouts of single 15q13.3 microdeletion genes were generated in 4 control
iPSC lines using CRISPR/ Cas9 (clustered regularly interspaced short palindromic repeats/
Cas9) (Tables S2 and S3 in Supplement 2). Clonal lines were isolated with limiting dilution
and confirmed with Sanger sequencing. See Supplement 1 for details.

Whole-Genome DNA Sequencing

DNA sequencing libraries were generated with the TruSeq DNA Nano Library Kit (Illumina,
San Diego, CA) and sequenced on the Illumina HiSeq X. DNA sequencing analysis was
carried out using BWA (17), BEDtools (18), and CNVnator (19). See Supplement 1 for
details.

RNA Sequencing

RNA sequencing (RNA-Seq) libraries were prepared using the NEBNext Ultra Directional
RNA Library Prep Kit (New England Biolabs, Ipswich, MA) and sequenced on the Illumina
NextSeq 500 and HiSeq X. RNA-Seq analysis was carried out using Tophat (20), DESeq?2
(21), WebGestalt (22), and Ingenuity Pathway Analysis (Qiagen, Hilden, Germany). See
Supplement 1 for details.

Genome-wide Targeted Capture DNA Methylation Sequencing

DNA methylation sequencing (Methyl-Seq) libraries were prepared using the SeqCap Epi
System (Roche, Basel, Switzerland) and sequenced on the Illumina HiSeq 4000. Methyl-Seq
analysis was carried out using Bowtie 2 (23), Bismark (24), MethyIKit (25), Metilene (26),
and WebGestalt (22). See Supplement 1 for details.

Assay for Transposase-Accessible Chromatin Sequencing

Assay for transposase-accessible chromatin sequencing (ATAC-Seq) libraries were
generated as previously described (27) and sequenced on the Illumina NextSeq 500. ATAC-
Seq analysis was performed using Bowtie 2 (23), MACS2 (28), and DiffBind (29). Homer
motif enrichment analysis (30) was performed as previously described (31). See Supplement
1 for details.

Correlation Analysis

We calculated the Pearson correlations between gene expression, DNA methylation, and
chromatin accessibility using genes that were significant (adjusted p value [p,q] < .05)
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in at least one of the datasets within each pairwise comparison. For the Methyl-Seq and
ATAC-Seq analyses, only genes with significant differentially methylated regions (DMRs)
or peaks in the promoter (transcriptional start site to 2 kb upstream) were included.

Cisplatin Cell Survival Assay

RESULTS

Day 6 iNs were treated with 0.5 uM cisplatin or saline for 2 hours. After incubation in
cisplatin-free medium for 48 hours, surviving iNs were counted using trypan blue staining
and normalized to the cell number in a saline control well to give the survival percentage.
Statistical significance was calculated using a nested #test with GraphPad Prism (San Diego,
CA).

Cell Line Characterization

To study the molecular effects of the 15913.3 microdeletion, we obtained fibroblasts from
3 patients with the 15g13.3 microdeletion and 3 sex-matched control subjects (Table S1

in Supplement 2). Heterozygous 15q13.3 microdeletions in all 3 patient fibroblasts were
located between breakpoints 3 and 4 (Figure 1C), which is the most common combination
of breakpoints for the 15913.3 microdeletion (3). iPSCs generated from fibroblasts using
Sendai viral reprogramming stained positive for the pluripotency markers SSEA4, TRA-1-
60, and Nanog (Figure 1D). iNs generated from iPSCs exhibited neurite morphology and
stained positive for the neuronal markers TUJ1, VGLUT1, and MAP2 (Figure 1E). Gene
set enrichment analysis (GSEA) showed that genes involved in neuronal processes were
upregulated in iNs compared with iPSCs (Figure 1F). As quality control, cell lines were
assessed for sample identity, nonparental CNVs, residual Sendai virus expression, cell type
composition, and contributors of expression variance (Tables S1, S4, and S5 in Supplement
2 and Figure S1 in Supplement 1). See Supplement 1 for details.

Transcriptional Impact of the 15q13.3 Microdeletion

We performed RNA-Seq on 6 15913.3 microdeletion clonal lines and 6 control clonal lines
to determine the effects of the heterozygous 15g13.3 microdeletion on gene expression
(Table S1 in Supplement 2). We first looked for evidence of haploinsufficiency or

dosage compensation within the microdeletion. In both iPSCs and iNs, KLF13, MTMRI0,
OTUD7A, FANI1, and ARHGARPI11B showed significantly decreased expression in 15¢q13.3
microdeletion cases (p,g < .05). CHRNA7 was expressed at very low levels and was
nonsignificantly decreased in iPSCs but was significantly decreased in iNs. The final
protein-coding gene within the deletion, TRPM1, was not expressed above threshold levels
in iPSCs or iNs, which agrees with previous evidence suggesting that it is primarily
expressed in the retina (32) (Figure 2A, B).

Although the 15¢q13.3 microdeletion had a strong impact on genome-wide gene expression,
it was not the primary source of variability in the principal component analysis (PCA)
(Figure S2A, D in Supplement 1). Genome-wide, 178 genes were differentially expressed
(DE) in iPSCs and 369 genes were DE in iNs (Figure 2C, D and Tables S6 and S7 in
Supplement 2). The larger number of DE genes in iNs suggests that this CNV may have
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stronger downstream effects in a more relevant cell type. At the iN stage, a number of genes
were identified as DE that have been previously implicated in neuropsychiatric disorders,
including VIPR2 for schizophrenia (33,34); CACNG3, SCNSA, SPATAS5, and KCNAZ for
epilepsy (35-38); L/INS1and DCPS for intellectual disability (39-41); and PRODH and
DGCREé6for both schizophrenia and autism (42,43).

After performing GSEA, we identified no enriched Gene Ontology (GO) molecular function
(GOMF) or GO biological process (GOBP) terms in iPSCs. In the iNs, we identified 7
significant GOMF terms and 46 significant GOBP terms, many of which fell under the
categories of ribosome function, DNA replication/damage, and Wnt binding (Figure 2E).
We performed overrepresentation analysis using Ingenuity Pathway Analysis and within iNs
identified an enrichment of the EIF2 signaling pathway (g < .05), which is involved in
translational control (44). The genes driving this enrichment included AGO2, which plays a
key role in RNA interference; E/F2ZAKZ, a kinase that phosphorylates translation initiation
factor EIF2S1; and 12 ribosomal protein genes (Figure 2F).

DNA Methylation Analysis

We performed Methyl-Seq on the same cohort of cell lines used for RNA-Seq analysis. One
iN control line was excluded from final analysis owing to clustering with iPSCs (Table S1
in Supplement 2). We found no DMRs located in the promoters or gene bodies of the 7
protein-coding 15g13.3 microdeletion genes, which was consistent with the lack of dosage
compensation seen in the RNA-Seq data. PCA showed minor separation between deletion
cases and controls along PCL1 in both cell types (Figure S2B, E in Supplement 1). Genome-
wide, 416 DMRs were identified in iPSCs and were annotated to 147 promoter regions, 404
gene bodies, and 77 intergenic regions (Figure 3A, C and Table S8 in Supplement 2). In the
iNs, 408 DMRs were identified and annotated to 160 promoter regions, 277 gene bodies,
and 80 intergenic regions (Figure 3B, D and Table S9 in Supplement 2).

After assigning DMRs to genes, we performed GSEA on the Methyl-Seq dataset. Both
iPSCs and iNs showed an enrichment in cell adhesion and Wnt signaling—related pathways
(Figure 3E, F), which were driven mainly by a large number of DMRs located near
protocadherins (Figure 3G-I). Protocadherins are cell adhesion proteins that have been
implicated in several neurodevelopmental disorders, including epilepsy, ASD, schizophrenia,
and Down syndrome (45-47). Besides the protocadherin-related pathways, we also observed
an enrichment in 2 other neuronally related categories within iNs, namely nicotine addiction
and GABA (gamma-aminobutyric acid) receptor activity (Figure 3F).

Chromatin Accessibility Analysis

We examined chromatin accessibility using ATAC-Seq in 3 15g13.3 microdeletion lines
and 3 control lines (Table S1 in Supplement 2). In iPSCs and iNs, the average chromatin
accessibility log2 fold changes within the 15g13.3 region were —1.039 and —0.905,
respectively, representing the loss of 1 copy number within the 15q13.3 region. PCA of the
ATACSe(q reads did not show a clear separation between 15¢q13.3 microdeletion cases and
controls along PC1 or PC2 (Figure S2C, F in Supplement 1). Genome-wide, we identified
50 differentially accessible peaks in iPSCs and 72 peaks in iNs (Figure 4A, B and Tables
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S10 and S11 in Supplement 2). These peaks were annotated to 9 promoter regions, 21 gene
bodies, and 22 intergenic regions in iPSCs and to 14 promoter regions, 23 gene bodies, and
40 intergenic regions in iNs (Figure 4C, D).

We next examined transcription factor (TF) binding sites enriched in a list of differentially
open promoters, generated as previously described (31). In iPSCs, 3 enriched motifs

were associated with TFs (ZNF711, MZF1, and MEDI) that were expressed in the same
tissue (Figure 4E). In iNs, 5 expressed TFs (MAX, ETV6, GRHLZ2, TWIST1, and SOX5)
associated with enriched motifs were similarly identified (Figure 4F). Of the 8 TFs
associated with enriched motifs across iPSCs and iNs, 4 have been previously implicated
in neuropsychiatric disorders. Variants in ZNF711 and MZF1 have been associated with
intellectual disability and Alzheimer’s disease (AD), respectively (48,49). Genetic variants
in SOX5 have been associated with a range of neuropsychiatric disorders, including major
depressive disorder, (50), amyotrophic lateral sclerosis (51), AD (52), and intellectual
disability (53). Lastly, MAX has been linked to depression-like behaviors in mouse models
(54) and was found to be downregulated in cortex from patients with schizophrenia (55).

Correlation and Overlap Analysis Between Omics Layers

To analyze the relationships between the omics datasets, we calculated pairwise Pearson
correlations between transcription, promoter-associated DNA methylation, and promoter-
associated chromatin accessibility. Within each cell type, transcription and chromatin
accessibility had a weak positive correlation (Figure 5A, D), transcription and DNA
methylation had a weak negative correlation (Figure 5B, E), and DNA methylation and
chromatin accessibility had a strong negative correlation (Figure 5C, F). These trends
were consistent with the expected positive correlation between chromatin accessibility
and transcription, the expected negative correlation between DNA methylation and
transcription, and the expected negative correlation between DNA methylation and
chromatin accessibility.

Despite the demonstrated linear correlation between the different omics datasets, the overlap
in significant genes was limited. Only 15 genes were significant across at least 2 omics
datasets in iPSCs, and 13 genes were significant across at least 2 datasets in iNs. One

gene, KCNHS, was significant in all 3 iN omics analyses. KCNH8encodes a voltage-gated
potassium channel that is primarily expressed in the nervous system (56). We also identified
4 genes that were significant in multiple omics datasets in both iPSCs and iNs. These genes,
all of which have been implicated in studies of neuropsychiatric disorders, included CNTN4,
a cell adhesion molecule associated with ASD (57) and schizophrenia (58); PCDHGA10,

a member of the protocadherin family that has been implicated in schizophrenia and ASD
(45); SLC39A4, a zinc transport protein regulated by SHANKS3, a highly penetrant risk
factor for ASD (59); and SORCS1, which alters amyloid precursor protein processing and is
associated with AD (60).
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Transcriptome-wide Effects of CRISPR Knockout of Individual 15q13.3 Microdeletion

Genes

To evaluate the contributions of individual genes to the genome-wide expression changes
observed in the 15913.3 microdeletion samples, we generated CRISPR knockouts in 4
control iPSC lines targeting 5 of the genes located within the microdeletion: CHRNA?,
KLF13 OTUD7A, FANI, and MTMRI10 (Table S2 in Supplement 2). Two protein-coding
genes in the CNV were excluded: 1) 7RPMI because it is not expressed in iPSCs and

iNs and 2) ARHGARP11B because its guide RNAs have off-target hits to its homolog
ARHGAPI11A. Because patients with homozygous deletions have been reported, usually
with similar but more severe clinical phenotypes compared with those with heterozygous
microdeletions, we selected homozygous single-gene knockouts, which were viable and
would likely elicit stronger molecular phenotypes to assay (3). From the CRISPR iPSC
lines, we generated day 6 iNs and performed RNA-Seq on them as previously described.
As expected, PCA showed clustering primarily based on parental cell line identity (Figure
S2G in Supplement 1). Genome-wide, we observed 3572 DE genes in the FANI knockout,
223 DE genes in the KLF13knockout, 58 DE genes in the MTMR10knockout, 1 DE

gene in the OTUD7A knockout, and no DE genes reaching significance in the CHRNA7
knockout (Tables S12-S15 in Supplement 2). To compare the gene expression signatures in
the 15013.3 microdeletion and CRISPR knockout iNs, we performed pairwise correlation
analyses. The 15¢913.3 microdeletion iNs had a weak positive correlation with the CHRNA7
and OTUD7A knockouts and had a moderate positive correlation with the KLF13, FANI,
and MTMR10knockouts (Figure S3A-E in Supplement 1).

Using WebGestalt, we performed GSEA on the CRISPR knockout RNA-Seq datasets. In the
CHRNA7 knockout, we observed GO terms related to transporter activity, which were likely
related to the known function of CHRNA7 as an ion channel that binds acetylcholine and
mediates synaptic transmission (61,62). In addition, we saw an enrichment in the GOMF
term Wnt—protein binding in the same direction as observed in the 15g13.3 iNs (Figure

6A). In the KLF13knockout, we observed GO terms related to DNA replication, neuron
development, and tau protein kinase activity (Figure 6B). In both the FANZ and MTMRI0
knockouts, many of the top enriched GO terms were related to DNA binding. In addition,
Whnt-protein binding was among the list of top 10 GOMF terms in the MTMR10knockout
(Figure 6C, D). In the OTUD7A knockout, the top enriched GO terms were related to
ribosome function but in the opposite direction from that observed in the 15g13.3 iNs. In
addition, mitochondrial activity, which has been shown to be dysregulated in a number of
neuropsychiatric disorders (63-66), was a prominent category in the OTUD7A knockout
(Figure 6E).

Comparison With Mouse Model of 15q13.3 Microdeletion

We also compared the gene expression changes observed in our 15g13.3 microdeletion

iNs with those reported by Gordon et a/. in cortex from mice with hemizygous or
homozygous deletions on mouse chromosome 7qC, a region highly syntenic to human
15913.3 (67). Between the human iNs and mouse cortex, a weak positive correlation in gene
expression was observed (Figure S4A, B in Supplement 1). After excluding CNV genes,

no significant overlap remained between DE genes in iNs and mouse cortex. When we
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performed GSEA on the mouse RNA-Seq dataset (67), we found one GOMF/GOBP term
enriched in hemizygous deletion mice (GO:0042165 neurotransmitter binding), whereas
the homozygous deletion mice had multiple enriched GO terms that were similar to those
observed in our 15q13.3 microdeletion iNs related to Wnt signaling, DNA repair, and
ribosome function. In addition, GO terms related to mitochondrial activity, which we
observed in our OTUD7A knockouts, were highly enriched in the homozygous deletion
mice (Table S16 in Supplement 2).

Sensitivity to Cisplatin-Induced DNA Damage

Because GO terms related to DNA binding and repair were strongly enriched in the 15913.3
microdeletion iNs as well as in the FANZ, MTMR10, and KLF13knockout iNs, we
evaluated cell survival after cisplatin-induced DNA damage in the 15¢q13.3 microdeletion
and control iNs (Table S1 in Supplement 2). At a 0.5-mM cisplatin dose, we observed

a much lower survival rate in 15913.3 microdeletion iNs (56%) compared with control

iNs (90%) (Figure 7). The significant difference in cell viability after cisplatin treatment
provides further support for the observation from the RNA-Seq analysis that DNA repair
pathways are disrupted in 15913.3 microdeletion iNs.

DISCUSSION

Our multiomics analysis of 15q13.3 microdeletion iPSCs and iNs allowed us to interrogate
the molecular impact of a large CNV that is strongly associated with a range of
neuropsychiatric disorders such as schizophrenia and ASD. Large CNVs, while rare at

the population level, typically have much larger effect sizes than other candidate loci and
therefore are promising points of entry for understanding the associated disorders. Our
current study investigated the 15913.3 microdeletion as an important mutation in its own
right and also demonstrated that iPSCs and iNs derived from carriers of such large CNVs
can be used to identify molecular convergences between the main aberration and disease-
relevant loci elsewhere in the genome.

Within the deletion region, all protein-coding genes, with the exception of nonexpressed
TRPM1, had decreased expression in the 15¢q13.3 microdeletion samples, suggesting simple
dosage sensitivity as a mechanism of action. We observed no significant changes in

DNA methylation or chromatin accessibility within the deletion after accounting for the
change in copy number, which was consistent with the lack of dosage compensation seen
in the gene expression data. At the genome-wide level, we saw correlations of varying
strengths between gene expression, DNA methylation, and chromatin accessibility. In both
cell types, transcription and chromatin accessibility were positively correlated, whereas
DNA methylation had a negative correlation with transcription and chromatin accessibility.
The Pearson correlation between DNA methylation and chromatin accessibility was much
stronger than their respective correlations with transcription. Both the direction and relative
strength of correlation between these three omics layers were consistent with recent studies
in mouse embryonic stem cells and human iPSC-derived neurons (68,69). We interpret
these observations as signifying that different levels of functional genomics activity serve
overlapping but distinct roles during cellular differentiation, where transcript levels are
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highly sensitive to the functioning of the cell in its current state, while epigenetic marks are
more stable indicators of the developmental trajectory.

Gene expression analysis in iNs compared with the analysis in iPSCs revealed a greater
number of changes in neuropsychiatric disorder—related genes and pathways. Among the
DE iN genes were PRODH and DGCR6, two major candidate genes for schizophrenia

and autism located in the 22g11.2 microdeletion, which could be a further example

of convergence between neuropsychiatric candidate loci (70). GO terms enriched in
15g13.3 iNs included several processes tied to abnormal neurodevelopment, including
ribosome biogenesis, DNA binding and repair, and Wnt binding. The dysregulation of
ribosome biogenesis has been implicated in neuropsychiatric disorders in previous studies of
postmortem brains (71,72), olfactory neurosphere—derived cells (73), and neural progenitor
cells (74). Similarly, the category of DNA binding and repair is known to play a key role

in neuropsychiatric disorders, with mutations in DNA repair genes linked to schizophrenia
and ASD (75). In addition, both apoptosis and oxidative stress, which are closely tied

to DNA damage, have been implicated in a number of neuropsychiatric disorders (76—

78). The disruption in DNA repair pathways observed in the RNA-Seq analysis was
validated by the cisplatin assay, which showed a significant decrease in cell survival

in 15913.3 microdeletion iNs compared with control iNs after DNA damage. Another
enriched GO category, Wnt signaling, plays a critical role in many neurodevelopmental
processes, including synapse assembly, neuronal differentiation, and neurotransmission
(79). Changes in the expression of Wnt pathway components are associated with several
neurodevelopmental disorders including schizophrenia, bipolar disorder, and ASD (80,81).
In addition to their enrichment in the 15q13.3 iNs, GO terms related to Wnt signaling,
DNA binding, and ribosome function were also enriched in cortex from mouse models of
homozygous 15913.3 microdeletions, providing validation that these observed molecular
signatures are generalizable for the 15g13.3 microdeletion and are not artifacts of the
iPSC-iN model system. We also identified some limited convergence between our 15g13.3
CNV results and findings in other neuropsychiatric-associated CNVs (see Supplement 1 for
details).

Our analysis of the epigenome revealed global reprogramming associated with the 15913.3
microdeletion. Specifically, we identified differential methylation of protocadherins, a group
of cell adhesion genes known to modulate the Wnt pathway (82,83). From the chromatin
accessibility analysis, we identified several TFs with known connections to Wnt signaling,
including MZF1, whose TF binding sites are enriched in promoters of Wnt pathway genes
(84); TWISTI, which is activated by canonical Wnt signaling (85); and SOX5, which

is associated with Wnt signaling activity in human SH-SY5Y neuroblastoma cells (52).

In addition to the convergence on the Wnt signaling pathway, our multiomics analysis
identified four genes (CNTN4, PCDHGA10, SL. C39A4, and SORCSI) enriched in multiple
omics datasets in both iPSCs and iNs, all of which have been previously associated with
schizophrenia, ASD, or AD.

Multiple enriched GO terms identified in the 15913.3 microdeletion iNs were also observed
in the single-gene CRISPR knockout iNs. For example, Wnt binding was a significant GO
term in both the CHRNA7and MTMR10knockouts. While MTMRI10has not been linked to
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Whnt signaling previously, several studies have implicated CHRNA7 in the regulation of Wnt
signaling, reporting that CHRNA 7 inhibitors block the nicotine-induced upregulation of Wnt
signaling (86-88). GO terms related to ribosome function were enriched in the OTUD7A
knockout. OTUD7A belongs to the ovarian tumor protease class of deubiquitinases, whose
members (OTUD3 and OTUD6B) have been shown to act on translational machinery
(89,90). Finally, GO terms related to DNA binding were enriched in the FAN1, MTMR10,
and KLF13knockouts. FANI, which encodes a nuclease that repairs DNA interstrand cross-
links, plays a direct role in DNA repair (91-93). MTMRI10encodes a catalytically inactive
member of the myotubularin family. Although MTMR10itself has not been well studied,
other members of the myotubularin family (MTMRZ2and MTMR13) have been identified

in a DNA damage response screen (94,95). Lastly, KLF13is a transcription factor that may
affect DNA binding through its known regulatory role in cell proliferation (96-100). On

a general level, the CRISPR knockout results suggest that the disease-relevant effects of

the 15¢13.3 microdeletion are perhaps due not to the deletion of a single critical gene but
rather to the combinatorial effects of several genes within the CNV boundaries. Supporting
evidence for this multiple gene interaction model has also come from recent studies in other
large CNVs associated with neuropsychiatric conditions (101,102).

In this study, we focused on a single neuronal cell type, earlystage iNs that can mature

into excitatory projection neurons, in order to establish the viability and usefulness of this
model system. Owing to the relative rareness of the CNV and the laborintensive nature

of iPSC—iN work, the study cohort was limited to 3 15q13.3 deletion patients and 3

control subjects who were sex matched but were not perfectly matched with regard to

exact age and ethnicity. However, we were still able to identify disrupted pathways that
converged across different experimental approaches and omics layers within our study as
well as with previous studies of neuropsychiatric disorders. With the validation provided by
the mouse model reanalysis and by the CRISPR knockout experiments, which eliminated
confounding factors resulting from differences in genetic background, we expect that the
molecular effects we describe form part of a common thread in the early pathogenesis of

the 15g13.3 microdeletion syndrome. Interindividual genetic variance, which is considerable
between deletion carriers and modifies the molecular effects of the deletion, needs to be
further dissected in studies using larger cohorts as well as in cells differentiated into other
neuronal and glial types. Beyond the analysis of the 15g13.3 microdeletion, our study
provides a blueprint for assaying the molecular consequences of neuropsychiatric-associated
chromosomal aberrations. The many points of convergence with genes and pathways
already implicated in neuronal dysfunction underline how the study of variants such as

the 15¢13.3 microdeletion can inform our general understanding of the molecular basis of
neuropsychiatric disorders.
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Figure 1.
Generation and characterization of CNV lines. (A) Information on donors of fibroblasts,

including age, sex, and genotype. (B) Induced neuron generation timeline. (C) Sequencing
read depth of fibroblast samples. (D) Immunocytochemistry for the pluripotency markers
Nanog, TRA-1-60, and SSEA-4 on iPSCs (scale bar = 200 pm). (E) Immunocytochemistry
for the neuronal markers MAP2, VGLUT1, and TUJ1 on day 6-induced neurons (scale bar
=200 pm). (F) Top 10 GO biological process terms from gene set enrichment analysis of
genes differentially expressed between iPSCs and iNs, ordered by NES. Chr, chromosome;
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CNV, copy number variant; GO, Gene Ontology; iN, induced neuron; iPSC, induced
pluripotent stem cell; NES, normalized enrichment score.
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Figure 2.

RPS5 1

N

Gene expression changes within the 15913.3 microdeletion and genome wide. (A, B) Log2
FC of protein-coding 15¢13.3 genes in deletion samples compared with control subjects

in iPSCs (A) and iNs (B) (95% confidence intervals shown). (C, D) Manhattan plots of
RNA-Seq genes in iPSCs (C) and iNs (D), with the red threshold line indicating .05 FDR
significance. (E) Significant GO terms from gene set enrichment analysis of 15913.3 iN
RNA-Seq dataset. The top 10 terms in each category based on FDR are listed, ordered

by NES. (F) Log2 FC of EIF2 signaling genes differentially expressed in deletion iNs
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compared with control iNs (95% confidence intervals shown). Chr, chromosome; DEG,
differentially expressed gene; FC, fold change; FDR, false discovery rate; GO, Gene
Ontology; iN, induced neuron; iPSC, induced pluripotent stem cell; NES, normalized
enrichment score; rRNA, ribosomal RNA; RNA-Seq, RNA sequencing.
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Figure 3.

DMRs in 15g13.3 microdeletion lines. (A, B) Genome-wide distribution of DMRs in iPSCs
(A) and iNs (B). DMRs above red threshold line have =0.1 mean methylation difference
and adjusted p <.05. Arrows indicate PCDH gene clusters. (C, D) DMRs in iPSCs and

iNs, split by DMR location, direction of mean methylation difference, and direction of
expression change in nearest gene. (E, F) Significant terms from gene set enrichment
analysis of 15g13.3 iN and iPSC Methyl-Seq datasets, sorted by NES. (G-1) DMRs located
near the alpha (G), beta (H), and gamma (1) PCDH families. DMRs are colored red for
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higher mean methylation, and blue for lower mean methylation, in deletion samples. Chr,
chromosome; DMR, differentially methylated region; GABA, gammaaminobutyric acid;
iN, induced neuron; iPSC, induced pluripotent stem cell; Methyl-Seq, DNA methylation
sequencing; NES, normalized enrichment score; PCDH, protocadherin.
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ATAC-Seq shows altered chromatin accessibility in 15913.3 microdeletion lines. (A, B)
Genome-wide distribution of peaks identified from ATAC-Seq in iPSCs (A) and iNs (B).
Peaks above red threshold line have adjusted p # .05. (C, D) Differentially accessible ATAC-
Seq peaks in iPSCs and iNs, split by peak location, direction of chromatin accessibility
change, and direction of expression change in nearest gene. (E, F) Enriched motifs in iPSCs
and iNs from de novo Homer analysis with p value < 10712, best match TF expressed in the
same tissue, and best match score = 0.6. *Gene has known association with Wnt signaling
pathway. ATAC-Seq, assay for transposase-accessible chromatin sequencing; iN, induced
neuron; iPSC, induced pluripotent stem cell; TF, transcription factor.
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Figure 6.

CRISPR-Cas9 knockout RNA-Seq analysis. Significant GO terms from gene set enrichment
analysis of RNA-Seq datasets for knockouts of CHRNA7 (A), KLF13(B), FANI (C),
MTMR10 (D), and OTUD/7A (E) are shown. The top 10 terms in each category based on
FDR are listed, ordered by NES. *GO term also enriched in 15913.3 microdeletion induced
neurons. CRISPR, clustered regularly interspaced short palindromic repeats; FDR, false
discovery rate; GO, Gene Ontology; ncRNA, noncoding RNA; NES, normalized enrichment
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score; NF, nuclear factor; RNA-Seq, RNA sequencing; rRNA, ribosomal RNA; snoRNA,
small nucleolar RNA.
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Figure 7.
Cell survival after cisplatin exposure as a measure of altered DNA damage response in

15913.3 microdeletion iNs. Mean percentages (with 95% confidence intervals) of surviving
cisplatin-treated cells normalized to untreated cells in 15g13.3 microdeletion iNs and control
iNs are shown. *p <.005 by nested ¢ftest. iN, induced neuron.

Biol Psychiatry. Author manuscript; available in PMC 2022 August 08.



Page 28

Zhang et al.

L/TS00 ¥OS:AIYY 980v€0€T -dlINd MIAyW wypLIoB)y aremyos
709500 ¥OS:aI¥y 959€6v1¢ -dlINd Slewsig wypLoBy a1emyos
9/¥500 ¥OS:AI¥Y ¥LTT926T:AINd '98288£22:AINd anmogd wyproB|y ‘a1emyos
GG69TO ¥OS:AIYY 008¢¢85¢:AlNd 140s434I10 wyLioby ‘asemyos

T0T¥88.¢ -dlINd

liedaduelien

wyIoB|y ‘81emiyos

982900 ¥0S:AI¥y . ) S.TS.6¥T-AlINd 1[BIS3O M wipob|y ‘aremyos
G/5086ST-AlNd 9..E€¢V¢ ‘AINd

/89ST0 ¥OS:AIYY 1829TSS2 :AINd Zbasaa wiyLoB|Y ‘9semiyos

GEOETO ¥OS:AIdY Sy¥68¢6T ‘AlNd JeydoL wiyIoBy semyos

T280TO HOS:AlyY 9/8¥¢€T¢ “AliNd J0JRUAND wyiob|y ‘aremios

0T60T0 YOS:AIYY G0S0800¢ :AlAd ‘89TTSY6T :AlNd VMg wiyIoBy semyos

9v9900 ¥OS:AlyY 8201702 -AliNd sjoo1a3g WypLIoBY ‘a1emyos

V/IN Jaded siy1 €S a1qel Aeuawsalddns ‘swNHB ¥dSIHD Juabeay paseg-aouanbas

V/N Jaded syl | €S a1qel Areyuswslddns ‘siswinid uonepijeA 4Od ddS1dD Juabeay paseg-aouanbas

¥6Evd Uoup|y ewbis 3AIY0THOIA INIWAVIAUDNNNILY 1d-SID fniq 1o punodwo) [edtwsyd

8erTeY saiBojouyoal a1 uqqel-nue yeob Ggg Jonj4 exaly Apoanuy

FAAANA S saiBojouyoa] a4 asnow-nue 1eob GGG Jon|4 exa|y Apognuy

620TTV sa1fojouydal 817 asnow-fue 1eob ggy Jon|4 exa|y Apoanuy

90VTN Uoup|y ewbis 2dVIN [euojoouow asnow Apognuy

20€ SET swalsAs andeuds TLNT9DA [euojoAjod nggel Apognuy

9G-GT-T pusfajolg TCN.L [euojoouow jiqael Apognuy

020060 Juabuwals BoueN [euojoAjod Nqge Apognuy

9T0TTLS olg 1s3 09-T-VY.1 [euojoouow asnow Apognuy

GTOTTLS oig 1S3 ¥\V3SS [eUojo0UOW dSnowW Apognuy

s | i o s oo | |

ool oy s puesoads g | o 0 S0 oes
b__MCmoc_:__wﬂ 105 sseqerep ‘siaquinu 10 ‘[enpintpul ‘A1oyisodau ‘Auedwiod
3201 ‘sdaquinu Bopeyeds apnjou| Ja4njoeiNUEW JO 3WeU apn|au|

mewmwﬁw@_ sJanuap| 30U319)9Y 40 324N0S 204Nn0s3y 10 Juabeay oi10ads adA1 s24nosay

Author Manuscript

Author Manuscript

Author Manuscript

319V1L SF0HNOSIH AT

Author Manuscript

Biol Psychiatry. Author manuscript; available in PMC 2022 August 08.



Page 29

Zhang et al.

168700 Y0S:AIYY BNIYAIY peay 8ousanbags 190N G87/GSVN(IHd VS aseqered d1jand ‘eleq pansodag
2T0S00 ¥OS:dldy s1aseled 039 190N TETSETIASO aseqered 21jand ‘ereq pansodag
V/N Jaded sy 2S ‘TS s9|qeL Areyuswalddns ‘saul| [199 OSd! auI 190

70082 uabeld) W anj3ui uasbeld 1M 1O Aessy [e1oJawWo)

228 aydo0y Y daid Areiqi vdwd U 10 Aessy [e10J3WWoD

90019 ORRUBIDS Jaysi4 oway L W uoneIRLNd YNYW speaqeuia UM 10 Aessy [erdspwiwod

G965T00C eulwnil 1 Areiqr oueN wNQ basniL UM IO Aessy [e1o1wwod

890va UYoseasay WAz WY [ESIBAIUN YNA-X2INO UM 10 Aessy [e1dJswwo)

S0¢y.3 sgejorg puejfu moN UM doid Arelqi wNY [euonoaid enin XaNg3aN UM 1O Aessy [e1o1wwiod

TS02d UoJeasay owAz 1y daidiulN WNY [0z-30811Q WY 1O Aessy [erosswwiod

1TS9TV sa1bojouyda] a1 11 Butwwelboiday 1epuas 0'z Sdi-auny 014D 1Y 10 Aessy [e1o1awwo)

86.200 HOS:AIYY

wsid pedydels

wyiob|y ‘aremios

8T62T0 ¥OS:AIYY puigyia wiyoh)y ‘atemios
T880T0 ¥0S:AI¥Y Z¢EYETS0C:AlINd H3WOH wpob|y ‘aremyos
T62ET0 YOS:AIdY ¢8686.8T ‘AINd SOVIN wyprob|y ‘a1emyos

687T€99¢ :AlNd EIETEN] wyiob|y ‘as1emios

'$901N0s3.4/6.10°youn.o10s//:sdny

H_mewwﬂowu 18 sa1yy 40} yoaess ‘pabeanodus
: Aybry aae sqryy saldy | mau i daded siyy,, asn ‘saouadayal Aoy . adA1 80anosal yoea
:oWM%H‘__ouEm J0/pue ‘sisquuinu UoIssadde 100 40 dlINd 3pnjou| ‘ge| yoaeasal a|qedyjdde uaym xas pue safoads apnjoul 10} Papasu Se SMOoJ [euollippe ppy
bum o :_wm 10 S| aseqeyep ‘siaquinu 10 ‘[fenpiaipul ‘Alonsodaa ‘Auedwiod
pnpul 3203s ‘saaquuinu Boje1es spnjou| ‘1a4n3oejNUBW JO BWeU apn|ou|
uorewIoju|
[euonIppy Slalnuap| 80UBJ3)8Y 10 324N0S 824n0say 40 Juabeay diy108ds adA] a2unosey

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Biol Psychiatry. Author manuscript; available in PMC 2022 August 08.



	Abstract
	METHODS AND MATERIALS
	Cell Line Characterization
	CRISPR/Cas9 Knockout of 15q13.3 Microdeletion Genes
	Whole-Genome DNA Sequencing
	RNA Sequencing
	Genome-wide Targeted Capture DNA Methylation Sequencing
	Assay for Transposase-Accessible Chromatin Sequencing
	Correlation Analysis
	Cisplatin Cell Survival Assay

	RESULTS
	Cell Line Characterization
	Transcriptional Impact of the 15q13.3 Microdeletion
	DNA Methylation Analysis
	Chromatin Accessibility Analysis
	Correlation and Overlap Analysis Between Omics Layers
	Transcriptome-wide Effects of CRISPR Knockout of Individual 15q13.3 Microdeletion Genes
	Comparison With Mouse Model of 15q13.3 Microdeletion
	Sensitivity to Cisplatin-Induced DNA Damage

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	KEY RESOURCES TABLEResource TypeSpecific Reagent or ResourceSource or ReferenceIdentifiersAdditional InformationAdd additional rows as needed for each resource typeInclude species and sex when applicable.Include name of manufacturer, company, repository, individual, or research lab. Include PMID or DOI for references; use “this paper” if new.Include catalog numbers, stock numbers, database IDs or accession numbers, and/or RRIDs. RRIDs are highly encouraged; search for RRIDs at https://scicrunch.org/resources.Include any additional information or notes if necessary.Antibodymouse monoclonal SSEA4ESI BioST11015Antibodymouse monoclonal TRA-1–60ESI BioST11016Antibodyrabbit polyclonal NanogStemgent09–0020Antibodyrabbit monoclonal TUJ1Biolegend1–15-56Antibodyrabbit polyclonal VGLUT1Synaptic Systems135 302Antibodymouse monoclonal MAP2Sigma AldrichM1406AntibodyAlexa Fluor 488 goat anti-mouseLife TechnologiesA11029AntibodyAlexa Fluor 555 goat anti-mouseLife TechnologiesA21422AntibodyAlexa Fluor 555 goat anti-rabbitLife TechnologiesA21428Chemical Compound or DrugCIS-PLATINUM(II)DIAMMINE DICHLORIDESigma AldrichP4394Sequence-Based ReagentCRISPR PCR validation primers, Supplementary Table S3This paperN/ASequence-Based ReagentCRISPR gRNAs, Supplementary Table S3This paperN/ASoftware; AlgorithmBEDToolsPMID: 20110278RRID:SCR_006646Software; AlgorithmBWAPMID: 19451168, PMID: 20080505RRID:SCR_010910Software; AlgorithmCNVnatorPMID: 21324876RRID:SCR_010821Software; AlgorithmTophatPMID: 19289445RRID:SCR_013035Software; AlgorithmDESeq2PMID: 25516281RRID:SCR_015687Software; AlgorithmWebGestaltPMID: 24233776, PMID:15980575, PMID:14975175RRID:SCR_006786Software; AlgorithmvariancePartitionPMID: 27884101Software; AlgorithmCIBERSORTPMID:25822800RRID:SCR_016955Software; AlgorithmBowtiePMID:22388286, PMID:19261174RRID:SCR_005476Software; AlgorithmBismarkPMID: 21493656RRID:SCR_005604Software; AlgorithmmethylKitPMID: 23034086RRID:SCR_005177Software; AlgorithmmetilenePMID: 26631489Software; AlgorithmMACSPMID: 18798982RRID:SCR_013291Software; AlgorithmHOMERPMID:20513432RRID:SCR_010881Software; AlgorithmDiffBindRRID:SCR_012918Software; AlgorithmGraphpad PrismRRID:SCR_002798Commercial Assay Or KitCytoTune-iPS 2.0 Sendai Reprogramming KitLife TechnologiesA16517Commercial Assay Or KitDirect-zol RNA MiniPrep KitZymo ResearchR2051Commercial Assay Or KitNEBNext Ultra Directional RNA Library Prep KitNew England BiolabsE7420SCommercial Assay Or KitQuick-DNA Universal KitZymo ResearchD4068Commercial Assay Or KitTruSeq DNA Nano Library kitIllumina20015965Commercial Assay Or KitDynabeads mRNA Purification KitThermo Fisher Scientific61006Commercial Assay Or KitKAPA Library Prep KitRocheKK8232Commercial Assay Or KitQiagen MinElute KitQiagen28004Cell LineiPSC cell lines, Supplementary Tables S1, S2This paperN/ADeposited Data; Public DatabaseGSE135131NCBI GEO DataSetsRRID:SCR_005012Deposited Data; Public DatabaseSRA PRJNA557485NCBI Sequence Read ArchiveRRID:SCR_004891

