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Abstract

Aims—To develop age and sex-specific risk equations for predicting mortality following major 

complications of diabetes, using a large linked administrative dataset from Western Australia (WA) 

and to incorporate these into an existing diabetes simulation model..

Methods—The study uses linked hospital and mortality records on 13,884 patients following 

a major diabetes-related complication with a mean (SD) duration of 2.62 (2.25) years. Risk 

equations for predicting mortality were derived and integrated into the UKPDS Outcomes Model. 

Estimates of life expectancy and incremental QALYs gained as a result of two theoretical therapies 

(a reduction of HbA1c of 1%, and reduction of systolic blood pressure of 10mmHg) were 

determined using the original and adapted models.

Results—The two versions of the model generated differences in life expectancy following 

specific events; however there was little impact of using alternative mortality equations on 

incremental QALYs gained as a result of reducing HbA1c or systolic blood pressure, or on 

outcomes of life expectancy for a cohort initially free of complications.

Conclusions—Mortality following complications varies across diabetic populations and can 

impact on estimates of life expectancy, but appears to have less impact on incremental benefits of 

interventions that are commonly used in pharmoeconomic analyses.
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Introduction

Diabetes simulation models are increasingly being used to inform economic evaluations, 

particularly in the context of theraputic reimbusment decisions (The Mount Hood 4 

Modeling Group; 2007). A key issue often referred to as external validation is to test their 

applicability in populations that were not used in their construction (American Diabetes 

Association Consensus Panel, 2004; Sargent, 2005), an example being the validation of the 

Framingham risk score in different ethnic groups (D’Agostino et al, 2001). When systematic 

differences arise, attempts are usually made to calibrate the model to the new setting. 

There is no agreement as to how calibration should be carried out, but it usually involves 

examination of some aggregate output of the model in the new population (Kopec et al., 

2010; Weinstein et al., 2001) and if differences arise, adjustments of intercept and slope of 

risk model equations are made so that the model predicts appropriate levels of risk (Abbasi 

et al., 2012).

The difference in mortality associated with diabetes complications is a source of variation 

that needs to be examined when adapting diabetes simulation models across settings. Such 

differences may arise over time and between different settings, due to factors such as the 

intensity and availibility of health care interventions to treat patients’ post-event risk. A 

pertinent issue in health economic simulation modelling is that there are a limited number 

of data sources with which to construct models of diseases processes. This is particularly 

the case in diabetes where data from long-term studies conducted in one or two countries 

are often used by researchers worldwide. While there is a need to examine existing diabetes 

simulation models’ ability to predict mortality, this issue has received much less attention 

than the degree to which they are able to predict absolute event rates of major complications 

such as myocardial infarction (The Mount Hood 4 Modeling Group; 2007).

A plausible explanation for a lack of post-event mortality validation studies is a lack of 

existing data sets that follow people with diabetes after experiencing complications. A 

potential source of information on mortality following complications is linked administrative 

data that include records both of hospitalisations and deaths. Our primary objectives in this 

study were to use such an administrative dataset from Western Australia (WA) (Hayes et 

al., 2011) to estimate age and sex-specific risk equations for predicting mortality following 

major complications of diabetes and to incorporate these into the UKPDS Outcomes Model 

(Clarke et al., 2004), a well known type 2 diabetes simulation model. Whilst ‘stand alone’ 

models that estimate life expectancy post event have been derived from the WA dataset 

(Hayes et al., 2011) they cannot easily be integrated into the more complex simulation 

model which requires annually updated information on complication status in order to 

predict mortality.

A second aim of the present study is to examine the broader issue of how taking into 

account rates of mortality in different diabetes populations may impact on overall outcomes 

such as life expectancy and quality adjusted life expectancy. This involved comparing 

estimates of life expectancy using the orginal UKPDS Outcomes Model and a model in 

which post-event mortality is determined from the Western Australian population. Finally, 

we examine differences in estimates of life expectancy and QALYs for a representative 
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patient under a series of hypothetical interventions that alter classical risk factors (e.g. 

HbA1c). This addresses whether decision analytic aspects of the model are affected by the 

use of Australian-specifc mortality equations.

Materials and Methods

Estimation of Australian mortality equations

The UKPDS Outcomes Model includes three equations for estimating mortality. The first 

equation estimates risk of death from causes unrelated to diabetes while the second two 

equations estimate the increased risk of death associated with major complications (Clarke 

et al., 2004),. In this study we replace the latter by estimating two new equations using 

Australian data to represent all cause mortality following any of six complications.

We used an administrative health service dataset from WA over a ten year period 

from 1 January 1990 to 31 December 1999, which has been described previously [8]. 

The dataset contains de-identified information from four separate sources: 1) insurance 

claims for medical and diagnostic charges; 2) information on dispensed prescriptions 

for pharmaceuticals for those holding Government concession and health care cards; 3) 

hospital records of inpatient episodes (including day-only admissions) for public and private 

hospitals; and 4) WA state death records. These data were confidentially linked at the 

individual patient level through a collaborative project undertaken by Commonwealth Health 

and Aging, the WA Department of Health, The University of WA, the Australian Institute of 

Health and Welfare, and the Health Insurance Commission. The data linkage was conducted 

using a protocol to ensure that the individuals privacy is protected (Boyko et al., 1996). The 

study was approved by the Commonwealth Department of Health and Ageing Departmental 

Ethics Committee.

Identification of people with diabetes was based on several criteria: use of diabetes specific 

medications; use of HbA1c tests; hospital admissions or discharges with diagnostic code(s) 

indicating diabetes (i.e. ICD9 code 250 or ICD10 codes E10-14), or diabetes listed as a 

cause of death on death certificates. Around 70,000 people over the age of 35 years were 

identified as having diabetes by fulfilling at least one of these criteria. Of those identified 

with diabetes, patients were further classified as having type 1 diabetes if indicated on one 

or more hospital records or if there was evidence of use of insulin but not of use of oral 

anti-diabetic agents. This is a wider definition of type 1 diabetes than used in a previous 

study using the same administrative dataset (Hayes et al., 2011). We supplemented the 

previous dataset with up to six additional months of follow-up data in which complications 

were coded according to ICD10 classifcations. This increased the number of focal events 

by around 10 percent for each type of complication. We also included foot ulcer as 

an additional complication as patients with this complication have been shown to have 

increased risk of mortality (Nelson et al., 2008).

The population used in this analysis was individuals with either type 1 or type 2 diabetes 

who had any one of six complications defined using the following diagnostic, procedural, or 

cause of death codes:
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1. myocardial infarction (MI) -either non-fatal myocardial infarction (ICD-9 code 

410), or fatal cardiac event (ICD-9 code ≥ 410 and ≤414.9, or ≥ 428 and ≤ 428.9, 

or sudden death (ICD-9 code ≥ 798 and ≤ 798.9; ICD10 R96); or ICD-10 I21; 

ICD-10 code ≥ I20 and ≤I 25) or ICD10 R96

2. stroke -(ICD-9 code ≥430 and ≤434.9, or 436) or fatal stroke (ICD-9 code ≥ 430 

and ≤ 438.9) or any fatal cebrovascular disease ICD-10 ≥ I60 and ≤ I69.

3. heart failure -ICD9 Codes 428 to 428.1, or ICD-10 I50

4. amputation of digit or limb using hospital procedure codes ≥84.10 to ≤84.17.

5. ulcer ICD-9 707.1 and non-pressure chronic ulcer of skin ICD-10 L97 and L98.4

6. End stage renal disease ICD-9 V45.1; V56 or ICD-9 55.69, or ICD10 N18.0 and 

renal failure N19 and an encounter for care involving renal dialysis Z49

Statistical analysis

The outcome modelled was death following one of the six specified complications. Time 

to death was measured in months, the shortest unit of time available in the administrative 

data. Patients were censored at the end of the study period, or if there was evidence of 

emigration to another Australian state or country (indicated by the pattern of health care 

use). The date of diabetes ascertainment was determined as the earliest recorded use of 

diabetes-specific medications, HbA1c tests or hospital admissions involving diabetes. We 

classified the first complication after the individual was identified as having diabetes, as 

the focal event. Individuals were considered to have prior comorbidity if they had hospital 

records for any of the six specified complications before their date of diabetes ascertainment.

To account for the high initial mortality following complications, and to maintain 

consistency with the original UKPDS model, we derived a logistic regression model for 

survival within the same year as the event, followed by a Gompertz model for survival in 

subsequent years. This division allowed the mortality equations to be integrated into the 

structure of the UKPDS simulation model that uses annual cycles.

A multivariate logistic regression model was estimated for the probability of death in the 

same calendar year as the focal event. Covariates in the model included the type of focal 

event (MI, stroke, heart failure, amputation, renal failure, ischaemic heart disease or ulcer), 

age (continuous), sex, type 1 diabetes and prior comorbidities existing before the date 

of diabetes ascertainment. Interaction terms for the type of event with age, sex and type 

1 diabetes were also investigated. Covariates were dropped through stepwise backwards 

elimination if their odds ratios were not significantly different from unity at the 5% level.

A Gompertz model, for the the hazard of death in years beyond the year of the focal 

event was estimated as a function of a patient’s current age, in order to allow extrapolation 

beyond the observed follow-up period (Nelson et al., 2008). Hence the shape function of 

the Gompertz depends on current age and the linear covariates were the type of focal 

event, prior comorbidities and time varying covariates for future events as patients are still 

vulnerable to further complications in years beyond the year of the focal event. Covariates 

were dropped through stepwise backwards elimination if they did not achieve significance 
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at the 5% level. The proportional hazards assumption was tested using Schoenfeld residuals 

(Schoenfeld, 1982) in an equivalent Cox model and by examination of Cox–Snell residual 

plots. Where proportional hazards problems were found they were resolved by using age 

interacted covariates.

Simulation Modeling

The logistic and Gompertz mortality equations estimated from the Western Australian 

population were coded into the simulation model. Then using representative input data 

and clinical risk factors for patients from the Fremantle Diabetes Study (FDS) (Davis et 

al., 2000) and using the UKPDS Outcomes model with either the existing UK mortality 

equations or the WA mortality equations, we simulated post-event survival following each of 

five major complications of diabetes: myocardial infarction, stroke, heart failure, amputation 

and renal failure (foot ulcer is not presently an outcome in the current UKPDS outcomes 

model). The input cohort comprised patients aged 74 years with diabetes duration 13 years, 

equal numbers of men and women, 14% smokers, HbA1c of 7.9%, systolic blood pressure 

157 mmHg, BMI 29 kg/m2 and total:HDL cholesterol 5.2, representing the summary 

statistics of patients in the FDS close to the time of their complication.

We then derived life expectancies and quality adjusted life expectancies following each 

event from the two different versions of the simulation model. Secondly we estimated 

outcomes for the same cohort of patients, initially free of complications. Simulations were 

run for a maximum of 26 years to age 100 years and remaining life expectancy and 

quality adjusted life expectancy were determined. In order to minimize Monte Carlo (1st 

order) uncertainty arising due to the probabilistic nature of simulations, we carried out 200 

replications of a 1000 person dataset to derive each life expectancy. Parameter (2nd order) 

uncertainty was evaluated using 1000 bootstrapped coefficients of all model risk equations 

including the new logistic and Gompertz models, which permitted calculation of 95% 

confidence intervals for all life expectancy predictions. Finally we examined incremental 

QALYs gained as a result of two theoretical therapies: a reduction of HbA1c of 1%, and 

reduction of systolic blood pressure of 10mmHg. We compared these effects using both UK 

and Australian versions of the simulation model.

Results

Australian mortality equations

The sub-group of patients who experienced at least one of the six selected complications 

comprised 13,844 patients: 7,673 men and 6,211 women. Summary statistics of the 

frequency of different focal events and death, associated age at event, prior co-morbidities 

and type 1 diabetes are provided in table 1. The most common complications for patients in 

our dataset were MI, stroke and heart failure with approximately 88% of patients having one 

of these as their focal event. Amputation, renal failure and foot ulcer together comprised the 

remaining 12% of first events occurring during the observation period. With the exception 

of renal failure, women were on average 4–6 years older than men at the time of their first 

event (mean (SD) age women: 73.9 (11.4) years; men: 69.3 (11.4) years). The average age 

for renal failure was 62.6 (12.3) years for women and 63.2 (12.5) years for men. The mean 
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(SD) duration of follow-up was 2.62 (2.25) years. Approximately half of the cohort died 

during this period and approximately one tenth of the cohort had prior co-morbidities at the 

time of diabetes ascertainment.

Statistical analysis

Parameters and estimated odds ratios from the logistic regression model for death within the 

same year as the focal complication are presented in table 2. All events apart from heart 

failure had lower initial mortality than MI which was the referent in the model. The risk 

of mortality increased by about 6% for every year of age (p<0.001) for MI, amputation 

and foot ulcer but the interactions terms indicated differences in age-dependency for stroke 

and heart failure. Death in the year of renal failure was much more strongly age-dependent, 

increasing by about 11% for every year of age. The probability of dying was between 2 and 

2.5 times higher for patients who had co-morbidities (prior stroke (p=0.004), heart failure 

(p<0.001), or amputation (p=0.03)).

The Gompertz model for mortality in years beyond the year of the complication is shown in 

table 3. Similarly to the logistic model, every year increase in age resulted in an approximate 

6% increase in risk of death. Compared with MI as the referent, all other complications 

examined conferred higher long term mortality risk (all hazard ratios >1). For example, 

someone with renal failure and who survives till the end of that year is three times more 

likely to die in the following year than someone who survived a MI.

Simulation modeling

Figure 1 shows the observed Kaplan Meier survival of men and women 70–79 years, 

following each of 5 complications, compared with the simulated survival from the original 

UKPDS model and the Australian version of the model. Simulations using WA equations 

were closer to the observed survival in all cases, with simulated survival falling within the 

95% confidence interval of the data. Simulations using UK mortality equations generally 

fell outside of the 95% confidence interval with survival post MI being under predicted and 

survival following stroke, heart failure and renal failure being over predicted.

Simulated life expectancies and quality adjusted life expectancies following events derived 

from both versions of the simulation model are shown in table 4. Point estimates of life 

expectancy using the Australian version of the model were shorter following heart failure, 

stroke and renal failure, longer following MI. Life expectancies following amputation 

were similar regardless of whether UK or WA death equations were used. However, 95% 

confidence intervals were overlapped for UK and Australian predictions following most 

events except MI and heart failure. The Australian version of the model predicted shorter life 

expectancy following heart failure (approximately 1.4 years or 1 QALY) than the original 

UKPDS model and longer life expectancy following MI of about 1.2 years or 0.9 QALYs. 

Also notable is that 95% confidence intervals of life expectancies (which take into account 

parameter uncertainty) derived from the Australian version of the simulation model were 

much narrower than from the UK version. This relates directly to the greater parameter 

uncertainty of the coefficients in the UK mortality equations.
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Whilst differences in life expectancy of up to 1.5 years were simulated from the two versions 

of the model following specific events, overall life expectancy for this FDS cohort assumed 

free of complications at baseline was similar from both simulation models (table 4).

The incremental quality adjusted life years gained under scenarios of changes in risk factors 

from both original and Australian specific versions of the UKPDS Outcomes model are 

shown in table 5. Point estimates for incremental QALYs gained as a result of reducing 

systolic blood pressure of the patient cohort from 157 to 147 mmHg and as a result 

of reducing HbA1c by 1% were slightly greater for the UK model, but when 2nd order 

uncertainty was incorporated, 95% confidence limits of all incremental QALY estimates 

were overlapped.

Discussion

In this study, we have derived mortality risk equations to estimate survival following major 

complications of diabetes based on a large linked administrative healthcare data set from 

Australia. Not only did this enable us to adapt the UKPDS outcomes model to another 

setting (Australia), it also allowed us to examine the impact of using different mortality 

equations on outcomes such as QALYs and life expectancy that are typically used by 

health economists when modeling chronic diseases. This is a form of model uncertainly 

which is often difficult to examine when models are developed from a single population, or 

synthesized from a limited number of published sources.

Simulations using the Australian and UK models resulted in different predictions of post 

event survival and life expectancy, particularly following MI and heart failure. These suggest 

substantial differences in mortality risk between the two populations. The higher survival 

following MI in the Australian population may be due to differences across time as the 

original UKPDS equations were based on data from 1977–1997, whilst the Australian 

equations were based on data from 1990 until 1999. This is consistent with the declining 

trend in MI case fatality observed in other studies (Smolina et al., 2010) and, in this 

particular case, may largely reflect the fact that the UKPDS was conducted before statin 

therapy was available as a risk modifying strategy. Indeed, <2% of UKPDS patients received 

lipid-modifying therapy during the study. The mortality discrepancy may also represent 

differences across settings which may be related to health system performance, or other 

factors such as socio-economic differences. The poorer survival after heart failure predicted 

by the Australian–specific model is a little harder to explain, but could be due to non-

proportional effects using the models from the UKPDS which had limited data on older 

patients. These differences may also reflect the better initial clinical state and management 

of patients who are part of a clinical trial over that of community dwelling patients with type 

2 diabetes.

Whilst the original and the Australian version of the outcomes model generated differences 

in point estimates of life expectancy following MI, stroke, heart failure and renal failure, 

there were only small differences in aggregate outcomes of average life expectancy for a 

cohort initially free of complications. To some extent this is due to the fact that the over 

predictions of mortality from the UKPSD model following some events are cancelled out 
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by under predictions of mortality following other events. Additionally, only a proportion of 

this cohort would experience complications over their lifetime (e.g. in 25 years of simulation 

around 25% of the cohort are predicted to have an MI and only 14% a stroke) and so the 

effect of mortality differences are diluted.

External validation of models is uncommon (Altman at al., 2009) and there has been 

discussion as to whether it is required before a model is used for decision analysis (Kopec 

et al., 2010; Weinstein et al., 2001). We are aware of only one previous validation of a 

diabetes simulation model that specific focuses on mortality as an outcome (Song et al., 

2011). Here we have been able to examine external validity at two levels, for specific 

patient subgroups that have experienced a particular complication, and at the aggregate level 

of a patient cohort. The predictive validity of the original UKPDS Outcomes model was 

relatively poor in examining post–event survival among these specific patient subgroups in 

Australia. We also examined whether decision analytic validity of the model might change 

depending on the source of the mortality risk equations. Incremental QALYs predicted from 

a reduction in systolic blood pressure of 10 mmHg or a reduction in HbA1c of 1%, were 

similar irrespective of the source of mortality risk equations.

The question of whether the original outcomes model is valid in the Australian setting 

depends on how it will be used. Applications of the UKPDS Outcomes model to date 

include cost effectiveness analysis (Clarke et al., 2006, O’Reilly et al., 2007), prediction 

of life expectancies (Leal et al., 2009) and prediction of the incidence of cardiovascular 

complications (Reynoso-Noverón, 2011). On the basis of the results in this study, we would 

conclude that the calibration by direct estimation of mortality risk appropriate to Australia 

was necessary to have confidence in predictions of life expectancy following specific events, 

but that incremental outcomes of simulations such as used in economic evaluation were 

robust to the data source of the equations for death following events.

There are some limitations to our research. There were no records of clinical risk factors 

in the administrative dataset, hence the Australian mortality equations do not discriminate 

between people of high or low clinical risk. Additionally, there could be incorrect 

assignment of type 1 and type 2 status, but the overall proportion of type 1 patients 

in the administrative dataset (13.5%) was similar to that reported in national statistics 

(AIHW 2011).. Finally, the Australian mortality equations were based on 10 years of data 

prior to 2000 so would not reflect any more recent improvements in survival following 

complications that may have occurred in the last decade.

The uncertainty surrounding the estimates of life expectancy was much greater using the 

UK than the Australian version of the model, which is consistent with the larger number of 

events used to derive mortality equations. For example there were a total of 13884 events 

in the Australian data whereas the original UKPDS mortality equations were based on only 

717 patients with events. Record linked data are increasingly being used in epidemiological 

studies (Hayes et al., 2011; Smolina et al., 2012) and their large size makes them particularly 

useful for estimating mortality equations. When collected in countries such as Australia 

which has a system of universal health care, such data also have the advantage that they 

cover the entire population. The use of these data facilitates the estimation of mortality risks 

Hayes et al. Page 8

J Diabetes Complications. Author manuscript; available in PMC 2022 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on a large number of patients and avoids the selection issues that are often a source 

of criticism of comparable data from clinical studies. Furthermore administrative data sets 

tend to capture more events than clinicial trials. These advantages suggest they are likely to 

become increasingly used in health economic simulation modelling.
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Figure 1. 
Comparison of survival following complications for 70–79 age group, with simulated 

survival from two different models.

Shaded area= Kaplan Meier 95% confidence interval of observed WA survival; blue circles 

= simulation using UK death equations; brown circles = simulation using WA death 

equations.
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Table 2

Logistic Model for death within same calendar year as the focal event

Coefficient (se)
β0

Odds ratio (95% CI) p

Constant −5.019 (0.189)

β

Male −0.195 (0.049) 0.82 (0.75–0.91) <0.001

Age at time of event (years) 0.0629 (0.003) 1.065 (1.060–1.070) <0.001

Focus event

MI (base case) 0 1

Stroke −1.659 (0.357) 0.190 (0.094–0.383) <0.001

Heart failure 0 1

Amputation −1.435 (0.179) 0.238 (0.168–0.338) <0.001

Renal failure −3.711 (0.986) 0.024 (0.004 – 0.169) <0.001

Ulcer −1.538 (0.129) 0.215 (0.167–0.276) <0.001

Age and event interactions

Stroke*age 0.017 (0.005) 1.017 (1.008–1.027) <0.001

Heart failure*age −0.016 (0.001) 0.984 (0.982–0.986) <0.001

Renal *age 0.051 (0.014) 1.052 (1.024–1.081) <0.001

Sex and event interactions

Heart failure * male 0.519 (0.088) 1.681 (1.413–1.998) <0.001

Amputation * male 0.563 (0.218) 1.756 (1.145–2.693) 0.01

Type 1 event interactions

Heart failure * type 1 0.477 (0.103) 1.612 (1.316–1.974) <0.001

Ulcer * type 1 0.856 (0.242) 2.354 (1.464–3.784) <0.001

History of events

Prior Stroke 0.638 (0.224) 1.893 (1.220–2.937) 0.004

Prior Heart failure 0.972 (0.144) 2.643 (1.991–3.508) <0.001

Prior amputation 0.638 (0.295) 1.893 (1.063–3.372) 0.03
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Table 3

Gompertz equation for hazard of death in years beyond the focal event year.

Coefficient (se) HR (95% CI) p

Baseline hazard

gamma 0.056 (0.002) <0.001

Constant, β0 −7.068 (0.186) <0.001

β coefficients β HR (95% CI)

Male 0.115 (0.035) 1.12 (1.05–1.20) 0.001

Type 1 diabetes 0.267 (0.047) 1.31 (1.19–1.43) <0.001

Focus event

MI (referrant) 0 1

Stroke 0.286 (0.044) 1.33 (1.22–1.45) <0.001

Heart failure if age under 60 years 1.62 (0.104) 5.05 (4.13–6.19) <0.001

Heart failure at 60–69 years 1.28 (0.071) 3.62 (3.15–4.16) <0.001

Heart failure at 70–79 years 0.966 (0.053) 2.63 (2.37–2.92) <0.001

Heart failure if age >80 years 0.721 (0.055) 2.06 (1.85–2.29) <0.001

Amputation 0.518 (0.057) 1.68 (1.50–1.88) <0.001

Renal failure 1.043 (0.086) 2.84 (2.40–3.36) <0.001

Ulcer 0.289 (0.058) 1.34 (1.19–1.50) <0.001

Future events

MI and aged under 70 2.083 (0.082) 8.03 (6.84–9.42) <0.001

MI and aged over 70 1.788 (0.048) 5.98 (5.44–6.57) <0.001

Stroke 1.300 (0.054) 3.67 (3.30–4.08) <0.001

Heart failure 0.566 (0.082) 1.76 (1.50–2.07) <0.001

Renal failure 0.865 (0.145) 2.37 (1.77–3.18) <0.001

Amputation 0.556 (0.117) 1.74 (1.38–2.19) <0.001

Ulcer 0.299 (0.151) 1.35 (1.00–1.81) 0.047
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Table 4

Simulated remaining life expectancy and quality adjusted life expectancy following one of 5 complications 

and with no complications.

Life expectancy years (95% CI) Quality adjusted life expectancy years (95% CI)

UK version WA version UK version WA version

Post MI 2.74 (2.07–3.42) 4.33 (3.85–4.72) 1.97 (1.49–2.46) 3.10 (2.76–3.37)

Post stroke 5.73 (4.73–6.88) 4.39 (4.01–4.78) 3.57 (2.95–4.28) 2.74 (2.51–2.98)

Post CHF 4.69 (3.88–5.65) 3.32 (3.14–3.50) 3.12 (2.58–3.75) 2.21 (2.09–2.34)

Post amputation 5.10 (3.79–6.72) 4.77 (4.33–5.20) 2.58 (1.92–3.4) 2.41 (2.19–2.63)

Post renal failure 4.17 (2.82–5.57) 2.82 (2.43–3.19) 2.18 (1.48–2.91) 1.48 (1.27–1.67)

No complications 8.17 (7.08–9.38) 8.17 (7.07–9.31) 6.19 (5.37–7.07) 6.20 (5.37–7.05)
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Table 5

Incremental QALYs gained from different theoretical therapies using original and Australian versions of the 

model.

Theoretical therapy UK version QALYs Incremental QALYs Australian version QALYs Incremental QALYs

None –base model 6.19 6.20

HbA1c reduced by 1% 6.34 0.15 (0.04–0.26) 6.32 0.12 (0.02–0.24)

SBP reduced by 10 mmHg 6.33 0.14 (0.03–0.26) 6.32 0.12 (0.02–0.27)

Footnote: 95% confidence limits represent 2nd order uncertainty
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