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Abstract

Background: Mammography screening can lead to overdiagnosis—that is, screen-detected 

breast cancer that would not have caused symptoms or signs in the remaining lifetime. There 

is no consensus about the frequency of breast cancer overdiagnosis.

Objective: To estimate the rate of breast cancer overdiagnosis in contemporary mammography 

practice accounting for the detection of nonprogressive cancer.

Design: Bayesian inference of the natural history of breast cancer using individual screening and 

diagnosis records, allowing for nonprogressive preclinical cancer. Combination of fitted natural 

history model with life-table data to predict the rate of overdiagnosis among screen-detected 

cancer under biennial screening.

Setting: Breast Cancer Surveillance Consortium (BCSC) facilities.

Participants: Women aged 50 to 74 years at first mammography screen between 2000 and 2018.

Measurements: Screening mammograms and screen-detected or interval breast cancer.

Results: The cohort included 35 986 women, 82 677 mammograms, and 718 breast cancer 

diagnoses. Among all preclinical cancer cases, 4.5% (95% uncertainty interval [UI], 0.1% to 

14.8%) were estimated to be nonprogressive. In a program of biennial screening from age 50 

to 74 years, 15.4% (UI, 9.4% to 26.5%) of screen-detected cancer cases were estimated to be 

overdiagnosed, with 6.1% (UI, 0.2% to 20.1%) due to detecting indolent preclinical cancer and 

9.3% (UI, 5.5% to 13.5%) due to detecting progressive preclinical cancer in women who would 

have died of an unrelated cause before clinical diagnosis.

Limitations: Exclusion of women with first mammography screen outside BCSC.

Conclusion: Based on an authoritative U.S. population data set, the analysis projected that 

among biennially screened women aged 50 to 74 years, about 1 in 7 cases of screen-detected 

cancer is overdiagnosed. This information clarifies the risk for breast cancer overdiagnosis in 

contemporary screening practice and should facilitate shared and informed decision making about 

mammography screening.

Primary Funding Source: National Cancer Institute.

TOC blurb

Overdiagnosis from screening can result from the detection of indolent preclinical cancer or 

progressive preclinical cancer where the person would have died of an unrelated cause before 

clinical diagnosis. This article uses statistical modeling to account for both types of overdiagnosis 

in estimating the rate of screen-detected breast cancer that is overdiagnosed.
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It is now commonly understood that breast cancer screening is subject to overdiagnosis–that 

is, the mammographic detection of cancer that would not become clinically evident in the 

woman’s remaining lifetime. The U.S. Preventive Services Task Force cites overdiagnosis 

as one of the chief potential harms associated with mammography screening because of 

the burden and adverse consequences of unnecessary treatments (1). Therefore, knowledge 

about overdiagnosis is critical for supporting shared decision making, as recommended 

by the U.S. Preventive Services Task Force and the American Cancer Society (2, 3). 

However, the risk for breast cancer overdiagnosis in contemporary screening programs 

remains uncertain, with estimates varying from 0% to 54% (1).

This variation is attributable to differing overdiagnosis definitions, study settings, and 

estimation methods (4, 5). Regarding definition, some studies measure the frequency of 

overdiagnosis among all cases of diagnosed cancer, whereas others measure overdiagnosis 

only among cases of screen-detected cancer. Regarding study setting, many studies examine 

overdiagnosis after the introduction of population screening, which typically does not offer 

a counterfactual population control; others focus on screening trials, which include a control 

group but only provide the potential for unbiased estimation under certain trial designs 

(6). Finally, the analytic method used strongly influences variations in the overdiagnosis 

estimates, yet it is possibly the least well understood.

There are 2 main methods for estimating the frequency of overdiagnosis (5). The excess-

incidence method directly acknowledges the notion that an overdiagnosed cancer is an 

excess cancer detected by screening that would not have been diagnosed without screening. 

It is an empirical approach that directly compares disease incidence among screened and 

unscreened populations. The lead-time method applies a mechanistic understanding of how 

overdiagnosis happens as a consequence of the early detection process. It uses statistical 

modeling to estimate the underlying disease latency and life tables to calculate the risk for 

death from other causes between screen detection and the end of the latent preclinical period 

(before symptoms or signs).

Both methods are subject to limitations. Excess incidence requires a reliable observation of 

disease incidence in the absence of screening; this is not always possible once screening 

has been broadly adopted. The validity of excess incidence as a proxy for overdiagnosis 

has been questioned, and the approach has been shown to generate inflated estimates except 

under specific conditions that are rarely met in practice (4–8). Indeed, results from excess 

incidence studies generally far exceed those from lead-time studies (5). The lead-time 

approach is more versatile but requires specifying an appropriate model of underlying 

disease dynamics and sourcing a sufficiently rich data set to permit estimation of model 

parameters (9). Historically, models of the natural history of breast cancer have posited a 

simple progression from healthy to preclinical and clinical disease states (10, 11). Such 

models have been criticized for not accommodating heterogeneity of breast cancer natural 
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history (12, 13). This includes the potential for breast tumors to remain indolent, particularly 

among preinvasive ductal carcinoma in situ (DCIS) lesions (14, 15). Accounting for a 

mixture of progressive and nonprogressive cancer complicates modeling and may lead to 

nonidentifiability, which occurs when multiple model solutions explain the observed data 

equally well (16, 17). Recent modeling studies that include a mixture of indolent and 

progressive cancer generally do not confirm that their parameters are identifiable, leading to 

uncertainty about the reliability of their estimates (18–20).

Here we estimate the frequency of breast cancer overdiagnosis using the lead-time method, 

accounting for a mixture of progressive and nonprogressive cancer and explicitly assessing 

model identifiability on the basis of our previous methodological work (9). To produce 

results that apply to U.S. population screening programs, we source screening and cancer 

diagnosis histories from women in the Breast Cancer Surveillance Consortium (BCSC). 

The BCSC is the most authoritative U.S. data source on breast cancer screening practices 

and outcomes (21) and the most relevant to quantify the burden of overdiagnosis in 

contemporary U.S. breast screening practice.

Methods

Overview

Our overdiagnosis estimates were based on individual screening and diagnosis histories from 

a cohort of women who received 1 or more screening mammograms at a BCSC facility 

between 2000 and 2018. Because overdiagnosis is not directly observable (Figure 1, A–C), 

we estimated it indirectly through Bayesian inference. We first used data on screen and 

interval cancer incidence (Figure 1, D) to estimate the underlying latency and fraction of 

indolent cancer. We then used these estimates together with life tables on the risk for death 

from causes other than breast cancer to predict the extent of overdiagnosis in a cohort of 

women undergoing regular mammography screening. A technical appendix complementing 

this section is found in Supplement 1 (available at Annals.org).

Study Cohort

The BCSC is a racially, ethnically, and geographically diverse cohort that is representative of 

the mammography screening population in the United States (21, 22). The BCSC registries 

collect clinical and self-reported data from participating imaging facilities, including 

screening mammograms; diagnostic imaging, including additional imaging for work-up of 

a positive screen result; and benign and malignant pathology reports from breast biopsies. 

At each BCSC registry, breast cancer outcomes are also obtained through linkage with 

regional population-based SEER (Surveillance, Epidemiology, and End Results) programs 

and state tumor registries. Vital status is obtained through linkage to cancer registries 

and state death records. Each BCSC registry and the Statistical Coordinating Center have 

received institutional review board approval for either active or passive consenting processes 

or a waiver of consent and a Federal Certificate of Confidentiality and other protections 

for the identities of women, physicians, and facilities who are subjects of this research. All 

procedures were Health Insurance Portability and Accountability Act compliant.
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We included women aged 50 to 74 years whose first screen occurred at a BCSC facility 

between 2000 and 2018 from 4 BCSC registries that are permitted to share cancer data with 

external, non-BCSC researchers. An additional 2 BCSC registries provided data from 2000 

to 2009 before laws prohibited cancer registry data sharing. Women were excluded from the 

analysis if they reported having received a mammogram or a breast cancer diagnosis before 

their first mammogram in the BCSC registry. Mammography follow-up was censored by 

the diagnosis of the first breast cancer, death, 2018 (2009 for 2 registries), or a woman no 

longer attending a facility within the registry. Cancer follow-up was censored at death, age 

89 years, 18 months past the last screening mammogram, or 2019 (2010 for 2 sites).

Screening Tests and Cancer Diagnoses

Following BCSC definitions (23), screening mammograms were defined as bilateral 

mammograms with an indication of “screening,” done at least 9 months after the preceding 

mammogram. Both invasive breast carcinoma and DCIS were counted as cancer diagnoses. 

A cancer was coded as screen detected if it was diagnosed within 12 months of a screening 

mammogram in which the final assessment (including any diagnostic work-up) resulted in 

a Breast Imaging-Reporting and Data System (BI-RADS) score of 3, 4, or 5, or if the final 

assessment was a BI-RADS score of 0 or missing and the cancer was diagnosed within 3 

months (23); all other cases of cancer were coded as interval cancer. We used a 12-month 

interval after a BI-RADS score of 3, 4, or 5 to define a screen-detected cancer because this is 

consistent with the BCSC’s method of detection variable (24); more than 98% of such cases 

of cancer were detected within 9 months of their examination.

Estimating the Natural History of Breast Cancer

Although the exact time of onset with preclinical cancer and the period of tumor latency 

are not directly observable in real life (Figure 1, A), we can use a mathematical model 

together with the observed patterns of screen and interval cancer incidence (Figure 1, D) 

to estimate the underlying breast cancer dynamics (Figure 1, E). We constructed a model 

with the following components: age-dependent incidence of preclinical disease; sensitivity 

of screening examinations to detect a preclinical cancer; chance of a preclinical cancer 

to be nonprogressive; and time from onset of progressive preclinical disease to detection 

with clinical symptoms or signs, also known as sojourn time (Figure 1, E). Our estimation 

procedure aimed to find the most plausible values for these components, also called 

parameters, given the observed screening and diagnosis patterns. Because we censored 

deaths from causes other than breast cancer when fitting the model to the data, there was no 

need to explicitly model the competing risk mortality.

We used a Bayesian learning algorithm to identify the parameter values that best matched 

the observed data patterns. This permitted incorporating existing knowledge about model 

components into a set of prior beliefs, or prior distributions, on the model parameters. The 

prior beliefs were iteratively updated—that is, learning from the data—to provide estimates 

of the model parameters tailored to the data yielding posterior distributions of the model 

components (revised estimates of parameter values informed by observed data).
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The Bayesian learning algorithm updates the model parameters using the likelihood, a 

function that describes how the observed data on screen and interval incidence relates 

to the model components. To understand how the likelihood is calculated, consider the 

concrete example of a woman who received 3 negative mammogram results before being 

diagnosed with a screen-detected cancer on the fourth screen (Figure 1, D: screen-detected 

cancer). Although the cancer certainly began before the fourth screen, it may have occurred 

between the third and fourth screen, or it may have started before the third screen and been 

undetected on 1 or more false-negative screens. Adding up these possibilities across all 

women allows us to “learn” the parameter combinations that best fit the data. To ensure that 

parameter selection was primarily guided by the information contained in the data, we used 

noninformative priors for all parameters except for the screening test sensitivity, which has 

extensive existing published studies to estimate an informative prior probability distribution 

that helps to identify a unique best-fitting combination of model parameters.

Uncertainty about the model parameters was captured by 95% credible intervals (CrIs) 

around the posterior mean, analogous to classical CIs around the point estimate. A benefit 

of the Bayesian approach is that it naturally propagates uncertainty around the parameter 

estimates to uncertainty around the predicted rate of overdiagnosis.

Overdiagnosis Prediction

We defined the rate of breast cancer overdiagnosis as the proportion of screen-detected 

cancer that was either nonprogressive or progressive but would not have progressed to 

clinical disease before the woman died of causes unrelated to breast cancer (Figure 1, B). 

To estimate this proportion, we considered a cohort of women whose parameters for disease 

natural history were given by the best-fitting parameter combinations and who had regular 

(annual or biennial) screening, starting at age 50 years and until age 74 years or death from 

a cause unrelated to breast cancer, whichever occurred first. We modeled the competing 

mortality risk on the basis of a published age–cohort model (25) for a 1971 birth cohort. 

Residual uncertainty around the predicted mean rate of overdiagnosis was captured by 95% 

prediction intervals (PIs).

Sensitivity Analyses

We examined the overdiagnosis predictions’ sensitivity to alternative prior distributions for 

the sojourn time and the screening test sensitivity. We also assessed the overdiagnosis rate 

under a purely progressive disease model that did not allow for nonprogressive cancer.

Role of the Funding Source

This study was funded by the National Cancer Institute, which had no role in design, 

analysis, manuscript preparation, or the decision to submit the manuscript for publication.

Results

Screening Cohort Summary

Our analysis included 35 986 women who had mammographic screening (Table 1). Among 

women of known race, 64.4% were White, 19.0% Asian, and 12.1% Black. Among women 
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of known ethnicity, 11.0% identified as Hispanic. Median age at first screen was 56 years, 

with a local peak at 65 years, corresponding to the starting age of Medicare eligibility 

(Figure 2, left). On average, each woman received 2.3 screening tests (range, 1 to 17), for 

a total of 82 677 screening tests across the cohort. Most (51.3%) had a single test, and 

92.1% received 5 or fewer tests. The time between consecutive screens indicated primarily 

annual and biennial screening patterns (Figure 2, middle). A total of 718 cases of breast 

cancers were diagnosed; among the 671 cases of known type, 79.0% were invasive cancers 

and 21.0% were DCIS. Most cases of cancer (90.0%) were screen detected, and the highest 

number of cancer cases were diagnosed during the first screening round (Figure 2, right).

Natural History of Breast Cancer

We estimated 5 model parameters (Figure 1, E; Table 2). The incidence of preclinical 

cancer increased with age, and 4.5% (95% CrI, 0.1% to 14.8%) of all cases of preclinical 

cancer were nonprogressive. The mean tumor latency among cases of progressive cancer 

was estimated to be 6.6 years (CrI, 4.9 to 8.6), and the screening test sensitivity 81.4% (CrI, 

73.1% to 88.7%).

Overdiagnosis Between Ages 50 and 74 Years

For a biennial screening program for persons between the ages of 50 and 74 years, the 

overall predicted overdiagnosis rate among screen-detected cancer cases was 15.4% (95% 

PI, 9.4% to 26.5%). The overdiagnosis rate increased from 11.5% (PI, 3.8% to 28.3%) at 

the first screen at age 50 years to 23.6% (PI, 17.7% to 31.9%) at the last screen at age 

74 years (Figure 3 and Table 3). The wide PIs indicate uncertainty around the estimates 

but also identify the most likely ranges. For instance, the posterior probability of an overall 

overdiagnosis rate between 5% and 20% was 82.6%, whereas lower (<10%) and higher 

(>20%) rates were less likely, with posterior probabilities of 4.8% and 12.6%, respectively. 

The relative contributions to overdiagnosis from the detection of nonprogressive and 

progressive types of preclinical cancer differed by screening round (Figure 3). Overall, the 

rate of overdiagnosis among screen-detected cancer cases that was due to nonprogressive 

cancer decreased from 8.4% (PI, 0.3% to 26.4%) at the first screen to 5.5% (PI, 0.2% 

to 17.0%) at the last screen (Table 3). Conversely, the rate of overdiagnosis among screen-

detected cancer cases that was due to progressive disease that would not have become 

clinically evident before death from other causes increased from 3.1% (PI, 1.6% to 5.1%) at 

the first screen to 18.1% (PI, 11.9% to 24.5%) at the last screen.

Doubling the screening frequency from biennial to annual yielded an overall predicted 

overdiagnosis rate of 14.6% (PI, 9.4% to 23.9%), with patterns similar to those under 

biennial screening (Figure 4 of Supplement 2, available at Annals.org).

Sensitivity Analyses

The overdiagnosis rate was insensitive to alternative prior distributions for the screening 

test sensitivity (Figure 5 of Supplement 2, available at Annals.org). When using informative 

priors for the sojourn time based on published consensus estimates, changes in the predicted 

overdiagnosis rate were negligible for all but the most restrictive prior distributions (Figure 

6 of Supplement 2, available at Annals.org). Replacing the mixture model with a purely 
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progressive disease model led to a lower predicted overdiagnosis rate under biennial 

screening of 10.9% (PI, 8.0% to 15.0%) (Table 2 of Supplement 2, available at Annals.org).

Discussion

In this study, we sought to produce a reliable estimate of overdiagnosis that is relevant to 

contemporary U.S. practice by using an authoritative data source and a modeling approach 

that overcome key limitations of many previously published studies. For a biennial screening 

program for persons between the ages of 50 and 74 years, which corresponds to the U.S. 

Preventive Services Task Force recommendation for average risk women (2), we estimated 

that approximately 1 in 7 screen-detected cases would be overdiagnosed. Because the 

estimated tumor latency was considerably greater than 2 years, more frequent screening 

had a marginal effect on the number of screen-detected cancers overall.

Among all overdiagnosed cancers in the biennial screening program for persons between 

the ages of 50 and 74 years, one third was due to the detection of nonprogressive cancer 

and two thirds were due to the detection of progressive cancer that would not have 

progressed to clinical disease before the woman died of other causes. Such a decomposition 

of overdiagnosis into its principal sources is rarely reported, and it allows for a more 

informative characterization of age-dependent patterns of overdiagnosis.

A comparison of our estimates against those from other studies is not straightforward 

because of differences in overdiagnosis definitions and screening practices. Our 

overdiagnosis estimate is generally lower than those from similar excess-incidence studies, 

which are prone to overestimation (6). For instance, the Canadian screening trial estimated 

overdiagnosis rates of 30% (26) among screen-detected cancers, as compared with our 

estimate of 15%. In a population study, Bleyer and Welch (27) estimated that 31% of all 

diagnosed breast cancer cases were overdiagnosed, which corresponds to an even higher 

overdiagnosis rate among cases of screen-detected cancer (28). For context, our model 

deems overdiagnosis rates of this magnitude unlikely, with posterior probabilities of 3% and 

1% for overdiagnosis rates exceeding 25% and 30%, respectively.

On the other hand, our estimate of overdiagnosis is higher than those of previous 

modeling studies, ranging from 1% to 12% (19, 29–31). For context, our model estimates 

overdiagnosis rates below 10% to be unlikely, with a posterior probability of 5%. The 

discrepancy between our findings and previous modeling studies is likely because of 

differences in screening and diagnostic practices in the study populations as well as in 

model assumptions. For instance, we found that not modeling cases of indolent cancer led to 

lower predicted overdiagnosis rates.

Our work adds to the collection of modeling studies that have augmented the purely 

progressive disease model by adding nonprogressive cases (18–20, 32–36). Fryback and 

colleagues (32) did not assess overdiagnosis but estimated that as many as 42% of incident 

tumors could be of limited malignant potential, defined as small lesions that regressed if not 

detected within 2 years. On the basis of French registry data, Seigneurin and colleagues (20) 

estimated that approximately 7% of cases of screen-detected cancer were nonprogressive, 
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which is similar to our estimate. Using data from the biennial Stockholm breast screening 

program, Wu and colleagues (19) estimated that less than 1% of screen-detected cases 

were overdiagnosed (19). Importantly, none of the previous modeling studies allowing 

for nonprogressive lesions performed identifiability analyses to ensure uniqueness of their 

estimates.

Because DCIS lesions have a limited propensity to progress, it is possible that they 

accounted for a large fraction of overdiagnosed lesions in our cohort. Indeed, with 

DCIS accounting for 20% of screen-detected lesions and 70% to 80% expected to be 

nonprogressive or very slowly growing (14, 37), this implies an overdiagnosis rate of 

approximately 15% among all cases of screen-detected cancer solely because of DCIS 

diagnoses. Because this estimate coincides with our overall overdiagnosis estimate, we 

hypothesize that overdiagnosis may be infrequent among cases of invasive cancer. However, 

a formal assessment of this hypothesis was not feasible because we did not estimate separate 

natural histories for DCIS and invasive cancers because of identifiability concerns.

Model-based analyses are subject to different sources of uncertainty, including model 

and parameter uncertainty (38). Model uncertainty is introduced when making specific 

choices about the mathematical structure of the natural history model and the form 

of the prior distributions. We did a range of sensitivity analyses that confirmed the 

overdiagnosis predictions were largely insensitive to variations in both model structure and 

prior distributions. Parameter uncertainty in turn captures residual uncertainty about the true 

parameter values and arises from fitting the model to real-world data of limited information 

content. Our Bayesian modeling approach naturally accounted for parameter uncertainty by 

propagating it through to the predicted frequency of overdiagnosis.

Differences between our parameter estimates and those in previously published studies 

can be explained by contextual factors. Our inferred screening test sensitivity of 81% 

characterizes the sensitivity of the full screening episode, including screening mammogram, 

diagnostic work-up, and biopsy referral. Although influenced by the informative prior 

distribution, this parameter estimate was updated by the information contained in the data. 

Our estimate of 6.6 years for the mean sojourn time of progressive cancers is higher than 

a previous consensus estimate of 2 to 4 years based on data from older screening trials 

(7), yet remains within the range of previous modeling studies in which estimates were 

as high as 7.5 years (39). The discrepancy in detectable latency estimates compared with 

older studies is likely due to advances in screening technologies and our inclusion of DCIS 

tumors. Advances in mammography technology and supplemental screening among women 

with dense breasts (40) could have rendered lesions detectable at smaller sizes, which would 

have lengthened the sojourn time.

Naturally, our work is subject to limitations stemming from both data and method. Although 

the BCSC data is the largest, highest-quality U.S.-based data resource available for breast 

screening research, it is encounter based and therefore not able to distinguish persons who 

are lost to follow-up from those who have not yet come back for their next screening 

examination. To address this limitation, we censored cancer diagnoses 18 months after the 

woman’s last screening examination in the data. Second, knowledge about each woman’s 
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full screening history is needed for valid inference of natural history. Consequently, we 

were limited to including only those women who had their first screening examination 

within the BCSC. This led to event numbers that were too low to fit models accounting 

for patient features (such as race, ethnicity, or breast density), age-specific sojourn times, 

and histologic or molecular tumor subtypes. Finally, we acknowledge the potential for 

model misspecification but note that the model’s predicted risk for developing breast cancer 

between the ages of 50 and 80 years (8.5%) matches that in the U.S. population (8.8%) (41).

In conclusion, we find that the rate of overdiagnosis in U.S. population–based 

mammography screening is unlikely to be as high as suggested by prominent excess-

incidence studies. We hope that our findings will bring the field closer to a consensus 

estimate and facilitate decision making about mammography screening. Our estimates of the 

frequency and the age dependence of overdiagnosis can be provided along with information 

about false-positive rates to balance estimates of mammography screening benefits as part of 

a process of shared and informed decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overdiagnosis definition, data structure, and mathematical model. A. In the absence 

of screening, healthy women can develop preclinical cancer (t1). After a period of 

asymptomatic but screen-detectable tumor latency (sojourn time), women with preclinical 

cancer develop clinical cancer (t2). B. A screen-detected cancer at age t3 is overdiagnosed 

if, in the absence of screening, death from a breast cancer unrelated cause (age t4) would 

have occurred before onset with symptoms or signs (t4 < t3). C. On the other hand, the 

detected cancer is not overdiagnosed if the time of death would have occurred after onset 

with symptoms or signs (t4 > t3). D. The screening and cancer diagnosis histories of 

women in the Breast Cancer Surveillance Consortium cohort can be assigned to 1 of 3 

groups: no cancer diagnosis, diagnosis with a screen-detected cancer (gray square), and 

diagnosis with an interval cancer (red square). E. The mathematical model used for natural 

history estimation and overdiagnosis prediction has several components: (i) age-dependent 

incidence of preclinical cancer, (ii) fraction of preclinical cancer that is nonprogressive, (iii) 

sensitivity of screening tests, and (iv) tumor latency among progressive cancer.
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Figure 2. 
Data summary. In the middle and right panels, Gaussian kernel density estimates were used 

to smooth the data (see Supplement 1). Left. Participant age at first screen in the analyzed 

cohort. Middle. Time between consecutive screens, across all participants. Right. Cases 

of cancers (per 10 000 women) diagnosed during the first 5 screening rounds, across all 

participants and by method of detection.
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Figure 3. 
Overdiagnosis in women undergoing biennial screening, ages 50 to 74 years. For women 

undergoing biennial screening starting at age 50 years, the mean predicted overdiagnosis rate 

is shown by the height of each bar for each screen until age 74 years (gray lines represent the 

95% prediction intervals). There are 2 sources of overdiagnosis: the detection of progressive 

preclinical cancer that would not have progressed to clinical cancer before death from a 

breast cancer unrelated cause (white) and the detection of nonprogressive preclinical cancer 

(green).
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Table 1.

Screening Cohort Summary

Characteristics Value

Screening participants (n = 35 986)

 Median age at first screen (IQR) [range], y 56 (52–64) [50–74]

 Race, n (%)

  White 20 001 (55.6)

  Asian 5897 (16.4)

  Black 3754 (10.4)

  Other 1417 (3.9)

  Unknown 4917 (13.7)

 Ethnicity, n (%)

  Hispanic 3704 (10.3)

  Non-Hispanic 29 964 (83.3)

  Unknown 2318 (6.4)

Screens (n = 82 677)

 Screens per participant, n

  Mean (range) 2.3 (1–17)

  Median (IQR) 1 (1–3)

 Number of screens, n (%) of participants

  1 18 451 (51.3)

  2 7114 (19.8)

  3 3848 (10.7)

  4 2211 (6.1)

  5 1516 (4.2)

  ≥6 2846 (7.9)

Cancer (n = 718)

 Mode of detection, n (%)

  Screen detected 645 (90.0)

  Interval 73 (10.0)

 Cancer type, n (%)

  Invasive 530 (73.8)

  In situ 141 (19.6)

  Unknown 47 (6.5)

IQR = interquartile range.
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Table 2.

Parameter Estimates

Model Parameter Posterior Mean (95% Credible Interval)

Preclinical onset rate for ages [40, 55), year−1 0.0017 (0.0015–0.0021)

Preclinical onset rate for ages [55, 65), year−1 0.0029 (0.0024–0.0033)

Preclinical onset rate for ages [65, ∞), year−1 0.0035 (0.0029–0.0042)

Mean sojourn time, y 6.6 (4.9–8.6)

Fraction indolent cancers, % 4.5 (0.1–14.8)

Screening episode sensitivity, % 81.4 (73.1–88.7)
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Table 3.

Predicted Overdiagnosis Rates for a Biennial Screening Program, Ages 50 to 74 Years

Overdiagnosis Measure Mean Predicted Overdiagnosis Rate (95% Prediction Interval), %

Overall

 Total 15.4 (9.4–26.5)

 Indolent cancer contribution 6.1 (0.2–20.1)

 Progressive cancer contribution 9.3 (5.5–13.5)

At first screen (age 50 y)

 Total 11.5 (3.8–28.3)

 Indolent cancer contribution 8.4 (0.3–26.4)

 Progressive cancer contribution 3.1 (1.6–5.1)

At fifth screen (age 58 y)

 Total 11.6 (6.5–21.1)

 Indolent cancer contribution 5.4 (0.2–16.8)

 Progressive cancer contribution 6.2 (3.7–9.5)

At ninth screen (age 66 y)

 Total 16.7 (11.3–25.4)

 Indolent cancer contribution 5.4 (0.2–16.8)

 Progressive cancer contribution 11.3 (7.1–16.0)

At 13th screen (age 74 y)

 Total 23.6 (17.7–31.9)

 Indolent cancer contribution 5.5 (0.2–17.0)

 Progressive cancer contribution 18.1 (11.9–24.5)
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