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ABSTRACT
◥

Alternatively spliced RNA isoforms are a hallmark of tumors, but
their nature, prevalence, and clinical implications in gastric cancer
have not been comprehensively characterized. We systematically
profiled the splicing landscape of 83 gastric tumors and matched
normal mucosa, identifying and experimentally validating eight
splicing events that can classify all gastric cancers into three sub-
types: epithelial-splicing (EpiS), mesenchymal-splicing (MesS), and
hybrid-splicing. These subtypes were associated with distinct
molecular signatures and epithelial–mesenchymal transition mar-
kers. Subtype-specific splicing events were enriched in motifs for
splicing factors RBM24 and ESRP1, which were upregulated in

MesS and EpiS tumors, respectively. A simple classifier based only
on RNA levels of RBM24 and ESRP1, which can be readily imple-
mented in the clinic, was sufficient to distinguish gastric cancer
subtypes and predict patient survival in multiple independent
patient cohorts. Overall, this study provides insights into alternative
splicing in gastric cancer and the potential clinical utility of splicing-
based patient classification.

Significance: This study presents a comprehensive analysis of
alternative splicing in the context of patient classification,molecular
mechanisms, and prognosis in gastric cancer.

Introduction
Alternative splicing (AS) is a major mechanism for increasing

transcript diversity in eukaryotes, affecting approximately 95% of
multi-exon genes that express multiple spliced isoforms in humans
(1, 2). Dozens of aberrant splicing variants have been implicated
in human disease, including cancer (3–5). These variants play roles
in a broad spectrum of oncogenic processes, such as cell proliferation,
apoptosis, hypoxia, angiogenesis, and immune escape (3–5). Aberrant

splicing has also been reported to promote epithelial–mesenchymal
transition (EMT) and contribute to the invasion and metastasis of
various tumor types, including breast, lung, and gastric cancer (6, 7).

Gastric cancer is the fifth most frequently diagnosed cancer and the
third leading cause of cancer-related mortality worldwide (8). A large-
scale project for genomic characterization of cancer, The Cancer
Genome Atlas (TCGA) consortium, revealed that gastric cancer is
highly heterogeneous and, based onmutations, copy number changes,
and translocations, can be divided into four distinct tumor subtypes:
Epstein-Barr virus (EBV)–associated, chromosomal instable (CIN),
microsatellite instable (MSI), and genomically stable (GS; ref. 9).
However, TCGA classification does not correlate well with oncologic
outcome and thus is of limited prognostic utility (9). In a separate
cohort, the Asian Cancer Research Group (ACRG), four gastric tu-
mor subtypes were defined on the basis of gene expression patterns:
MSI, Microsatellite Stable/EMT (MSS/EMT), MSS/TP53þ, and
MSS/TP53�. The ACRG subtypes are more closely associated with
patient outcome, with the MSI and MSS/EMT patient subtypes
having the best and worst prognosis, respectively (10). Neither of
these classification schemes use AS profiles to stratify patients with
respect to outcomes or treatment efficacy. AS-based classifications
have been shown to accomplish these goals in other tumor types
(11, 12) and therefore could be leveraged to improve patient
stratification in gastric cancer.

Several transcriptomic studies have reported that AS of genes
implicated in gastric cancer, such as skipping exon 2 or exons 18–19
of the receptor tyrosine kinase proto-oncogene MET (9), and isoform-
specific expression of ZAK kinase (13). In addition, EBV-associated
gastric cancers display a unique AS signature and changes in splicing
factor levels compared with EBV-negative gastric cancers (14). Recent
reanalysis of the TCGA database focusing on gastric cancer and
gastrointestinal pan-cancer cohorts identified hundreds of tumor-
associated AS events, several of which were associated with differential
patient survival (15–18). Yet the role of AS in gastric cancer pathogen-
esis, and its potential clinical utility, has not been fully explored due
to the lack of transcription-wide analysis on matched normal-tumor
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pair samples. A systematic analysis of AS events in matched normal-
tumor gastric samples would allow identification of cancer-specific
events, in addition to intertumor AS variation, and is currently lacking.
Furthermore, deeper insights into AS events and their regulation are
greatly needed to better understand the fundamental molecular features
of, and potential causative mechanisms leading to, gastric cancer.

Here, we report an AS-based stratification of gastric cancer cases
based on a transcriptome-wide analysis of a new cohort of 83 tumors
and matched normal samples. We identify eight AS events and three
RNA-binding protein (RBP) splicing factors, and demonstrate that
either an AS- or RBP-based signature can be used to classify patients
from multiple cohorts into subtypes with distinct clinical outcomes.

Materials and Methods
Samples

We selected 83 patients with gastric cancer with tumor and
matched normal samples (Supplementary Table S1) from the fresh
snap-frozen tissue repository at the Laboratory of Gastric Cancer
Biology, Cancer Research Institute, Seoul National University,
South Korea (from 2001 to 2015). All cases were staged according
to the AJCC TNM 7th edition staging system. Pathological analysis
classified papillary, well-differentiated and moderately differen-
tiated types as the differentiated group, whereas poorly differenti-
ated, mucinous, poorly cohesive cell types were classified as the
undifferentiated group. For MSI, fragment analysis was used to
compare tumor and normal tissue samples at 5 bp locations after PCR
using Primer 1 consisted of BAT26 (116 bp) and BAT25 (148 bp), and
primer 2 consisted of D5S346 (96–122 bp), D17S250 (146–165 bp) and
D2S123 (144–174 bp). Study protocol was approved by the institu-
tional review board (IRB H-2001–044–1092) and all methods were
carried out in accordance with relevant guidelines and regulations.

RNA sequencing and data analysis
Total RNA was extracted from tumor and corresponding normal

gastric mucosa samples and libraries were prepared using the TruSeq
RNAKit 2 per manufacturer’s instructions. RNA sequencing (RNA-seq)
was performed with Illumina HiSeq2000 (Illumina Inc.) for 101-mer
paired-end reads. Reads were aligned against the human reference
genome (GRCh38, Ensembl 94) using STAR (19) 2-pass mode v2.6.1.
d and RSEM (20) v1.3.1 was used to quantify transcriptome abundance.
Transcript abundance was analyzed by DESeq2 (21), and variance
stabilizing transformation was used for downstream analysis. Gene set
enrichment analysis (GSEA) was used to identify overrepresented
biological functions using GSEA (22). We calculated enrichment scores
using gene sets from MSigDB Hallmark (n ¼ 50) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG; n¼ 186) gene sets collection (23).

AS analysis
Weused rMATS v4.0.2 (24) to identify differential AS events between

two groups of samples. To keep high-rMATS confidence calls, we filtered
out cases where the sum of inclusion junction counts (IJC) and skipping
junction counts (SJC) was <25 in either set of samples. Differentially
spliced exons were defined using a splicing ratio |PSI (Percent-Spliced-
In)|> 0.2 andFDR< 0.05 as thresholds.AS frequency for eachpatientwas
calculated as the total number of five major types of AS events.

Molecular subtype classification
To find variable AS events for patient subtyping, we performed

hierarchical clustering using ComplexHeatmap v2.2.0 with DPSI
values of 20 differential AS events between tumor andmatched normal
tissues, and focused on 5 variable AS events selected by visual

inspection of variability in the heatmap. Next, we defined two patient
groups defined by principal component analysis using DPSI values of
these 5 variable AS events. To expand the list of variable AS events with
similar behavior, we compared AS events in group 1 versus group 2
using rMATS, yielding 28 variable AS events (Supplementary Fig. S2).

We applied the TCGA and ACRG subtype classifications to our
gene expression data. We used approximately 800 signature gene
classifiers (25) from the TCGA classification (9) to divide patients
into four groups (EBV, MSI, GS, and CIN, Supplementary Fig. S22).
Signature scores based on ACRG classification signature gene lists
(e.g., MSI, EMT, and TP53 activity) were calculated as described pre-
viously in (Supplementary Fig. S23; ref. 10).

For the RBP-expression–based patient classification scheme, we
used an average expression value of RBM24 and ESRP1 to divide
patients into high and low expression groups. We defined the MesS
(mesenchymal-splicing)-like subtype asRBM24high and ESRP1low, and
EpiS (epithelial-splicing)-like subtype asRBM24low andESRP1high. For
the three RBP-based classifications, we used the average of both
RBMS1 and RBM24 for the EpiS subtype.

Somatic mutation and copy number variation analysis
Exome enrichment, whole-exome sequencing, as well as copy

number, mutation, and variant calling analysis are described previ-
ously in Supplementary Methods.

RBP motif enrichment analysis
Motif analysis for 114 RBPs in differential exon skipping events was

performed using rMAPS (26), comparing differentially skipped exons
of specific subtypeswith control exons. 24,704 exons control exons, not
differentially spliced, were defined as FDR > 0.5, and maxPSI > 0.15,
and minPSI < 0.85. Regions for motif analysis included: 250 bp up-
stream or downstream into the intronic sequences and the first and
last 50 bp of exonic sequences. To avoid enrichment of canonical
splice sites, rMAPS excluded 20 bp within the 30 splice site and 6 bp
within 50splice site in introns. P value were calculated for each motif
after counting the number of occurrences in skipped exons and con-
trol exons, and enriched motifs were identified as P < 0.001. To build
a correlation network, we calculated Pearson correlation coefficients
between tumor PSI and RBP expression for each pair of AS event
and RBP. P values were converted into FDR for multiple test correc-
tion. Significant correlation pairs (FDR < 0.05) were used for network
construction.

RNA extraction from tumors and normal tissues
50–100mg of frozen gastric tumor or adjacentmatchednormal tissue

was pulverized using a mortar with liquid nitrogen. Total RNA was
extracted using the RNeasy kit (QIAGEN), includingDNase I treatment
per the manufacturer’s instructions. RNA concentration and quality
were assessed using aNanoDrop 2000 (Thermo Fisher Scientific) as well
as an Agilent RNA 6000 Pico Kit with Agilent 2100 Bioanalyzer
(Agilent). Samples with RNA Integration number >4.0 were used.

Cell cultures and RT-PCR for splicing events validations
AGS, MKN-74, and MKN-1 human gastric cancer cell lines were

obtained from the Korean Cell Line Bank (KCLB, Seoul, Korea), and
used in experiments after being certified by the KCLB. All cell lines
were cultured in RPMI-1640 cell culture media (Gibco, Life Techno-
logies) supplemented with 10% FBS (Gibco) and 1% penicillin–
streptomycin (Gibco) and subcultured at intervals of 2–3 days. All
cell lines were grown in 5% CO2 humidified incubator at 37�C and
Mycoplasma testing was routinely performed using e-Myco plus
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Mycoplasma PCR Detection Kit (Intron), verifying that the cells
were Mycoplasma free. For the silencing of ESRP1 or RBM24 expres-
sion, cells were transfected with ESRP1 siRNA (siESRP1; Santa Cruz
Biotechnology; sc-77526), RBM24 siRNA (sc-95527), or nontargeted
siRNA (sc-37007) using Lipofectamine 2000 transfection reagent
(Life Technologies) according to the manufacturer’s protocol. Two
microgram of total RNA was reverse-transcribed with Superscript III
reverse transcriptase (Invitrogen) and cDNA from 10 ng of total
RNA was subsequently used for each reaction. RT-PCR was per-
formed with Solg Taq DNA Polymerase (SolGent co., Ltd.) using
oligonucleotide primers detecting both the included and skipped
isoforms (Supplementary Table S5). PCR products were separated
on a 2% or 2.5% agarose gel stained with Dyne LoadingSTAR
(DYNEBIO INC.). Bands corresponding to the included and skipped
isoforms were quantified with the Image Laboratory 6.0 software (Bio-
Rad) and for each splicing event exon inclusion was expressed as PSI
as (intensity included)/(intensity included þ skipped).

RT-PCR for splicing events validations
500 ng of total RNA was reverse-transcribed with Superscript III

reverse transcriptase (Invitrogen) and cDNA from5–10 ng of total RNA
was used for each reaction. Semiquantitative PCR was performed with
Hot-start Taq DNA polymerase (Thomas Scientific) using primers
(IDT) detecting both included and skipped isoforms (Supplementary

Table S6). Optimal PCR conditions were defined for each primer pair to
select semiquantitative conditions. PCR products were separated on a
2% agarose gel stained with SYBR Safe (Invitrogen). Bands correspond-
ing to included and skipped isoforms were quantified with a ChemiDoc
MP (Bio-Rad) and for each event exon inclusion was expressed as PSI as
(intensity included)/(intensity included þ skipped).

Quantitative PCR analysis of RBPs
qPCR was performed using cDNA as above with iTaq Universal

SYBR Green Supermix (Bio-Rad) using gene-specific oligonucleotide
primers (IDT; Supplementary Table S7) per the manufacturer’s instruc-
tions using a ViiA7 (Life Technologies). Expression for each target gene
was normalized to GAPDH, and then normalized across all samples.

Validation in independent patient cohorts
RNA-seq data of paired normal and tumor samples for 80 early-

onset gastric cancers from Mun and colleagues (SRP172499; ref. 27)
were processed as described above. Clinical data and gene expres-
sion profiles of 295 TCGA gastric cancers were downloaded from
cBioportal (28, 29). ACRG microarray data (GSE62254; ref. 10) were
analyzed using RMA normalization.

Statistical analysis
Fisher exact and x2 tests were performed to evaluate differences

between subgroups. Log-rank and cox regression analysis were used to

Figure 1.

Cancer-associated AS events in gastric tumors. A, Summary of AS-based patient classification scheme. N, normal tissue; P, patient; SNU, Seoul National University;
T, tumor. B, Number of differential AS events in tumor versus normal pairs, colored by event type (SE, skipped exon; A5/3SS, alternative 50/30 splice site; MXE,
mutually exclusive exons; RI, retained intron). Themeannumber ofAS events is shownas ahorizontal dashed line.C,Differential AS events in 83 tumors versus normal
tissues, plotted as DPSI values for each patient. WHO and Lauren classification, as well as tumor stage, are shown.
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test survival differences. Kaplan–Meier survival analysis was per-
formed using the survival package and Cox proportional hazards
regression for multivariable survival analysis was applied using the
coxph function. All analyses were performed using R v3.6.0.

Results
Comprehensive genomic, transcriptomic, and splicing profiles
of matched gastric tumor and normal tissue samples

We performed RNA-seq of paired tumor and adjacent normal
mucosa tissues from 83 patients with gastric cancer. On the basis of
the Lauren classification, the patient cohort included 35 intestinal, 27
diffuse, and 21 mixed or undetermined types of gastric cancer (Sup-
plementary Table S1). We generated 9.5 billion paired-end reads, with
an average of 64.2 million read pairs per tumor, and 49.8 million read
pairs for the corresponding normal mucosal samples (Supplementary
Fig. S1). In addition, we performed whole-exome sequencing at an
average read depth of 129X for the tumor samples and an average read
depth of 85X for the matched normal samples.

Taking advantage of the paired sampling that was available for
all of our patients (Fig. 1A), we first looked for differential AS
events between tumor and normal tissue. We used rMATS, a com-
putational tool for splicing analysis that uses both exon body and
exon junction reads from RNA-seq data, to quantify the “Percent
Spliced-In” (PSI) value for each AS event (24). We determined AS
profile differences between each tumor and paired normal tissue
using a stringent cutoff value of at least 20% change in PSI (DPSI).
We detected on average 528 AS events in each tumor versus match-
ed normal pair, with skipped exon (SE) events being the most
frequent (Fig. 1B). We further identified 20 AS events in 18 genes
that are differentially spliced between tumors and normal tissues,
including 12 SE events, four mutually exclusive exons (MXE), three
retained introns (RI), and one alternative 50 splice site (A5SS;
Fig. 1C; Supplementary Table S2). Spliced genes were associated
with cell adhesion and the cytoskeleton (e.g., SMTN, TPM1, PDLIM7,
and ADAM15), translational control (e.g., RPS24), cell proliferation
(e.g., PDGFA, KRAS), cell metabolism (e.g., AFMID, ECHDC2,
INOE80, andGPT), or immune cell signaling (e.g.,CD47). Our analysis
also detected a skipped exon in theKRAS oncogene that was previously
identified in a smaller cohort of patientswith gastric cancer (30), aswell
as mutually exclusive exons in AFMID detected in hepatocellular
carcinoma (31).

Patient subtype classification based on AS events
We next sought to identify AS events that could be used for patient

classification. These were defined as AS events that exhibit variable
profiles across tumors (hereafter referred to as variableAS events). Five
such variable AS events were identified upon hierarchical clustering of
the 20 differential AS events (Fig. 1C). We then divided the patients
with cancer into two groups, Group 1 and Group 2, based on the
patterns of these five variable AS events. By comparing Groups 1 and 2,
23 additional variable AS events were identified to facilitate the further

dichotomization of patients (See Materials and Methods). This anal-
ysis yielded a total of 28 variable AS events in 13 genes (Supplementary
Fig. S2A and S2B). Because many of these events were partially
overlapping in the same gene (e.g., TPM1 contains eight AS events)
and rMATS reports each AS event separately, all events weremanually
inspected, andmerged to produce a group of 12 nonredundant variable
AS events in nine genes (Supplementary Table S3).

We experimentally validated the splicing patterns of these nine
genes from Groups 1 and 2, using an adjacent section of tumor and
matched normal tissues from 10 of the patients originally used for
RNA-seq analysis. Differential splicing patterns detected by our
transcriptome analysis between tumor and matched normal samples
were measured using semiquantitative RT-PCR for AS events in nine
genes (Fig. 2A). The DPSI values were determined for each tumor-
normal pair, and eight out of nine AS events showed a significant
positive correlation (P < 0.04) of DPSI values between RNA-seq data
and the RT-PCR results (Fig. 2A). We also observed that these eight
validatedAS events could be divided into two classes where the “Group
1 inclusion” consisted of 5 AS events (i.e., SE events in CD44, FLNA,
SMTN, DMPK, and an MXE event in ACTN1) and the “Group 2
inclusion” consisted of 3 AS events (i.e., SE events in MARK3,
ARHGEF11, and an MXE event in TPM1). Inclusion patterns of these
8 AS events in the two patient groups were visualized using Sashimi
plots (Fig. 2B and C).

Hierarchical clustering of patients based on DPSI values of these 8
events showed that patients can be divided into two distinct subgroups
plus one subgroup with an intermediate pattern (Supplementary
Fig. S3). Plotting the average DPSI values of the Group 1 inclusion
events versus Group 2 inclusion events showed a significant negative
correlation with a mutually exclusive pattern between these two DPSI
variables (r ¼ �0.85, P < 2.2e�16, Fig. 2D), and suggested a simple
AS-based patient classification scheme.

According to this novel AS event-based classification scheme, we
divided patients with gastric cancer into three subtypes (Fig. 2D): EpiS
(top left region), MesS (bottom right region), and Hybrid-Epithelial/
MesS (HybS, intermediate region), whichwere named according to the
results of GSEA, described below. This new classification scheme can
be applied to any single patient without the need for complex
clustering algorithms.

Molecular characterization of AS event-based gastric cancer
subtypes

The AS-based classification divided 83 patients into 43 EpiS, 22
HybS, and 18 MesS subtypes (Fig. 3A). At the molecular level, the
frequency of AS events, mutation rate, and copy number alterations
were significantly higher in the EpiS subtype compared with the MesS
subtype (Fig. 3B–D). The average number of AS events, as well as the
total number of SE events, per tumor sample was significantly higher
than in EpiS tumors compared withMesS tumors (Fig. 3B). Five genes
(i.e., LRP1B, ZFHX4, ROBO1, PLEC, and AHNAK) were frequently
mutated (>20%) in EpiS but not inMesS tumors andMUC16 similarly
showed a higher mutation rate in EpiS compared with MesS

Figure 2.
Eight AS events display distinct patterns in two patient groups. A, RT-PCR validation of AS events in gastric tumors (T) and matched normal (N) tissues from 10
patients, using primers that amplify both included and skipped isoforms. For each AS event, a representative gel image is shown along with PSI values, calculated as
the percentageof included/(%includedþ%skipped); significantDPSI (T–N) values (n¼ 3,DPSI>|10%| andDPSI>|5%|) are colored. Exons included (þ) or skipped (�)
are annotated (� , bands of no interest). Correlations ofDPSI values between RT-PCR and RNA-seq experiments are shown on the right. � , P <0.05; �� , P <0.01; ns, not
significant.B andC,Read coverage and junction reads showing inclusion ofASevents that define “Group 2” (B) and “Group 1” (C) in gastric tumors. GenenameandAS
type are indicated, along with average PSI for tumors. D, Scatter plot of patients using mean(DPSI; Group 2 vs. 1). The areas for three subtypes are shown in different
background colors—EpiS, green; MesS, magenta; and HybS, white, where the x and y intercepts of linear boundaries are 0.1.
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(Supplementary Fig. S4A). No mutations in splicing regulatory genes
were found to be significantly associated with our subtypes (Supple-
mentary Table S4; Supplementary Fig. S4B). The EpiS subtype also
exhibits copy number gains in several regions, including regions
overlapping the known cancer-associated genes EGFR, ERBB2,MYC,
and CCNE1, which are involved in cancer cell proliferation (Supple-
mentary Fig. S4C). Copy number alterations were relatively rare in

MesS patients, similar to the TCGAGS subtype. Furthermore, the copy
number alterations observed in the MesS subtype were also present in
the EpiS subtype, whereas most copy number amplifications in driver
oncogenes were not present in the MesS subtype (Supplementary
Fig. S4C).

To further characterize the patient subtypes defined by eight AS
events, we performed GSEA using total gene expression data

Figure 3.

AS event-based patient classification defines the EpiS and MesS subtypes of gastric cancer. A, Clinical information, including H. pylori status, and ACRG and TCGA
classifications for EpiS,MesS, andHybS subtypes definedon thebasis ofAS events are shown.P values fromx2 enrichment orWilcoxon rank-sumtests are shown. For
each event, DPSI for each tumor-normal pair are shown. B, The frequency of AS events for each patient is the sum of differential AS events in matched tumor versus
normal samples.C andD,Difference inmutation burden (C) and copy number alteration (D) between EpiS andMesS subtypes are shown, alongwith average values,
and Wilcoxon rank-sum test P values.
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between the EpiS and MesS subtypes (Fig. 4A and B; Supplemen-
tary Fig. S5; ref. 23). The EpiS subtype showed an enrichment of
terms related to E2 factor (E2F) targets, MYC targets, and cell-cycle
regulation, which are typical proliferation signals for epithelial
cancer cells (Fig. 4A), as well as DNA damage response pathways

(Fig. 4B). Higher mutation rates and copy number amplifications
detected in the EpiS subtype (Fig. 3C and D) are consistent with the
activation of DNA damage response pathways detected by GSEA.
The MesS subtype showed various terms related to EMT (Fig. 4A),
as well as extracellular matrix–receptor interaction, focal adhesion,

Figure 4.

Functional characterization of AS subtypes. A and B, Statistically enriched gene sets in EpiS and MesS subtypes identified using GSEA 50 Hallmark gene set (A) and
MSigDBKEGGpathways (B).C,Geneexpressionof epithelialCDH1,EPCAM andOCLN, andmesenchymalVIM,CDH2 andFN1markers in eachpatient subtype.D,Gene
expression of EMT-inducing transcription factors ZEB1/2, SNAI1/2, and TWIST1/2 in each patient subtype. E,Absolute quantification of H. pylori copies in each patient
subtype. F, Associations between AS event-based patient subtype and Lauren or WHO clinical subtypes. MD, moderately differentiated; PD, poorly differentiated;
SRC, signet ring cell carcinoma;WD, well differentiated.G,Associations between AS event-based patient subtype and TCGAor ACRGmolecular subtypes.Wilcoxon
rank-sum test, � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; ns, nonsignificant.
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and cell adhesion molecules (Fig. 4B). Thus, the characteristic
biological signature associated with our AS event-based patient
classification is the EMT process, which we used to assign the tumor
subtypes defined above.

To confirm the involvement of EMT in our patient subtypes, we
investigated the expression of well-established EMT marker genes. In
accordance with our GSEA, epithelial marker genes CDH1, EPCAM
and OCLN showed higher expression in the EpiS subtype than in the
other two subtypes, whereas mesenchymal marker genes VIM, CDH2
and FN1 showed higher expression in the MesS subtype (Fig. 4C). Of
note, among the 8 variable AS events, aberrant splicing of ARHGEF11
and CD44 is known to play important roles during EMT in diverse
cancers (32, 33). We further examined the expression of known
EMT-inducing transcription factors (TF), suchasZEB1 andZEB2,SNAI1
and SNAI2 (also known as Snail and Slug), as well as TWIST1 and
TWIST2 (34). Gene expression of all these EMT TFs, except SNAI1,
gradually increased across subtypes in the order EpiS-HybS-MesS
(Fig. 4D), highlighting differences in EMT between our three patient
subtypes. Expression of other TFs associated with EMT, such as TCF4,
KLF8, FOXC2 increased between EpiS andMesS, whereasTCF3,GRHL2,
ELF3, and H2AFX decreased (Supplementary Fig. S6), consistent with
the overall enrichment of mesenchymal markers in the MesS group.

Finally, we compared our AS event-based patient classification
scheme with established clinical and molecular subtype classifications.
MesS tumors exhibit higher Helicobacter pylori (H. pylori) copy
numbers compared with EpiS tumors (P ¼ 3.9e�02; Fig. 4E; Sup-
plementary Table S1), in line with previous findings suggesting that
H. pylori promotes EMT in gastric cancer (35, 36). In terms of the
Lauren classification, we observed a significant association between
our AS event-based MesS subtype and the diffuse subtype, whereas
patients classified as EpiS were enriched in the intestinal subtype
(P ¼ 7.17e�03; Fig. 4F). Compared with the TCGA and ACRG
molecular classifications, our AS event-based MesS subtype, which
rarely contains copy number alterations, was significantly associated
with the TCGA GS subtype (P¼ 1.23e�07) as well as with the ACRG
EMT subtype (P ¼ 1.23e�07; Fig. 4G).

Splicing factorsRBM24, RBMS1, andESPR1 regulateAS events in
gastric cancer subtypes

RBPs regulate AS in a dose-dependent manner by binding
specific sequences on the pre-mRNA and promoting or blocking
exon inclusion. To investigate the molecular mechanisms regulating
differential AS events between the EpiS and MesS subtypes, we
performed an RBP-binding motif enrichment analysis using
rMAPS (26). For the five AS events included in EpiS tumors, we
identified binding sites for nine RBPs specifically enriched in exonic
or intronic regions near the spliced exons (Fig. 5A; Supplementary
Table S5; Supplementary Fig. S7). Similarly, we found binding
motifs for four RBPs enriched in the three AS events included in
MesS tumors. For example, the ESRP1-binding motif was enriched
in upstream introns of AS events included in MesS tumors (P ¼
2.18e�4; Fig. 5A), whereas the RBM24-binding motif was enriched
in downstream introns of AS events included in EpiS tumors (P ¼
6.61e�07; Fig. 5A). Finally, AS events from both subtypes con-
tained motifs for two RBPs, PCBP1, and PCBP2, which are known
oncogenic-splicing factors that are also involved in translation
coactivation and RNA stability (37).

Next, we investigated whether these RBPs were differentially
expressed between MesS and EpiS patient subtypes. Among the 13
RBPs that exhibit enriched binding sites, RBM24 and RBMS1 were
upregulated in the MesS subtype, whereas ESRP1 and PTBP1 were

upregulated in the EpiS subtype (Fig. 5B; Supplementary Fig. S8A).
We also examined the data for any evidence of a regulatory relation-
ship between RBP level and theDPSI values of all eight AS events. Gene
expressions of RBM24, RBMS1, and ESRP1 were significantly corre-
lated with the level of exon inclusion for most AS events (Supple-
mentary Fig. S8B and S8C), supporting a regulatory role for RBM24,
RBMS1, and ESRP1 in modulating these eight AS events. A correlation
network was built using significantly correlated RBP-AS event pairs
(FDR < 0.05), and revealed RBM24, RBMS1, and ESRP1, but also
PTBP1, to be major nodes connecting all eight variable AS events
(Fig. 5C). A few additional RBPs (i.e., CELF5, PCBP2, CELF4, FUS,
SRSF3, and RBM38) seem to play auxiliary roles in regulation of these
specific AS events, connecting only a subset.

The correlation between the expression of regulatory RBPs RBM24,
RBMS1, and ESRP1, and exon inclusion of all eight MesS and EpiS AS
events was further validated experimentally (Fig. 5D and E; Supple-
mentary Fig. S8B and S8C). Differential RBP expression wasmeasured
with quantitative PCR and mirrored RNA-seq data almost perfectly.
Notably, RBM24 expression showed a significant correlation (r > |0.5|)
with all five AS events fromEpiS tumors, whereasRBMS10s correlation
was significant only for CD44 and ACTN1 AS events (Fig. 5D and E).
ESRP1 expression correlated with all three AS events in MARK3,
ARHGEF11, and TPM1 fromMesS tumors (Fig. 5E). Of note, ESRP1-
regulated AS of ARHGEF11 has been shown to be essential for
epithelial tight junction integrity (38). Thus, RBM24 and ESRP1 may
be critical regulatory RBPs in gastric cancer, acting oppositely in the
EpiS and MesS subtypes. Our working model is that, in the EpiS
subtype, patients with low expression of RBM24 and RBMS1 and high
expression of ESRP1 show inclusion of “EpiS exons” and skipping of
“MesS exons” (Fig. 5F), whereas we propose the converse to be the case
in MesS subtype patients.

We performed siRNA-mediated ESRP1 knockdown in AGS and
MKN-74 epithelial-like gastric cancer cell lines, andRBM24 knockdown
in MKN-1 mesenchymal-like gastric cancer cells to demonstrate the
causal role of these RBPs in the regulation of the splicing events that
constitute our splicing-based signature of gastric tumors (39). At base-
line, the epithelial-like gastric cancer cell lines expressed high levels of
ESRP1 and low levels of RBM24, whereas mesenchymal-like gastric
cancer cells showed opposite expression patterns (Supplementary
Fig. S9A). Similarly, at baseline, epithelial-like and mesenchymal-like
gastric cancer cells often showopposite splicingpatterns (Supplementary
Fig. S9B). Knockdown of ESRP1 significantly decreased inclusion of
exons in CD44 (in AGS andMKN-74) andACTN1 (in AGS), two EpiS-
splicing events, and increased exon inclusion inARHGEF11 (inAGSand
MKN-74), a MesS-splicing event, compared with scrambled siRNA
control (Supplementary Fig. S9B). Similarly, knockdown of RBM24 in
MKN-1 cells significantly increased exon inclusion in ACTN1, an EpiS-
splicing event, and decreased exon inclusion in TPM1, a MesS-splicing
event. Exons ofMARK3 in MKN-1 were either fully included in either
cell line or fully skipped and were not affected by RBP knockdowns.

Validation of the AS event signature using independent cohorts
To ascertain the robustness of our findings, we verified whether the

AS event-based classification and molecular findings were reproducible
in other patient cohorts. We looked for public datasets that included (i)
reasonably large number of patients; (ii) matched tumor and normal
samples; and (iii) raw RNA-seq data available for analyzing splicing
variants. The proteogenomic study by Mun and colleagues (27) met
these conditions with 80 early-onset patients with gastric cancer even
thoughmost of themwere of the Lauren diffuse subtype. Analysis of this
cohort reproduced our salient findings, including (i) classification using
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Figure 5.

RBPs as regulators of AS events in EpiS and MesS tumor subtypes. A, RBP motifs enriched near differentially included exons in EpiS and MesS subtypes.
See also Supplementary Table S5. B, Normalized RBP gene expression in each patient subtype. C, Correlation network between RBP expression and DPSI
values of each AS event. Positive and negative correlations are shown with red and blue arrows, respectively. Colors for RBP nodes indicate the subtypes of
RBP motifs enriched in A. D and E, Correlation between RBP expression and AS for each RBP-AS pair, for EpiS (D) and MesS (E) AS events, colored by sample
type. Box plots indicate subtype differences in AS event (top) and RBP expression (right). F, Model of AS regulation by RBP expression in gastric cancer.
Wilcoxon rank-sum test, � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; ns, nonsignificant.
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the eightASevents groupedpatients into threedistinct subtypes (Fig. 6A
and B); (ii) subtypes displayed differential expression of epithelial
(CDH1, EPCAM, and OCLN) and mesenchymal (VIM, CDH2, and
FN1) markers; and (iii) RBM24 and RBMS1 were upregulated and
ESRP1 downregulated in the MesS subtype (Supplementary Fig. S10).
Interestingly, theMesS subtype defined in our study was associated with
the so-called integrated subtype 4 by Mun and colleagues (P ¼
2.6e�07; Fig. 6B; ref. 27), in which the key enriched biological
process is RhoA-mediated tumor cell migration via actin repro-
gramming and focal adhesion assembly. It suggests that our MesS
and EpiS AS events, including exon inclusion events in ARHGEF11

and ACTN1, might play similar roles in regulating cytoskeletal
rearrangements via the RhoA signaling pathway (40).

Validation of the RBP signature using independent cohorts
Given that high-depth RNA-seq and splicing analyses are expensive

and not routinely performed in the clinic, we devised a classification
scheme that is more readily implementable and only focuses on the
differential expression of splicing regulatory RBPs. We first examined
RBP expression in the TCGA and ACRG cohorts. RBM24 and RBMS1
were upregulated, and ESRP1 was downregulated in both the TCGA
GS subtype and the ACRG EMT subtype (Supplementary Fig. S11),

Figure 6.

Validation of AS-based subtype classification in independent datasets.A, Scatter plot of patients from Hwang’s cohort using meanDPSI of AS event-based EpiS and
MesS tumor subtypes, colored by subtype. B, AS event-based patient classification applied to Hwang’s cohort. Patient clinical classification by Lauren and their
integrated subtype are shown. C and D, RBP-based classification of TCGA (C) and ACRG (D) patients according to RBM24 and ESRP1 expression. E and F, Kaplan–
Meier plot for OS between EpiS-like and MesS-like RBP-subtypes in TCGA (E) and ACRG (F) cohorts (log-rank test P values). G, Kaplan–Meier plot for relapse-free
survival between EpiS-like and MesS-like RBP-subtypes in the ACRG cohort (log-rank test P values).

Jun et al.

Cancer Res; 82(4) February 15, 2022 CANCER RESEARCH552



consistent with the overall association of the MesS subtype with these
subtype classifications (Fig. 4F). Because our MesS subtype was
characterized by high expression of RBM24 and low expression of
ESRP1 (Fig. 5B), we thus defined MesS-like (RBM24high/ESRP1low)
and EpiS-like (RBM24low/ESRP1high) subtypes that simply use the
expression level of these two RBPs. We then evaluated this RBP-based
classification in the TCGA and ACRG cohorts and confirmed that the
gene expression levels of ESRP1 and RBM24 separated patients into
two subtypes properly (Fig. 6C and D).

We further examined the prognostic value of our subtypes. Relapse-
free survival showed a marginal difference between the EpiS and MesS
subtypes (Supplementary Fig. S12). In addition, we discovered that
TCGA patients with the MesS-like subtype had a significantly worse
prognosis than those with the EpiS-like subtype (log-rank P¼ 2.10e�02;
Fig. 6E), whereas the TCGA subtypes did not show any difference in the
overall survival (OS; Supplementary Fig. S13A). Similarly, ACRG pati-
ents with the MesS-like subtype, which was highly associated with the
ACRG EMT subtype, showed worse survival than the EpiS-like subtype,
both for OS and relapse-free survival (log-rank P < 0.0001 and P <
0.0001, respectively; Fig. 6F andG). The ACRG subtypes showed similar
trends (Supplementary Fig. S13B and S13C). Results from a similar
analysis, but using three RBPs additionally, including RBMS1, were
virtually identical to findings using two RBPs (Supplementary Fig. S14).

For a further assessment of the association of our two RBP-based
subtypes and patient survival, we developed a multivariate Cox
proportional hazard model that included age, sex, pathologic stage,
Lauren classification, and our subtypes (Supplementary Fig. S15).
In the TCGA cohort, the RBP-based classification was an indepen-
dent prognosis factor for OS [HR, 3.74; 95% confidence interval (CI),
1.43–9.80; P ¼ 0.007). In the ACRG cohort, the RBP subtype was
also an independent prognostic factor for both OS (HR, 1.82; 95% CI,
1.20–2.80; P¼ 0.005) and recurrence-free survival (HR, 1.61; 95% CI,
1.00–2.60; P ¼ 0.005). Of note, another hazard model, including both
splicing-based subtypes and TCGA subtypes for the TCGA cohort,
revealed that our RBP subtype outperformed TCGA subtypes to
predict OS (HR, 3.26; 95% CI, 1.137–9.4; P ¼ 0.028; Supplementary
Fig. S16A). Equivalent analysis with the ACRG cohort showed that
RBP-based subtypes performed better in the OS only (HR, 1.92; 95%
CI, 1.07–3.44; P ¼ 0.029; Supplementary Fig. S16B and S16C).
Collectively, survival analyses using multiple independent cohorts
strongly indicate poor prognosis of the RBP-based MesS-like subtype.

Discussion
Although AS is a key regulatory mechanism that affects virtually all

cellular processes, few studies have explored the role of AS in gastric
cancer (30, 41–43), and even fewer studies have investigated the utility
of AS-based patient classification (11). Given this, we (i) systematically
profiled the AS landscape in gastric cancer, (ii) identified RBPs that
regulate tumor subtype-specific AS events, and (iii) devised a patient
classification scheme based on variable AS events or their regulatory
RBPs. Unlike other signature-based classification methods that typ-
ically require whole transcriptome data and complex clustering algo-
rithms, ourfirst classification scheme is based on differential AS of only
eight genes from tumor and paired normal tissue. Our second clas-
sifier, derived from the AS data, is even more straightforward and is
based on expression of two RBPs, RBM24, and ESRP1, in tumor tissue
only. The two splicing classification schemes, one based on AS events,
the other on expression of RBP-splicing regulators, are closely correlated
(P¼ 5e�04) if we compare the subtypes (Supplementary Table S8), but
are based on different molecular phenomena. Compared with the

TCGA gastric cancer patient classification relying on a complex clus-
tering method using genome, RNA-seq, and microbiome data, or to the
ACRG classification using a 675-gene signature after normalization of
the RNA-seq data (9, 10), our classification based on expression level
of two RBPs is analytically much more efficient for distinguishing
gastric cancer subtypes and their associated prognosis, and therefore
easier to implement in the clinic on gastric tumor biopsies.

On the basis of the eight AS events signature, we defined two tumor
gastric subtypes, EpiS andMesS. One of the major molecular mechan-
isms behind our AS-based patient subgrouping was the EMT process.
EMT plays essential roles in tumor initiation, progression, and metas-
tasis in cancer, but its contribution is highly dependent on the cancer
type (44). Tumors from the EpiS andMesS subtypes represent the two
sides of the EMT spectrum. In the MesS subtype, EMT-TFs were
upregulated and mesenchymal–epithelial transition (MET)-TFs were
downregulated relative to the EpiS subtype (Fig. 2D; Supplementary
Fig. S6). Furthermore, activation of the KRAS–MAPK and Hedgehog
pathways in theMesS subtype (Fig. 3A) can in turn activate EMT-TFs
SNAI1/2 and ZEB1/2 indirectly via TGFb-SMAD and Notch signal-
ing (34, 45). The enrichment of several gene sets related to the DNA-
damage response pathways is observed in the EpiS subtype (Fig. 3B),
whereas the upregulation of H2AX relative is observed in the MesS
subtype (Supplementary Fig. S6). Indeed, Weyemi and colleagues
(46) showed that histone variant H2AX, a sensitive marker of dou-
ble-strand breaks, is a critical regulator of EMT, whose loss induces
EMT and reintroduction partially reverses EMT. Oh and collea-
gues (47) reported epithelial and mesenchymal phenotypes by ana-
lyzing genomic and proteomic data from several cohorts. Even though
AS was not included in their analysis, EMTmarkers were found to be a
critical factor in patient subtypes associated with clinical outcomes
such as patient survival and resistance to chemotherapy.

As for the interplay between regulation of AS and expression of
EMTmaster regulators, several studies reported that EMT-TFs altered
expression of splicing regulators. In particular, ZEB1 and SNAI1 were
shown to repress ESRP1 expression and lead to EMT in various cancer
cell lines (48, 49). Similarly, in our dataset, we observed significant
correlations between the expression of EMT-TFs and RBPs levels,
with ZEB1 being positively correlated with both RBM24 and RBMS1
(r > 0.5), whereas ESRP1 levels negatively correlated with ZEB1/2,
SNAI2, and TWIST2 expression (r < �0.5; Supplementary Fig. S17).
Furthermore, to determine whether RBPs could regulate down-
stream EMT-TFs, we analyzed the expression of six TFS in RNA-seq
data from breast and lung cancer cell lines with ESRP1 knockdown.
Our analysis reveals that these six EMT-TFs did not change their
expression upon ESRP1 knockdown (Supplementary Fig. S18),
thus suggesting EMT-activating TFs are presumably the upstream
regulators of RBPs affecting AS.

Several of the eight AS events and three regulatory RBPs in gastric
cancer identifiedhereinhavepreviously beenassociatedwithEMTinother
tumor types (30, 38, 49, 50). For example, ESRP1 is downregulated during
EMT in breast cancer models, and drives AS of mesenchymal isoforms of
ARHGEF11, CD44, and TPM1 (38, 40). In addition, ESRP1-regulated AS
events inMARK3, a kinase that regulates phosphorylation ofmicrotubule-
associated proteins, and TPM1, a protein involved in stabilizing cytoskel-
eton actin filaments are identified in this study. The function of these
isoforms in EMT in MesS gastric tumors remains to be determined. The
role of the other two RBPs, RBM24, and RBMS1, in EMT is not well char-
acterized, and further studies of their splicing targetsmay provide valuable
insights into the functional associations between splicing and EMT.

We observed several gene mutations and copy number variants
(CNV) associated with AS subtype (Supplementary Fig. S4A and S4C).
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The underlying molecular mechanisms linking mutations or CNVs in
cancer genes with changes in AS patterns remain poorly understood in
gastric cancer. One possible explanation would be that mutations or
CNVs in cancer genes impact downstream signaling pathways and
lead to changes in RBP levels, which in turn impact splicing of
downstream targets. To test this hypothesis, we examined the asso-
ciation of mutations and CNVs with RBP expression. Wild-type and
mutant patient groups were compared for differential RBP expression,
which showed significant differences for RBM24 expression and
ROBO1 or PLEC mutations (P ¼ 0.032 or 0.013), as well as ESRP1
expression and LRP1B or AHNAK mutations (P ¼ 0.018 or 0.040;
Supplementary Fig. S19A). However, this observation should be
interpreted carefully because most mutations were not recurrent and
occurred at different sites, therefore leading potentially to distinct
functional consequences, and making it difficult to assess their effect
on AS. In parallel, we examined the correlation between copy numbers
and RBP expressions, which showed that ESRP1 expression was
positively correlated with MYC copy numbers (r ¼ 0.312; Supple-
mentary Fig. S19B). In breast cancer and lymphoma, MYC has been
previously reported to regulate directly the transcription of several
splicing regulators, including SRSF1, TRA2b or PRMT5, by binding to
their promoter regions (51, 52).

For nine cases out of 10 RT-PCR validations showed concordant
results with the RNA-seq subtyping; however, we observed that one of
our patient samples (P38) was predicted to be the MesS subtype in
RNA-seq data and later determined to be the EpiS subtype based on
RT-PCR validation (Fig. 2A; Supplementary Fig. S20A). To investigate
the cause of this discrepancy, we repeated RNA-seq using the same
RNA sample as in the RT-PCR validation experiment and observed
that the new RNA-seq results also showed an EpiS subtype (Supple-
mentary Fig. S20B). We confirmed that both RNA-seq datasets were
from the same individual using NGSCheckMate (53). The source of
discrepancy in the AS-based subtypes was therefore likely due to
intratumor heterogeneity between the RNA samples used to generate
the RNA-seq data, as are often the cases in cancer pathology studies (39).
Hence, tumor heterogeneity introduces additional complexity to the
evaluation of how robustly any approach classifies patient subtypes.

Finally, to explore whether our findings from primary tumors are
recapitulated in cell models, we profiled splicing patterns as described
above using available RNA-seq data from 37 gastric cancer cell lines
from CCLE (54). We then applied the AS-based signature to gastric
cancer cell lines and classified 11 cell lines as MesS, 7 as HybS, and 19 as
EpiS subtypes (Supplementary Fig. S21A). Among the eight AS events
that constituted our AS event-based signature derived from primary
gastric tumors, AS events in CD44, MARK3, ARHGEF11 showed
variable splicing patterns across cell lines (Supplementary Fig. S21A),
whereas the remaining five AS events exhibited an epithelial AS pattern
across all cell lines, suggesting that they might be specific to primary
tumors and lost during cell culture. Splicing inclusion ratios of CD44,
MARK3, andARHGEF11AS events were significantly different between
EpiS andMesS cell lines (Supplementary Fig. S21B). Consistent with the
observations in human primary tumors, CD44 exon was more included
in EpiS compared with MesS cell lines, whereas exons in MARK3 and
ARHGF11weremore skipped (Supplementary Fig. S21B). Finally, when

examining RBP levels, ESRP1 showed a higher expression in EpiS than
MesS cell lines, similarly to primary tumors (Supplementary Fig. S21C).

Future studies aimed at defining the molecular drivers of the
transition from EpisS to MesS AS-based subtypes are needed. These
changes could be triggered by alterations in genomic, epigenetic, or
transcriptional regulators, which have been shown to drive splicing
factor changes in other tumor types. Understanding thesemechanisms
will allow us to identify AS-based targets for development of gastric
cancer therapies and tomove toward harnessing the full potential ofAS
in precision medicine.

In summary, we systematically investigated the landscape and roles
of AS in gastric cancer using RNA-seq data from matched tumor and
normal samples. Association of AS with the EMT program was firmly
established and suggested AS-based patient stratification schemes,
which highlighted the potential of AS analysis as a tool for precision
medicine. To our knowledge, this study presents the most compre-
hensive analysis to date of AS in the context of patient classification,
molecular mechanisms, and prognosis in gastric cancer.
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